/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2000 * * Miscellaneous support for floating-point primitives * * ---------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include /* * Encoding and decoding Doubles. Code based on the HBC code * (lib/fltcode.c). */ #ifdef _SHORT_LIMB #define SIZEOF_LIMB_T SIZEOF_UNSIGNED_INT #else #ifdef _LONG_LONG_LIMB #define SIZEOF_LIMB_T SIZEOF_UNSIGNED_LONG_LONG #else #define SIZEOF_LIMB_T SIZEOF_UNSIGNED_LONG #endif #endif #if SIZEOF_LIMB_T == 4 #define GMP_BASE 4294967296.0 #elif SIZEOF_LIMB_T == 8 #define GMP_BASE 18446744073709551616.0 #else #error Cannot cope with SIZEOF_LIMB_T -- please add definition of GMP_BASE #endif #define DNBIGIT ((SIZEOF_DOUBLE+SIZEOF_LIMB_T-1)/SIZEOF_LIMB_T) #define FNBIGIT ((SIZEOF_FLOAT +SIZEOF_LIMB_T-1)/SIZEOF_LIMB_T) #if IEEE_FLOATING_POINT #define MY_DMINEXP ((DBL_MIN_EXP) - (DBL_MANT_DIG) - 1) /* DMINEXP is defined in values.h on Linux (for example) */ #define DHIGHBIT 0x00100000 #define DMSBIT 0x80000000 #define MY_FMINEXP ((FLT_MIN_EXP) - (FLT_MANT_DIG) - 1) #define FHIGHBIT 0x00800000 #define FMSBIT 0x80000000 #endif #ifdef WORDS_BIGENDIAN #define L 1 #define H 0 #else #define L 0 #define H 1 #endif #define __abs(a) (( (a) >= 0 ) ? (a) : (-(a))) StgDouble __encodeDouble (I_ size, StgByteArray ba, I_ e) /* result = s * 2^e */ { StgDouble r; const mp_limb_t *const arr = (const mp_limb_t *)ba; I_ i; /* Convert MP_INT to a double; knows a lot about internal rep! */ for(r = 0.0, i = __abs(size)-1; i >= 0; i--) r = (r * GMP_BASE) + arr[i]; /* Now raise to the exponent */ if ( r != 0.0 ) /* Lennart suggests this avoids a bug in MIPS's ldexp */ r = ldexp(r, e); /* sign is encoded in the size */ if (size < 0) r = -r; return r; } /* Special version for small Integers */ StgDouble __int_encodeDouble (I_ j, I_ e) { StgDouble r; r = (StgDouble)__abs(j); /* Now raise to the exponent */ if ( r != 0.0 ) /* Lennart suggests this avoids a bug in MIPS's ldexp */ r = ldexp(r, e); /* sign is encoded in the size */ if (j < 0) r = -r; return r; } StgFloat __encodeFloat (I_ size, StgByteArray ba, I_ e) /* result = s * 2^e */ { StgFloat r; const mp_limb_t *arr = (const mp_limb_t *)ba; I_ i; /* Convert MP_INT to a float; knows a lot about internal rep! */ for(r = 0.0, i = __abs(size)-1; i >= 0; i--) r = (r * GMP_BASE) + arr[i]; /* Now raise to the exponent */ if ( r != 0.0 ) /* Lennart suggests this avoids a bug in MIPS's ldexp */ r = ldexp(r, e); /* sign is encoded in the size */ if (size < 0) r = -r; return r; } /* Special version for small Integers */ StgFloat __int_encodeFloat (I_ j, I_ e) { StgFloat r; r = (StgFloat)__abs(j); /* Now raise to the exponent */ if ( r != 0.0 ) /* Lennart suggests this avoids a bug in MIPS's ldexp */ r = ldexp(r, e); /* sign is encoded in the size */ if (j < 0) r = -r; return r; } /* This only supports IEEE floating point */ void __decodeDouble (MP_INT *man, I_ *exp, StgDouble dbl) { /* Do some bit fiddling on IEEE */ unsigned int low, high; /* assuming 32 bit ints */ int sign, iexp; union { double d; unsigned int i[2]; } u; /* assuming 32 bit ints, 64 bit double */ ASSERT(sizeof(unsigned int ) == 4 ); ASSERT(sizeof(dbl ) == SIZEOF_DOUBLE); ASSERT(sizeof(man->_mp_d[0]) == SIZEOF_LIMB_T); ASSERT(DNBIGIT*SIZEOF_LIMB_T >= SIZEOF_DOUBLE); u.d = dbl; /* grab chunks of the double */ low = u.i[L]; high = u.i[H]; /* we know the MP_INT* passed in has size zero, so we realloc no matter what. */ man->_mp_alloc = DNBIGIT; if (low == 0 && (high & ~DMSBIT) == 0) { man->_mp_size = 0; *exp = 0L; } else { man->_mp_size = DNBIGIT; iexp = ((high >> 20) & 0x7ff) + MY_DMINEXP; sign = high; high &= DHIGHBIT-1; if (iexp != MY_DMINEXP) /* don't add hidden bit to denorms */ high |= DHIGHBIT; else { iexp++; /* A denorm, normalize the mantissa */ while (! (high & DHIGHBIT)) { high <<= 1; if (low & DMSBIT) high++; low <<= 1; iexp--; } } *exp = (I_) iexp; #if DNBIGIT == 2 man->_mp_d[0] = (mp_limb_t)low; man->_mp_d[1] = (mp_limb_t)high; #else #if DNBIGIT == 1 man->_mp_d[0] = ((mp_limb_t)high) << 32 | (mp_limb_t)low; #else #error Cannot cope with DNBIGIT #endif #endif if (sign < 0) man->_mp_size = -man->_mp_size; } } void __decodeFloat (MP_INT *man, I_ *exp, StgFloat flt) { /* Do some bit fiddling on IEEE */ int high, sign; /* assuming 32 bit ints */ union { float f; int i; } u; /* assuming 32 bit float and int */ ASSERT(sizeof(int ) == 4 ); ASSERT(sizeof(flt ) == SIZEOF_FLOAT ); ASSERT(sizeof(man->_mp_d[0]) == SIZEOF_LIMB_T); ASSERT(FNBIGIT*SIZEOF_LIMB_T >= SIZEOF_FLOAT ); u.f = flt; /* grab the float */ high = u.i; /* we know the MP_INT* passed in has size zero, so we realloc no matter what. */ man->_mp_alloc = FNBIGIT; if ((high & ~FMSBIT) == 0) { man->_mp_size = 0; *exp = 0; } else { man->_mp_size = FNBIGIT; *exp = ((high >> 23) & 0xff) + MY_FMINEXP; sign = high; high &= FHIGHBIT-1; if (*exp != MY_FMINEXP) /* don't add hidden bit to denorms */ high |= FHIGHBIT; else { (*exp)++; /* A denorm, normalize the mantissa */ while (! (high & FHIGHBIT)) { high <<= 1; (*exp)--; } } #if FNBIGIT == 1 man->_mp_d[0] = (mp_limb_t)high; #else #error Cannot cope with FNBIGIT #endif if (sign < 0) man->_mp_size = -man->_mp_size; } } /* Convenient union types for checking the layout of IEEE 754 types - based on defs in GNU libc */ union stg_ieee754_flt { float f; struct { #if WORDS_BIGENDIAN unsigned int negative:1; unsigned int exponent:8; unsigned int mantissa:23; #else unsigned int mantissa:23; unsigned int exponent:8; unsigned int negative:1; #endif } ieee; struct { #if WORDS_BIGENDIAN unsigned int negative:1; unsigned int exponent:8; unsigned int quiet_nan:1; unsigned int mantissa:22; #else unsigned int mantissa:22; unsigned int quiet_nan:1; unsigned int exponent:8; unsigned int negative:1; #endif } ieee_nan; }; /* To recap, here's the representation of a double precision IEEE floating point number: sign 63 sign bit (0==positive, 1==negative) exponent 62-52 exponent (biased by 1023) fraction 51-0 fraction (bits to right of binary point) */ union stg_ieee754_dbl { double d; struct { #if WORDS_BIGENDIAN unsigned int negative:1; unsigned int exponent:11; unsigned int mantissa0:20; unsigned int mantissa1:32; #else unsigned int mantissa1:32; unsigned int mantissa0:20; unsigned int exponent:11; unsigned int negative:1; #endif } ieee; /* This format makes it easier to see if a NaN is a signalling NaN. */ struct { #if WORDS_BIGENDIAN unsigned int negative:1; unsigned int exponent:11; unsigned int quiet_nan:1; unsigned