{-# LANGUAGE ScopedTypeVariables, ExistentialQuantification, ApplicativeDo #-} module Main where import Control.Applicative import Text.PrettyPrint (a:b:c:d:e:f:g:h:_) = map (\c -> doc [c]) ['a'..] -- a | b test1 :: M () test1 = do x1 <- a x2 <- b const (return ()) (x1,x2) -- no parallelism test2 :: M () test2 = do x1 <- a x2 <- const g x1 const (return ()) (x1,x2) -- a | (b;g) | e test3 :: M () test3 = do x1 <- a x2 <- b x3 <- const g x2 x4 <- e return () `const` (x1,x2,x3,x4) -- (a ; (b | g)) | c -- or -- ((a | b); g) | c test4 :: M () test4 = do x1 <- a x2 <- b x3 <- const g x1 x4 <- c return () `const` (x2,x3,x4) -- (a | b | c); (g | h) test5 :: M () test5 = do x1 <- a x2 <- b x3 <- c x4 <- const g x1 x5 <- const h x3 return () `const` (x3,x4,x5) -- b/c in parallel, e/f in parallel -- a; (b | (c; (d; (e | (f; g))))) test6 :: M () test6 = do x1 <- a x2 <- const b x1 x3 <- const c x1 x4 <- const d x3 x5 <- const e x4 x6 <- const f x4 x7 <- const g x6 return () `const` (x1,x2,x3,x4,x5,x6,x7) -- (a | b); (c | d) test7 :: M () test7 = do x1 <- a x2 <- b x3 <- const c x1 x4 <- const d x2 return () `const` (x3,x4) -- a; (b | c | d) -- -- alternative (but less good): -- ((a;b) | c); d test8 :: M () test8 = do x1 <- a x2 <- const b x1 x3 <- c x4 <- const d x1 return () `const` (x2,x3,x4) -- test that Lets don't get in the way -- ((a | (b; c)) | d) | e test9 :: M () test9 = do x1 <- a let x = doc "x" -- this shouldn't get in the way of grouping a/b x2 <- b x3 <- const c x2 x4 <- d x5 <- e let y = doc "y" return () -- ((a | b) ; (c | d)) | e test10 :: M () test10 = do x1 <- a x2 <- b let z1 = (x1,x2) x3 <- const c x1 let z2 = (x1,x2) x4 <- const d z1 x5 <- e return (const () (x3,x4,x5)) -- (a | b) -- This demonstrated a bug in RnExpr.segments (#11612) test11 :: M () test11 = do x1 <- a let x2 = x1 x3 <- b let x4 = c x5 = x4 return (const () (x1,x2,x3,x4)) main = mapM_ run [ test1 , test2 , test3 , test4 , test5 , test6 , test7 , test8 , test9 , test10 , test11 ] -- Testing code, prints out the structure of a monad/applicative expression newtype M a = M (Bool -> (Maybe Doc, a)) maybeParen True d = parens d maybeParen _ d = d run :: M a -> IO () run (M m) = print d where (Just d,_) = m False instance Functor M where fmap f m = m >>= return . f instance Applicative M where pure a = M $ \_ -> (Nothing, a) M f <*> M a = M $ \p -> let (Just d1, f') = f True (Just d2, a') = a True in (Just (maybeParen p (d1 <+> char '|' <+> d2)), f' a') instance Monad M where return = pure M m >>= k = M $ \p -> let (d1, a) = m True (d2, b) = case k a of M f -> f True in case (d1,d2) of (Nothing,Nothing) -> (Nothing, b) (Just d, Nothing) -> (Just d, b) (Nothing, Just d) -> (Just d, b) (Just d1, Just d2) -> (Just (maybeParen p (d1 <> semi <+> d2)), b) doc :: String -> M () doc d = M $ \_ -> (Just (text d), ())