#!/usr/bin/env runhaskell -- -- Uses multi-param type classes -- import Test.QuickCheck.Batch import Test.QuickCheck import Text.Show.Functions import Data.Char import Data.Int import Data.List import Data.Maybe import Data.Word import System.IO import System.Environment import System.IO.Unsafe import System.Random import Control.Monad ( liftM2 ) import Control.Monad.Instances () import Text.Printf import Debug.Trace import Foreign.Ptr import Data.ByteString.Lazy (ByteString(..), pack , unpack) import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Lazy.Internal as L import Data.ByteString.Fusion import qualified Data.ByteString as P import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Char8 as PC import qualified Data.ByteString.Lazy.Char8 as LC import qualified Data.ByteString as P import qualified Data.ByteString.Internal as P import qualified Data.ByteString.Char8 as C import qualified Data.ByteString.Lazy.Char8 as D import Data.ByteString.Fusion import Prelude hiding (abs) -- Enable this to get verbose test output. Including the actual tests. debug = False mytest :: Testable a => a -> Int -> IO () mytest a n = mycheck defaultConfig { configMaxTest=n , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a mycheck :: Testable a => Config -> a -> IO () mycheck config a = do let rnd = mkStdGen 99 mytests config (evaluate a) rnd 0 0 [] mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO () mytests config gen rnd0 ntest nfail stamps | ntest == configMaxTest config = do done "OK," ntest stamps | nfail == configMaxFail config = do done "Arguments exhausted after" ntest stamps | otherwise = do putStr (configEvery config ntest (arguments result)) >> hFlush stdout case ok result of Nothing -> mytests config gen rnd1 ntest (nfail+1) stamps Just True -> mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps) Just False -> putStr ( "Falsifiable after " ++ show ntest ++ " tests:\n" ++ unlines (arguments result) ) >> hFlush stdout where result = generate (configSize config ntest) rnd2 gen (rnd1,rnd2) = split rnd0 done :: String -> Int -> [[String]] -> IO () done mesg ntest stamps = do putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table ) where table = display . map entry . reverse . sort . map pairLength . group . sort . filter (not . null) $ stamps display [] = ".\n" display [x] = " (" ++ x ++ ").\n" display xs = ".\n" ++ unlines (map (++ ".") xs) pairLength xss@(xs:_) = (length xss, xs) entry (n, xs) = percentage n ntest ++ " " ++ concat (intersperse ", " xs) percentage n m = show ((100 * n) `div` m) ++ "%" ------------------------------------------------------------------------ instance Arbitrary Char where arbitrary = choose ('a', 'i') coarbitrary c = variant (ord c `rem` 4) instance (Arbitrary a, Arbitrary b) => Arbitrary (PairS a b) where arbitrary = liftM2 (:*:) arbitrary arbitrary coarbitrary (a :*: b) = coarbitrary a . coarbitrary b instance Arbitrary Word8 where arbitrary = choose (97, 105) coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 4)) instance Arbitrary Int64 where arbitrary = sized $ \n -> choose (-fromIntegral n,fromIntegral n) coarbitrary n = variant (fromIntegral (if n >= 0 then 2*n else 2*(-n) + 1)) instance Arbitrary a => Arbitrary (MaybeS a) where arbitrary = do a <- arbitrary ; elements [NothingS, JustS a] coarbitrary NothingS = variant 0 coarbitrary _ = variant 1 -- ok? {- instance Arbitrary Char where arbitrary = choose ('\0', '\255') -- since we have to test words, unlines too coarbitrary c = variant (ord c `rem` 16) instance Arbitrary Word8 where arbitrary = choose (minBound, maxBound) coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 16)) -} instance