{-# LANGUAGE CPP, MagicHash, BangPatterns #-} import Data.Char import Data.Array import GHC.Exts import System.IO import System.IO.Unsafe import Debug.Trace import Control.Applicative (Applicative(..)) import Control.Monad (liftM, ap) -- parser produced by Happy Version 1.16 data HappyAbsSyn = HappyTerminal Token | HappyErrorToken Int | HappyAbsSyn4 (Exp) | HappyAbsSyn5 (Exp1) | HappyAbsSyn6 (Term) | HappyAbsSyn7 (Factor) happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x01\x00\x25\x00\x1e\x00\x1b\x00\x1d\x00\x18\x00\x00\x00\x00\x00\x00\x00\x01\x00\xf8\xff\x03\x00\x03\x00\x03\x00\x03\x00\x20\x00\x01\x00\x18\x00\x18\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x01\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x07\x00\xfe\xff\x1c\x00\x06\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfa\xff\xf7\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xfc\xff\xf8\xff\xf9\xff\xf4\xff\x00\x00\x00\x00\xfe\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x0b\x00\x03\x00\x04\x00\x03\x00\x04\x00\x02\x00\x03\x00\x03\x00\x0a\x00\x02\x00\x0a\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x03\x00\x08\x00\x09\x00\x04\x00\x06\x00\x07\x00\x05\x00\x01\x00\x0c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x13\x00\x03\x00\x16\x00\x08\x00\x09\x00\x08\x00\x09\x00\x11\x00\x06\x00\x14\x00\x0a\x00\x18\x00\x0a\x00\x18\x00\x04\x00\x05\x00\x06\x00\x16\x00\x04\x00\x05\x00\x06\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x03\x00\x04\x00\x05\x00\x06\x00\x12\x00\x06\x00\x0c\x00\x0d\x00\x10\x00\x0e\x00\x0f\x00\x11\x00\x03\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = array (1, 11) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11) ] happy_n_terms = 13 :: Int happy_n_nonterms = 4 :: Int happyReduce_1 = happyReduce 6# 0# happyReduction_1 happyReduction_1 ((HappyAbsSyn4 happy_var_6) `HappyStk` _ `HappyStk` (HappyAbsSyn4 happy_var_4) `HappyStk` _ `HappyStk` (HappyTerminal (TokenVar happy_var_2)) `HappyStk` _ `HappyStk` happyRest) = HappyAbsSyn4 (Let happy_var_2 happy_var_4 happy_var_6 ) `HappyStk` happyRest happyReduce_2 = happySpecReduce_1 0# happyReduction_2 happyReduction_2 (HappyAbsSyn5 happy_var_1) = HappyAbsSyn4 (Exp1 happy_var_1 ) happyReduction_2 _ = notHappyAtAll happyReduce_3 = happySpecReduce_3 1# happyReduction_3 happyReduction_3 (HappyAbsSyn6 happy_var_3) _ (HappyAbsSyn5 happy_var_1) = HappyAbsSyn5 (Plus happy_var_1 happy_var_3 ) happyReduction_3 _ _ _ = notHappyAtAll happyReduce_4 = happySpecReduce_3 1# happyReduction_4 happyReduction_4 (HappyAbsSyn6 happy_var_3) _ (HappyAbsSyn5 happy_var_1) = HappyAbsSyn5 (Minus happy_var_1 happy_var_3 ) happyReduction_4 _ _ _ = notHappyAtAll happyReduce_5 = happySpecReduce_1 1# happyReduction_5 happyReduction_5 (HappyAbsSyn6 happy_var_1) = HappyAbsSyn5 (Term happy_var_1 ) happyReduction_5 _ = notHappyAtAll happyReduce_6 = happySpecReduce_3 2# happyReduction_6 happyReduction_6 (HappyAbsSyn7 happy_var_3) _ (HappyAbsSyn6 happy_var_1) = HappyAbsSyn6 (Times happy_var_1 happy_var_3 ) happyReduction_6 _ _ _ = notHappyAtAll happyReduce_7 = happySpecReduce_3 2# happyReduction_7 happyReduction_7 (HappyAbsSyn7 happy_var_3) _ (HappyAbsSyn6 happy_var_1) = HappyAbsSyn6 (Div happy_var_1 happy_var_3 ) happyReduction_7 _ _ _ = notHappyAtAll happyReduce_8 = happySpecReduce_1 2# happyReduction_8 happyReduction_8 (HappyAbsSyn7 happy_var_1) = HappyAbsSyn6 (Factor happy_var_1 ) happyReduction_8 _ = notHappyAtAll happyReduce_9 = happySpecReduce_1 3# happyReduction_9 happyReduction_9 (HappyTerminal (TokenInt happy_var_1)) = HappyAbsSyn7 (Int happy_var_1 ) happyReduction_9 _ = notHappyAtAll happyReduce_10 = happySpecReduce_1 3# happyReduction_10 happyReduction_10 (HappyTerminal (TokenVar happy_var_1)) = HappyAbsSyn7 (Var happy_var_1 ) happyReduction_10 _ = notHappyAtAll happyReduce_11 = happySpecReduce_3 3# happyReduction_11 happyReduction_11 _ (HappyAbsSyn4 happy_var_2) _ = HappyAbsSyn7 (Brack happy_var_2 ) happyReduction_11 _ _ _ = notHappyAtAll happyNewToken action sts stk [] = happyDoAction 12# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { TokenLet -> cont 1#; TokenIn -> cont 2#; TokenInt happy_dollar_dollar -> cont 3#; TokenVar happy_dollar_dollar -> cont 4#; TokenEq -> cont 5#; TokenPlus -> cont 6#; TokenMinus -> cont 7#; TokenTimes -> cont 8#; TokenDiv -> cont 9#; TokenOB -> cont 10#; TokenCB -> cont 11#; _ -> happyError' (tk:tks) } happyError_ tk tks = happyError' (tk:tks) newtype HappyIdentity a = HappyIdentity a happyIdentity = HappyIdentity happyRunIdentity (HappyIdentity a) = a instance Functor HappyIdentity where fmap = liftM instance Applicative HappyIdentity where pure = return (<*>) = ap instance Monad HappyIdentity where return = HappyIdentity (HappyIdentity p) >>= q = q p happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b happyThen = (>>=) happyReturn :: () => a -> HappyIdentity a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> HappyIdentity a happyReturn1 = \a tks -> (return) a happyError' :: () => [Token] -> HappyIdentity a happyError' = HappyIdentity . happyError calc tks = happyRunIdentity happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> case x of {HappyAbsSyn4 z -> happyReturn z; _other -> notHappyAtAll }) happySeq = happyDontSeq happyError tks = error "Parse error" data Exp = Let String Exp Exp | Exp1 Exp1 data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term data Term = Times Term Factor | Div Term Factor | Factor Factor data Factor = Int Int | Var String | Brack Exp data Token = TokenLet | TokenIn | TokenInt Int | TokenVar String | TokenEq | TokenPlus | TokenMinus | TokenTimes | TokenDiv | TokenOB | TokenCB lexer :: String -> [Token] lexer [] = [] lexer (c:cs) | isSpace c = lexer cs | isAlpha c = lexVar (c:cs) | isDigit c = lexNum (c:cs) lexer ('=':cs) = TokenEq : lexer cs lexer ('+':cs) = TokenPlus : lexer cs lexer ('-':cs) = TokenMinus : lexer cs lexer ('*':cs) = TokenTimes : lexer cs lexer ('/':cs) = TokenDiv : lexer cs lexer ('(':cs) = TokenOB : lexer cs lexer (')':cs) = TokenCB : lexer cs lexNum cs = TokenInt (read num) : lexer rest where (num,rest) = span isDigit cs lexVar cs = case span isAlpha cs of ("let",rest) -> TokenLet : lexer rest ("in",rest) -> TokenIn : lexer rest (var,rest) -> TokenVar var : lexer rest runCalc :: String -> Exp runCalc = calc . lexer main = case runCalc "1 + 2 + 3" of { (Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) -> case runCalc "1 * 2 + 3" of { (Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) -> case runCalc "1 + 2 * 3" of { (Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) -> case runCalc "let x = 2 in x * (x - 2)" of { (Let "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) -> print "Test works\n"; _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit } quit = print "Test failed\n" {-# LINE 1 "GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 1 "GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 28 "GenericTemplate.hs" #-} data Happy_IntList = HappyCons Int# Happy_IntList {-# LINE 49 "GenericTemplate.hs" #-} {-# LINE 59 "GenericTemplate.hs" #-} happyTrace string expr = unsafePerformIO $ do hPutStr stderr string return expr infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = (happyTrace ("state: " ++ show (I# (st)) ++ ",\ttoken: " ++ show (I# (i)) ++ ",\taction: ")) $ case action of 0# -> (happyTrace ("fail.\n")) $ happyFail i tk st -1# -> (happyTrace ("accept.\n")) $ happyAccept i tk st n | isTrue# (n <# (0# :: Int#)) -> (happyTrace ("reduce (rule " ++ show rule ++ ")")) $ (happyReduceArr ! rule) i tk st where rule = (I# ((negateInt# ((n +# (1# :: Int#)))))) n -> (happyTrace ("shift, enter state " ++ show (I# (new_state)) ++ "\n")) $ happyShift new_state i tk st where new_state = (n -# (1# :: Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off +# i) check = if isTrue# (off_i >=# (0# :: Int#)) then isTrue# (indexShortOffAddr happyCheck off_i ==# i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st {-# LINE 127 "GenericTemplate.hs" #-} indexShortOffAddr (HappyA# arr) off = narrow16Int# i where i = word2Int# ((high `uncheckedShiftL#` 8#) `or#` low) high = int2Word# (ord# (indexCharOffAddr# arr (off' +# 1#))) low = int2Word# (ord# (indexCharOffAddr# arr off')) off' = off *# 2# data HappyAddr = HappyA# Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case x of { HappyErrorToken (I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((HappyTerminal (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k -# (1# :: Int#)) sts of !sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) where !sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) where !sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off +# nt) new_state = indexShortOffAddr happyTable off_i happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n -# (1# :: Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n -# (1#::Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = (happyTrace (", goto state " ++ show (I# (new_state)) ++ "\n")) $ happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off +# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk = -- trace "failing" $ happyError_ tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (HappyErrorToken (I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.