int mantissa0:19; unsigned int mantissa1:32; #else unsigned int mantissa1:32; unsigned int mantissa0:19; unsigned int quiet_nan:1; unsigned int exponent:11; unsigned int negative:1; #endif } ieee_nan; }; /* * Predicates for testing for extreme IEEE fp values. Used * by the bytecode evaluator and the Prelude. * */ /* In case you don't suppport IEEE, you'll just get dummy defs.. */ #ifdef IEEE_FLOATING_POINT StgInt isDoubleNaN(StgDouble d) { union stg_ieee754_dbl u; u.d = d; return ( u.ieee.exponent == 2047 /* 2^11 - 1 */ && /* Is the exponent all ones? */ (u.ieee.mantissa0 != 0 || u.ieee.mantissa1 != 0) /* and the mantissa non-zero? */ ); } StgInt isDoubleInfinite(StgDouble d) { union stg_ieee754_dbl u; u.d = d; /* Inf iff exponent is all ones, mantissa all zeros */ return ( u.ieee.exponent == 2047 /* 2^11 - 1 */ && u.ieee.mantissa0 == 0 && u.ieee.mantissa1 == 0 ); } StgInt isDoubleDenormalized(StgDouble d) { union stg_ieee754_dbl u; u.d = d; /* A (single/double/quad) precision floating point number is denormalised iff: - exponent is zero - mantissa is non-zero. - (don't care about setting of sign bit.) */ return ( u.ieee.exponent == 0 && (u.ieee.mantissa0 != 0 || u.ieee.mantissa1 != 0) ); } StgInt isDoubleNegativeZero(StgDouble d) { union stg_ieee754_dbl u; u.d = d; /* sign (bit 63) set (only) => negative zero */ return ( u.ieee.negative == 1 && u.ieee.exponent == 0 && u.ieee.mantissa0 == 0 && u.ieee.mantissa1 == 0); } /* Same tests, this time for StgFloats. */ /* To recap, here's the representation of a single precision IEEE floating point number: sign 31 sign bit (0 == positive, 1 == negative) exponent 30-23 exponent (biased by 127) fraction 22-0 fraction (bits to right of binary point) */ StgInt isFloatNaN(StgFloat f) { union stg_ieee754_flt u; u.f = f; /* Floating point NaN iff exponent is all ones, mantissa is non-zero (but see below.) */ return ( u.ieee.exponent == 255 /* 2^8 - 1 */ && u.ieee.mantissa != 0); } StgInt isFloatInfinite(StgFloat f) { union stg_ieee754_flt u; u.f = f; /* A float is Inf iff exponent is max (all ones), and mantissa is min(all zeros.) */ return ( u.ieee.exponent == 255 /* 2^8 - 1 */ && u.ieee.mantissa == 0); } StgInt isFloatDenormalized(StgFloat f) { union stg_ieee754_flt u; u.f = f; /* A (single/double/quad) precision floating point number is denormalised iff: - exponent is zero - mantissa is non-zero. - (don't care about setting of sign bit.) */ return ( u.ieee.exponent == 0 && u.ieee.mantissa != 0); } StgInt isFloatNegativeZero(StgFloat f) { union stg_ieee754_flt u; u.f = f; /* sign (bit 31) set (only) => negative zero */ return ( u.ieee.negative && u.ieee.exponent == 0 && u.ieee.mantissa == 0); } #else /* ! IEEE_FLOATING_POINT */ /* Dummy definitions of predicates - they all return false */ StgInt isDoubleNaN(d) StgDouble d; { return 0; } StgInt isDoubleInfinite(d) StgDouble d; { return 0; } StgInt isDoubleDenormalized(d) StgDouble d; { return 0; } StgInt isDoubleNegativeZero(d) StgDouble d; { return 0; } StgInt isFloatNaN(f) StgFloat f; { return 0; } StgInt isFloatInfinite(f) StgFloat f; { return 0; } StgInt isFloatDenormalized(f) StgFloat f; { return 0; } StgInt isFloatNegativeZero(f) StgFloat f; { return 0; } #endif /* ! IEEE_FLOATING_POINT */