Random Word8 where randomR = integralRandomR random = randomR (minBound,maxBound) instance Random Int64 where randomR = integralRandomR random = randomR (minBound,maxBound) integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g) integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer, fromIntegral b :: Integer) g of (x,g) -> (fromIntegral x, g) instance Arbitrary L.ByteString where arbitrary = arbitrary >>= return . L.fromChunks . filter (not. P.null) -- maintain the invariant. coarbitrary s = coarbitrary (L.unpack s) instance Arbitrary P.ByteString where arbitrary = P.pack `fmap` arbitrary coarbitrary s = coarbitrary (P.unpack s) ------------------------------------------------------------------------ -- -- We're doing two forms of testing here. Firstly, model based testing. -- For our Lazy and strict bytestring types, we have model types: -- -- i.e. Lazy == Byte -- \\ // -- List -- -- That is, the Lazy type can be modeled by functions in both the Byte -- and List type. For each of the 3 models, we have a set of tests that -- check those types match. -- -- The Model class connects a type and its model type, via a conversion -- function. -- -- class Model a b where model :: a -> b -- get the abstract vale from a concrete value -- -- Connecting our Lazy and Strict types to their models. We also check -- the data invariant on Lazy types. -- -- These instances represent the arrows in the above diagram -- instance Model B P where model = abstr . checkInvariant instance Model P [W] where model = P.unpack instance Model P [Char] where model = PC.unpack instance Model B [W] where model = L.unpack . checkInvariant instance Model B [Char] where model = LC.unpack . checkInvariant -- Types are trivially modeled by themselves instance Model Bool Bool where model = id instance Model Int Int where model = id instance Model Int64 Int64 where model = id instance Model Int64 Int where model = fromIntegral instance Model Word8 Word8 where model = id instance Model Ordering Ordering where model = id -- More structured types are modeled recursively, using the NatTrans class from Gofer. class (Functor f, Functor g) => NatTrans f g where eta :: f a -> g a -- The transformation of the same type is identity instance NatTrans [] [] where eta = id instance NatTrans Maybe Maybe where eta = id instance NatTrans ((->) X) ((->) X) where eta = id instance NatTrans ((->) W) ((->) W) where eta = id -- We have a transformation of pairs, if the pairs are in Model instance Model f g => NatTrans ((,) f) ((,) g) where eta (f,a) = (model f, a) -- And finally, we can take any (m a) to (n b), if we can Model m n, and a b instance (NatTrans m n, Model a b) => Model (m a) (n b) where model x = fmap model (eta x) ------------------------------------------------------------------------ -- In a form more useful for QC testing (and it's lazy) checkInvariant :: L.ByteString -> L.ByteString checkInvariant cs0 = check cs0 where check L.Empty = L.Empty check (L.Chunk c cs) | P.null c = error ("invariant violation: " ++ show cs0) | otherwise = L.Chunk c (check cs) abstr :: L.ByteString -> P.ByteString abstr = P.concat . L.toChunks -- Some short hand. type X = Int type W = Word8 type P = P.ByteString type B = L.ByteString ------------------------------------------------------------------------ -- -- These comparison functions handle wrapping and equality. -- -- A single class for these would be nice, but note that they differe in -- the number of arguments, and those argument types, so we'd need HList -- tricks. See here: http://okmij.org/ftp/Haskell/vararg-fn.lhs -- eq1 f g = \a -> model (f a) == g (model a) eq2 f g = \a b -> model (f a b) == g (model