{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeOperators #-} module T14038 where import Data.Kind (Type) data family Sing (a :: k) data instance Sing (z :: [a]) where SNil :: Sing '[] SCons :: Sing x -> Sing xs -> Sing (x:xs) data TyFun :: Type -> Type -> Type type a ~> b = TyFun a b -> Type infixr 0 ~> type family Apply (f :: k1 ~> k2) (x :: k1) :: k2 type a @@ b = Apply a b infixl 9 @@ data FunArrow = (:->) -- ^ '(->)' | (:~>) -- ^ '(~>)' class FunType (arr :: FunArrow) where type Fun (k1 :: Type) arr (k2 :: Type) :: Type class FunType arr => AppType (arr :: FunArrow) where type App k1 arr k2 (f :: Fun k1 arr k2) (x :: k1) :: k2 type FunApp arr = (FunType arr, AppType arr) instance FunType (:->) where type Fun k1 (:->) k2 = k1 -> k2 instance AppType (:->) where type App k1 (:->) k2 (f :: k1 -> k2) x = f x instance FunType (:~>) where type Fun k1 (:~>) k2 = k1 ~> k2 instance AppType (:~>) where type App k1 (:~>) k2 (f :: k1 ~> k2) x = f @@ x infixr 0 -?> type (-?>) (k1 :: Type) (k2 :: Type) (arr :: FunArrow) = Fun k1 arr k2 elimList :: forall (a :: Type) (p :: [a] -> Type) (l :: [a]). Sing l -> p '[] -> (forall (x :: a) (xs :: [a]). Sing x -> Sing xs -> p xs -> p (x:xs)) -> p l elimList = elimListPoly @(:->) elimListTyFun :: forall (a :: Type) (p :: [a] ~> Type) (l :: [a]). Sing l -> p @@ '[] -> (forall (x :: a) (xs :: [a]). Sing x -> Sing xs -> p @@ xs -> p @@ (x:xs)) -> p @@ l elimListTyFun = elimListPoly @(:~>) @_ @p elimListPoly :: forall (arr :: FunArrow) (a :: Type) (p :: ([a] -?> Type) arr) (l :: [a]). FunApp arr => Sing l -> App [a] arr Type p '[] -> (forall (x :: a) (xs :: [a]). Sing x -> Sing xs -> App [a] arr Type p xs -> App [a] arr Type p (x:xs)) -> App [a] arr Type p l elimListPoly SNil pNil _ = pNil elimListPoly (SCons x (xs :: Sing xs)) pNil pCons = pCons x xs (elimListPoly @arr @a @p @xs xs pNil pCons)