/* ----------------------------------------------------------------------------- * * (c) The GHC Team 2001-2005 * * The task manager subsystem. Tasks execute STG code, with this * module providing the API which the Scheduler uses to control their * creation and destruction. * * -------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "RtsUtils.h" #include "Task.h" #include "Capability.h" #include "Stats.h" #include "Schedule.h" #include "Hash.h" #include "Trace.h" #if HAVE_SIGNAL_H #include #endif // Task lists and global counters. // Locks required: all_tasks_mutex. Task *all_tasks = NULL; static nat taskCount; static int tasksInitialized = 0; static void freeTask (Task *task); static Task * allocTask (void); static Task * newTask (rtsBool); #if defined(THREADED_RTS) static Mutex all_tasks_mutex; #endif /* ----------------------------------------------------------------------------- * Remembering the current thread's Task * -------------------------------------------------------------------------- */ // A thread-local-storage key that we can use to get access to the // current thread's Task structure. #if defined(THREADED_RTS) # if defined(MYTASK_USE_TLV) __thread Task *my_task; # else ThreadLocalKey currentTaskKey; # endif #else Task *my_task; #endif /* ----------------------------------------------------------------------------- * Rest of the Task API * -------------------------------------------------------------------------- */ void initTaskManager (void) { if (!tasksInitialized) { taskCount = 0; tasksInitialized = 1; #if defined(THREADED_RTS) #if !defined(MYTASK_USE_TLV) newThreadLocalKey(¤tTaskKey); #endif initMutex(&all_tasks_mutex); #endif } } nat freeTaskManager (void) { Task *task, *next; nat tasksRunning = 0; ACQUIRE_LOCK(&all_tasks_mutex); for (task = all_tasks; task != NULL; task = next) { next = task->all_link; if (task->stopped) { freeTask(task); } else { tasksRunning++; } } debugTrace(DEBUG_sched, "freeing task manager, %d tasks still running", tasksRunning); all_tasks = NULL; RELEASE_LOCK(&all_tasks_mutex); #if defined(THREADED_RTS) && !defined(MYTASK_USE_TLV) closeMutex(&all_tasks_mutex); freeThreadLocalKey(¤tTaskKey); #endif tasksInitialized = 0; return tasksRunning; } static Task * allocTask (void) { Task *task; task = myTask(); if (task != NULL) { return task; } else { task = newTask(rtsFalse); #if defined(THREADED_RTS) task->id = osThreadId(); #endif setMyTask(task); return task; } } static void freeTask (Task *task) { InCall *incall, *next; // We only free resources if the Task is not in use. A // Task may still be in use if we have a Haskell thread in // a foreign call while we are attempting to shut down the // RTS (see conc059). #if defined(THREADED_RTS) closeCondition(&task->cond); closeMutex(&task->lock); #endif for (incall = task->incall; incall != NULL; incall = next) { next = incall->prev_stack; stgFree(incall); } for (incall = task->spare_incalls; incall != NULL; incall = next) { next = incall->next; stgFree(incall); } stgFree(task); } static Task* newTask (rtsBool worker) { #if defined(THREADED_RTS) Ticks currentElapsedTime, currentUserTime; #endif Task *task; #define ROUND_TO_CACHE_LINE(x) ((((x)+63) / 64) * 64) task = stgMallocBytes(ROUND_TO_CACHE_LINE(sizeof(Task)), "newTask"); task->cap = NULL; task->worker = worker; task->stopped = rtsFalse; task->running_finalizers = rtsFalse; task->n_spare_incalls = 0; task->spare_incalls = NULL; task->incall = NULL; #if defined(THREADED_RTS) initCondition(&task->cond); initMutex(&task->lock); task->wakeup = rtsFalse; #endif #if defined(THREADED_RTS) currentUserTime = getThreadCPUTime(); currentElapsedTime = getProcessElapsedTime(); task->mut_time = 0; task->mut_etime = 0; task->gc_time = 0; task->gc_etime = 0; task->muttimestart = currentUserTime; task->elapsedtimestart = currentElapsedTime; #endif task->next = NULL; ACQUIRE_LOCK(&all_tasks_mutex); task->all_link = all_tasks; all_tasks = task; taskCount++; RELEASE_LOCK(&all_tasks_mutex); return task; } // avoid the spare_incalls list growing unboundedly #define MAX_SPARE_INCALLS 8 static void newInCall (Task *task) { InCall *incall; if (task->spare_incalls != NULL) { incall = task->spare_incalls; task->spare_incalls = incall->next; task->n_spare_incalls--; } else { incall = stgMallocBytes((sizeof(InCall)), "newBoundTask"); } incall->tso = NULL; incall->task = task; incall->suspended_tso = NULL; incall->suspended_cap = NULL; incall->stat = NoStatus; incall->ret = NULL; incall->next = NULL; incall->prev = NULL; incall->prev_stack = task->incall; task->incall = incall; } static void endInCall (Task *task) { InCall *incall; incall = task->incall; incall->tso = NULL; task->incall = task->incall->prev_stack; if (task->n_spare_incalls >= MAX_SPARE_INCALLS) { stgFree(incall); } else { incall->next = task->spare_incalls; task->spare_incalls = incall; task->n_spare_incalls++; } } Task * newBoundTask (void) { Task *task; if (!tasksInitialized) { errorBelch("newBoundTask: RTS is not initialised; call hs_init() first"); stg_exit(EXIT_FAILURE); } task = allocTask(); task->stopped = rtsFalse; newInCall(task); debugTrace(DEBUG_sched, "new task (taskCount: %d)", taskCount); return task; } void boundTaskExiting (Task *task) { #if defined(THREADED_RTS) ASSERT(osThreadId() == task->id); #endif ASSERT(myTask() == task); endInCall(task); // Set task->stopped, but only if this is the last call (#4850). // Remember that we might have a worker Task that makes a foreign // call and then a callback, so it can transform into a bound // Task for the duration of the callback. if (task->incall == NULL) { task->stopped = rtsTrue; } debugTrace(DEBUG_sched, "task exiting"); } #ifdef THREADED_RTS #define TASK_ID(t) (t)->id #else #define TASK_ID(t) (t) #endif void discardTasksExcept (Task *keep) { Task *task, *next; // Wipe the task list, except the current Task. ACQUIRE_LOCK(&all_tasks_mutex); for (task = all_tasks; task != NULL; task=next) { next = task->all_link; if (task != keep) { debugTrace(DEBUG_sched, "discarding task %ld", (long)TASK_ID(task)); freeTask(task); } } all_tasks = keep; keep->all_link = NULL; RELEASE_LOCK(&all_tasks_mutex); } void taskTimeStamp (Task *task USED_IF_THREADS) { #if defined(THREADED_RTS) Ticks currentElapsedTime, currentUserTime, elapsedGCTime; currentUserTime = getThreadCPUTime(); currentElapsedTime = getProcessElapsedTime(); // XXX this is wrong; we want elapsed GC time since the // Task started. elapsedGCTime = stat_getElapsedGCTime(); task->mut_time = currentUserTime - task->muttimestart - task->gc_time; task->mut_etime = currentElapsedTime - task->elapsedtimestart - elapsedGCTime; if (task->mut_time < 0) { task->mut_time = 0; } if (task->mut_etime < 0) { task->mut_etime = 0; } #endif } #if defined(THREADED_RTS) void workerTaskStop (Task *task) { OSThreadId id; id = osThreadId(); ASSERT(task->id == id); ASSERT(myTask() == task); task->cap = NULL; taskTimeStamp(task); task->stopped = rtsTrue; } #endif #ifdef DEBUG static void *taskId(Task *task) { #ifdef THREADED_RTS return (void *)task->id; #else return (void *)task; #endif } #endif #if defined(THREADED_RTS) static void OSThreadProcAttr workerStart(Task *task) { Capability *cap; // See startWorkerTask(). ACQUIRE_LOCK(&task->lock); cap = task->cap; RELEASE_LOCK(&task->lock); if (RtsFlags.ParFlags.setAffinity) { setThreadAffinity(cap->no, n_capabilities); } // set the thread-local pointer to the Task: setMyTask(task); newInCall(task); scheduleWorker(cap,task); } void startWorkerTask (Capability *cap) { int r; OSThreadId tid; Task *task; // A worker always gets a fresh Task structure. task = newTask(rtsTrue); // The lock here is to synchronise with taskStart(), to make sure // that we have finished setting up the Task structure before the // worker thread reads it. ACQUIRE_LOCK(&task->lock); task->cap = cap; // Give the capability directly to the worker; we can't let anyone // else get in, because the new worker Task has nowhere to go to // sleep so that it could be woken up again. ASSERT_LOCK_HELD(&cap->lock); cap->running_task = task; r = createOSThread(&tid, (OSThreadProc*)workerStart, task); if (r != 0) { sysErrorBelch("failed to create OS thread"); stg_exit(EXIT_FAILURE); } debugTrace(DEBUG_sched, "new worker task (taskCount: %d)", taskCount); task->id = tid; // ok, finished with the Task struct. RELEASE_LOCK(&task->lock); } void interruptWorkerTask (Task *task) { ASSERT(osThreadId() != task->id); // seppuku not allowed ASSERT(task->incall->suspended_tso); // use this only for FFI calls interruptOSThread(task->id); debugTrace(DEBUG_sched, "interrupted worker task %p", taskId(task)); } #endif /* THREADED_RTS */ #ifdef DEBUG void printAllTasks(void); void printAllTasks(void) { Task *task; for (task = all_tasks; task != NULL; task = task->all_link) { debugBelch("task %p is %s, ", taskId(task), task->stopped ? "stopped" : "alive"); if (!task->stopped) { if (task->cap) { debugBelch("on capability %d, ", task->cap->no); } if (task->incall->tso) { debugBelch("bound to thread %lu", (unsigned long)task->incall->tso->id); } else { debugBelch("worker"); } } debugBelch("\n"); } } #endif