a) (model b) eq3 f g = \a b c -> model (f a b c) == g (model a) (model b) (model c) eq4 f g = \a b c d -> model (f a b c d) == g (model a) (model b) (model c) (model d) eq5 f g = \a b c d e -> model (f a b c d e) == g (model a) (model b) (model c) (model d) (model e) -- -- And for functions that take non-null input -- eqnotnull1 f g = \x -> (not (isNull x)) ==> eq1 f g x eqnotnull2 f g = \x y -> (not (isNull y)) ==> eq2 f g x y eqnotnull3 f g = \x y z -> (not (isNull z)) ==> eq3 f g x y z class IsNull t where isNull :: t -> Bool instance IsNull L.ByteString where isNull = L.null instance IsNull P.ByteString where isNull = P.null main = do x <- getArgs let n = if null x then 100 else read . head $ x mapM_ (\(s,a) -> printf "%-25s: " s >> a n) tests -- -- Test that, after loop fusion, our code behaves the same as the -- unfused lazy or list models. Use -ddump-simpl to also check that -- rules are firing for each case. -- tests = -- 29/5/06, all tests are fusing: [("down/down list", mytest prop_downdown_list) -- checked ,("down/filter list", mytest prop_downfilter_list) -- checked ,("down/map list", mytest prop_downmap_list) -- checked ,("filter/down lazy", mytest prop_filterdown_lazy) -- checked ,("filter/down list", mytest prop_filterdown_list) -- checked ,("filter/filter lazy", mytest prop_filterfilter_lazy) -- checked ,("filter/filter list", mytest prop_filterfilter_list) -- checked ,("filter/map lazy", mytest prop_filtermap_lazy) -- checked ,("filter/map list", mytest prop_filtermap_list) -- checked ,("filter/up lazy", mytest prop_filterup_lazy) -- checked ,("filter/up list", mytest prop_filterup_list) -- checked ,("map/down lazy", mytest prop_mapdown_lazy) -- checked ,("map/down list", mytest prop_mapdown_list) -- checked ,("map/filter lazy", mytest prop_mapfilter_lazy) -- checked ,("map/filter list", mytest prop_mapfilter_list) -- checked ,("map/map lazy", mytest prop_mapmap_lazy) -- checked ,("map/map list", mytest prop_mapmap_list) -- checked ,("map/up lazy", mytest prop_mapup_lazy) -- checked ,("map/up list", mytest prop_mapup_list) -- checked ,("up/filter lazy", mytest prop_upfilter_lazy) -- checked ,("up/filter list", mytest prop_upfilter_list) -- checked ,("up/map lazy", mytest prop_upmap_lazy) -- checked ,("up/map list", mytest prop_upmap_list) -- checked ,("up/up lazy", mytest prop_upup_lazy) -- checked ,("up/up list", mytest prop_upup_list) -- checked ,("noacc/noacc lazy", mytest prop_noacc_noacc_lazy) -- checked ,("noacc/noacc list", mytest prop_noacc_noacc_list) -- checked ,("noacc/up lazy", mytest prop_noacc_up_lazy) -- checked ,("noacc/up list", mytest prop_noacc_up_list) -- checked ,("up/noacc lazy", mytest prop_up_noacc_lazy) -- checked ,("up/noacc list", mytest prop_up_noacc_list) -- checked ,("map/noacc lazy", mytest prop_map_noacc_lazy) -- checked ,("map/noacc list", mytest prop_map_noacc_list) -- checked ,("noacc/map lazy", mytest prop_noacc_map_lazy) -- checked ,("noacc/map list", mytest prop_noacc_map_list) -- checked ,("filter/noacc lazy", mytest prop_filter_noacc_lazy) -- checked ,("filter/noacc list", mytest prop_filter_noacc_list) -- checked ,("noacc/filter lazy", mytest prop_noacc_filter_lazy) -- checked ,("noacc/filter list", mytest prop_noacc_filter_list) -- checked ,("noacc/down lazy", mytest prop_noacc_down_lazy) -- checked ,("noacc/down list", mytest prop_noacc_down_list) -- checked -- ,("down/noacc lazy", mytest prop_down_noacc_lazy) -- checked ,("down/noacc list", mytest prop_down_noacc_list) -- checked ,("length/loop list", mytest prop_lengthloop_list) -- ,("length/loop lazy", mytest prop_lengthloop_lazy) ,("maximum/loop list", mytest prop_maximumloop_list) -- ,("maximum/loop