/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2009 * * Storage Manger Interface * * ---------------------------------------------------------------------------*/ #pragma once #include "Capability.h" #include "BeginPrivate.h" /* ----------------------------------------------------------------------------- Initialisation / De-initialisation -------------------------------------------------------------------------- */ void initStorage(void); void initGeneration(generation *gen, int g); void exitStorage(void); void freeStorage(bool free_heap); // Adding more Capabilities later: this function allocates nurseries // and initialises other storage-related things. void storageAddCapabilities (uint32_t from, uint32_t to); /* ----------------------------------------------------------------------------- The storage manager mutex -------------------------------------------------------------------------- */ #if defined(THREADED_RTS) extern Mutex sm_mutex; #endif #if defined(THREADED_RTS) #define ACQUIRE_SM_LOCK ACQUIRE_LOCK(&sm_mutex); #define RELEASE_SM_LOCK RELEASE_LOCK(&sm_mutex); #define ASSERT_SM_LOCK() ASSERT_LOCK_HELD(&sm_mutex); #else #define ACQUIRE_SM_LOCK #define RELEASE_SM_LOCK #define ASSERT_SM_LOCK() #endif /* ----------------------------------------------------------------------------- The write barrier for MVARs and TVARs -------------------------------------------------------------------------- */ void update_MVAR(StgRegTable *reg, StgClosure *p, StgClosure *old_val); void dirty_MVAR(StgRegTable *reg, StgClosure *p, StgClosure *old); void dirty_TVAR(Capability *cap, StgTVar *p, StgClosure *old); /* ----------------------------------------------------------------------------- Nursery manipulation -------------------------------------------------------------------------- */ extern nursery *nurseries; extern uint32_t n_nurseries; void resetNurseries (void); void clearNursery (Capability *cap); void resizeNurseries (StgWord blocks); void resizeNurseriesFixed (void); StgWord countNurseryBlocks (void); bool getNewNursery (Capability *cap); /* ----------------------------------------------------------------------------- Should we GC? -------------------------------------------------------------------------- */ INLINE_HEADER bool doYouWantToGC(Capability *cap) { // This is necessarily approximate since otherwise we would need to take // SM_LOCK to safely look at n_new_large_words. TSAN_ANNOTATE_BENIGN_RACE(&g0->n_new_large_words, "doYouWantToGC(n_new_large_words)"); return ((cap->r.rCurrentNursery->link == NULL && !getNewNursery(cap)) || RELAXED_LOAD(&g0->n_new_large_words) >= large_alloc_lim); } /* ----------------------------------------------------------------------------- Allocation accounting See Note [allocation accounting] in Storage.c -------------------------------------------------------------------------- */ // // Called when we are finished allocating into a block; account for the amount // allocated in cap->total_allocated. // INLINE_HEADER void finishedNurseryBlock (Capability *cap, bdescr *bd) { cap->total_allocated += bd->free - bd->start; } INLINE_HEADER void newNurseryBlock (bdescr *bd) { RELAXED_STORE(&bd->free, bd->start); } void updateNurseriesStats (void); uint64_t calcTotalAllocated (void); /* ----------------------------------------------------------------------------- Stats 'n' DEBUG stuff -------------------------------------------------------------------------- */ StgWord countOccupied (bdescr *bd); StgWord calcNeeded (bool force_major, StgWord *blocks_needed); StgWord gcThreadLiveWords (uint32_t i, uint32_t g); StgWord gcThreadLiveBlocks (uint32_t i, uint32_t g); StgWord genLiveWords (generation *gen); StgWord genLiveBlocks (generation *gen); StgWord calcTotalLargeObjectsW (void); StgWord calcTotalCompactW (void); /* ---------------------------------------------------------------------------- Storage manager internal APIs and globals ------------------------------------------------------------------------- */ extern bdescr *exec_block; void move_STACK (StgStack *src, StgStack *dest); /* ----------------------------------------------------------------------------- Note [STATIC_LINK fields] ~~~~~~~~~~~~~~~~~~~~~~~~~ The low 2 bits of the static link field have the following meaning: 00 we haven't seen this static object before 01/10 if it equals static_flag, then we saw it in this GC, otherwise we saw it in the previous GC. 11 ignore during GC. This value is used in two ways - When we put CAFs on a list (see Note [CAF lists]) - a static constructor that was determined to have no CAF references at compile time is given this value, so we don't traverse it during GC This choice of values is quite deliberate, because it means we can decide whether a static object should be traversed during GC using a single test: bits = link_field & 3; if ((bits | prev_static_flag) != 3) { ... } However, this mechanism for tracking liveness has an important implication: once a static object becomes unreachable it must never become reachable again. One would think that this can by definition never happen but in the past SRT generation bugs have caused precisely this behavior with disasterous results. See Note [No static object resurrection] in GHC.Cmm.Info.Build for details. -------------------------------------------------------------------------- */ #define STATIC_BITS 3 #define STATIC_FLAG_A 1 #define STATIC_FLAG_B 2 #define STATIC_FLAG_LIST 3 #define END_OF_CAF_LIST ((StgClosure*)STATIC_FLAG_LIST) // The previous and current values of the static flag. These flip // between STATIC_FLAG_A and STATIC_FLAG_B at each major GC. extern uint32_t prev_static_flag, static_flag; // In the chain of static objects built up during GC, all the link // fields are tagged with the current static_flag value. How to mark // the end of the chain? It must be a special value so that we can // tell it is the end of the chain, but note that we're going to store // this value in the link field of a static object, which means that // during the NEXT GC we should treat it like any other object that // has not been visited during this GC. Therefore, we use static_flag // as the sentinel value. #define END_OF_STATIC_OBJECT_LIST ((StgClosure*)(StgWord)static_flag) #define UNTAG_STATIC_LIST_PTR(p) ((StgClosure*)((StgWord)(p) & ~STATIC_BITS)) /* ----------------------------------------------------------------------------- Note [CAF lists] ~~~~~~~~~~~~~~~~ dyn_caf_list (CAFs chained through static_link) This is a chain of all CAFs in the program, used for dynamically-linked GHCi. See Note [dyn_caf_list]. debug_caf_list (CAFs chained through saved_info) A chain of all *live* CAFs in the program, that does not keep the CAFs alive. Used for detecting when we enter a GC'd CAF, and to give diagnostics with +RTS -DG. revertible_caf_list (CAFs chained through static_link) A chain of CAFs in object code loaded with the RTS linker. These CAFs can be reverted to their unevaluated state using revertCAFs. Pointers in these lists are tagged with STATIC_FLAG_LIST, so when traversing the list remember to untag each pointer with UNTAG_STATIC_LIST_PTR(). --------------------------------------------------------------------------- */ extern StgIndStatic * dyn_caf_list; extern StgIndStatic * debug_caf_list; extern StgIndStatic * revertible_caf_list; #include "EndPrivate.h"