lazy", mytest prop_maximumloop_lazy) ,("minimum/loop list", mytest prop_minimumloop_list) -- ,("minimum/loop lazy", mytest prop_minimumloop_lazy) ] prop_upup_list = eq3 (\f g -> P.foldl f (0::Int) . P.scanl g (0::W)) ((\f g -> foldl f (0::Int) . scanl g (0::W)) :: (X -> W -> X) -> (W -> W -> W) -> [W] -> X) prop_upup_lazy = eq3 (\f g -> L.foldl f (0::X) . L.scanl g (0::W)) (\f g -> P.foldl f (0::X) . P.scanl g (0::W)) prop_mapmap_list = eq3 (\f g -> P.map f . P.map g) ((\f g -> map f . map g) :: (W -> W) -> (W -> W) -> [W] -> [W]) prop_mapmap_lazy = eq3 (\f g -> L.map f . L.map g) (\f g -> P.map f . P.map g) prop_filterfilter_list = eq3 (\f g -> P.filter f . P.filter g) ((\f g -> filter f . filter g) :: (W -> Bool) -> (W -> Bool) -> [W] -> [W]) prop_filterfilter_lazy = eq3 (\f g -> L.filter f . L.filter g) (\f g -> P.filter f . P.filter g) prop_mapfilter_list = eq3 (\f g -> P.filter f . P.map g) ((\f g -> filter f . map g) :: (W -> Bool) -> (W -> W) -> [W] -> [W]) prop_mapfilter_lazy = eq3 (\f g -> L.filter f . L.map g) (\f g -> P.filter f . P.map g) prop_filtermap_list = eq3 (\f g -> P.map f . P.filter g) ((\f g -> map f . filter g) :: (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_filtermap_lazy = eq3 (\f g -> L.map f . L.filter g) (\f g -> P.map f . P.filter g) prop_mapup_list = eq3 (\f g -> P.foldl g (0::W) . P.map f) ((\f g -> foldl g (0::W) . map f) :: (W -> W) -> (W -> W -> W) -> [W] -> W) prop_mapup_lazy = eq3 (\f g -> L.foldl g (0::W) . L.map f) -- n.b. scan doesn't fuse here, atm (\f g -> P.foldl g (0::W) . P.map f) prop_upmap_list = eq3 (\f g -> P.map f . P.scanl g (0::W)) ((\f g -> map f . scanl g (0::W)) :: (W -> W) -> (W -> W -> W) -> [W] -> [W]) prop_upmap_lazy = eq3 (\f g -> L.map f . L.scanl g (0::W)) (\f g -> P.map f . P.scanl g (0::W)) prop_filterup_list = eq3 (\f g -> P.foldl g (0::W) . P.filter f) ((\f g -> foldl g (0::W) . filter f) :: (W -> Bool) -> (W -> W -> W) -> [W] -> W) prop_filterup_lazy = eq3 (\f g -> L.foldl g (0::W) . L.filter f) (\f g -> P.foldl g (0::W) . P.filter f) prop_upfilter_list = eq3 (\f g -> P.filter f . P.scanl g (0::W)) ((\f g -> filter f . scanl g (0::W)) :: (W -> Bool) -> (W -> W -> W) -> [W] -> [W]) prop_upfilter_lazy = eq3 (\f g -> L.filter f . L.scanl g (0::W)) (\f g -> P.filter f . P.scanl g (0::W)) prop_downdown_list = eq3 (\f g -> P.foldr f (0::X) . P.scanr g (0::W)) ((\f g -> foldr f (0::X) . scanr g (0::W)) :: (W -> X -> X) -> (W -> W -> W) -> [W] -> X) {- -- no lazy scanr yet prop_downdown_lazy = eq3 (\f g -> L.foldr f (0::X) . L.scanr g (0::W)) (\f g -> P.foldr f (0::X) . P.scanr g (0::W)) -} prop_mapdown_list = eq3 (\f g -> P.foldr g (0::W) . P.map f) ((\f g -> foldr g (0::W) . map f) :: (W -> W) -> (W -> W -> W) -> [W] -> W) prop_mapdown_lazy = eq3 (\f g -> L.foldr g (0::W) . L.map f) -- n.b. scan doesn't fuse here, atm (\f g -> P.foldr g (0::W) . P.map f) prop_downmap_list = eq3 (\f g -> P.map f . P.scanr g (0::W)) ((\f g -> map f . scanr g (0::W)) :: (W -> W) -> (W -> W -> W) -> [W] -> [W]) {- prop_downmap_lazy = eq3 (\f g -> L.map f . L.scanr g (0::W)) (\f g -> P.map f . P.scanr g (0::W)) -} prop_filterdown_list = eq3 (\f g -> P.foldr g (0::W) . P.filter f) ((\f g -> foldr g (0::W) . filter f) :: (W -> Bool) -> (W -> W -> W) -> [W] -> W) prop_filterdown_lazy = eq3 (\f g -> L.foldr g (0::W) . L.filter f) -- n.b. scan doesn't fuse here, atm (\f g -> P.foldr g (0::W) . P.filter f) prop_downfilter_list = eq3 (\f g -> P.filter f . P.scanr g (0::W)) ((\f g -> filter f . scanr g (0::W)) :: (W -> Bool) -> (W -> W -> W) -> [W] -> [W]) {- prop_downfilter_lazy = eq3 (\f g -> L.filter f . L.scanr g (0::W)) (\f g -> P.filter f . P.scanr g (0::W)) -} prop_noacc_noacc_list = eq5 (\f g h i -> (P.map f . P.filter g) . (P.map h . P.filter i)) ((\f g h i -> ( map f . filter g) . ( map h . filter i)) :: (W -> W) -> (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_noacc_noacc_lazy = eq5 (\f g h i -> (L.map f . L.filter g) . (L.map h . L.filter i)) (\f g h i -> (P.map f . P.filter g) . (P.map h . P.filter i)) prop_noacc_up_list = eq4 ( \g h i -> P.foldl g (0::W) . (P.map h . P.filter i)) ((\g h i -> foldl g (0::W) . ( map h . filter i)) :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> W) prop_noacc_up_lazy = eq4 (\g h i -> L.foldl g (0::W) . (L.map h . L.filter i)) (\g h i -> P.foldl g (0::W) . (P.map h . P.filter i)) prop_up_noacc_list = eq4 ( \g h i -> (P.map h . P.filter i) . P.scanl g (0::W)) ((\g h i -> ( map h . filter i) . scanl g (0::W)) :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_up_noacc_lazy = eq4 (\g h i -> (L.map h . L.filter i) . L.scanl g (0::W)) (\g h i -> (P.map h . P.filter i) . P.scanl g (0::W)) prop_map_noacc_list = eq4 ( \g h i -> (P.map h . P.filter i) . P.map g) ((\g h i -> ( map h . filter i) . map g) :: (W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_map_noacc_lazy = eq4 (\g h i -> (L.map h . L.filter i) . L.map g) (\g h i -> (P.map h . P.filter i) . P.map g) prop_noacc_map_list = eq4 ( \g h i -> P.map g . (P.map h . P.filter i)) ((\g h i -> map g . ( map h . filter i)) :: (W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_noacc_map_lazy = eq4 (\g h i -> L.map g . (L.map h . L.filter i)) (\g h i -> P.map g . (P.map h . P.filter i)) prop_filter_noacc_list = eq4 ( \g h i -> (P.map h . P.filter i) . P.filter g) ((\g h i -> ( map h . filter i) . filter g) :: (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_filter_noacc_lazy = eq4 (\g h i -> (L.map h . L.filter i) . L.filter g) (\g h i -> (P.map h . P.filter i) . P.filter g) prop_noacc_filter_list = eq4 ( \g h i -> P.filter g . (P.map h . P.filter i)) ((\g h i -> filter g . ( map h . filter i)) :: (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) prop_noacc_filter_lazy = eq4 (\g h i -> L.filter g . (L.map h . L.filter i)) (\g h i -> P.filter g . (P.map h . P.filter i)) prop_noacc_down_list = eq4 ( \g h i -> P.foldr g (0::W) . (P.map h . P.filter i)) ((\g h i -> foldr g (0::W) . ( map h . filter i)) :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> W) prop_noacc_down_lazy = eq4 (\g h i -> L.foldr g (0::W) . (L.map h . L.filter i)) (\g h i -> P.foldr g (0::W) . (P.map h . P.filter i)) prop_down_noacc_list = eq4 ( \g h i -> (P.map h . P.filter i) . P.scanr g (0::W)) ((\g h i -> ( map h . filter i) . scanr g (0::W)) :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W]) {- prop_down_noacc_lazy = eq4 (\g h i -> (L.map h . L.filter i) . L.scanl g (0::W)) (\g h i -> (P.map h . P.filter i) . P.scanl g (0::W)) -} ------------------------------------------------------------------------ prop_lengthloop_list = eq2 (\f -> P.length . P.filter f) ((\f -> length . filter f) :: (W -> Bool) -> [W] -> X) {- prop_lengthloop_lazy = eq2 (\f g -> L.length . L.filter f) -- n.b. scan doesn't fuse here, atm (\f g -> P.length . P.filter f) -} prop_maximumloop_list = eqnotnull2 (\f -> P.maximum . P.map f) -- so we don't get null strings ((\f -> maximum . map f) :: (W -> W) -> [W] -> W) {- prop_maximumloop_lazy = eq2 (\f g -> L.maximum . L.filter f) -- n.b. scan doesn't fuse here, atm (\f g -> P.maximum . P.filter f) -} prop_minimumloop_list = eqnotnull2 (\f -> P.minimum . P.map f) ((\f -> minimum . map f) :: (W -> W) -> [W] -> W) {- prop_minimumloop_lazy = eq2 (\f g -> L.minimum . L.filter f) -- n.b. scan doesn't fuse here, atm (\f g -> P.minimum . P.filter f) -}