{-# LANGUAGE TypeApplications #-} -- Check that the standard analytic functions are correctly -- inverted by the corresponding inverse functions. main :: IO () main = mapM_ print [ -- @recip@ is self-inverse on @ℝ\\{0}@. invDeviation @Double recip recip <$> [-1e20, -1e3, -1, -1e-40, 1e-40, 1e90] , invDeviation @Float recip recip <$> [-1e10, -10, -1, -1e-20, 1e-20, 1e30] , -- @exp@ is invertible on @ℝ <-> [0…∞[@, but grows very fast. invDeviation @Double exp log <$> [-10, -5 .. 300] , invDeviation @Float exp log <$> [-10 .. 60] -- @sin@ is only invertible on @[-π/2…π/2] <-> [-1…1]@. , invDeviation @Double sin asin <$> [-1.5, -1.4 .. 1.5] , invDeviation @Float sin asin <$> [-1.5, -1.4 .. 1.5] -- @cos@ is invertible on @[0…π] <-> [-1…1]@. , invDeviation @Double cos acos <$> [0, 0.1 .. 3] , invDeviation @Float cos acos <$> [0, 0.1 .. 3] -- @tan@ is invertible on @]-π/4…π/4[ <-> ]-∞…∞[@. , invDeviation @Double tan atan <$> [-0.7, -0.6 .. 0.7] , invDeviation @Float tan atan <$> [-0.7, -0.6 .. 0.7] -- @sinh@ is invertible on @ℝ <-> ℝ@, but grows very fast. , invDeviation @Double sinh asinh <$> [-700, -672 .. 700] , invDeviation @Float sinh asinh <$> [-80, -71 .. 80] -- @cosh@ is invertible on @[0…∞[ <-> [1…∞[@, but grows fast , invDeviation @Double cosh acosh <$> [0, 15 .. 700] , invDeviation @Float cosh acosh <$> [0, 15 .. 80] -- @tanh@ is invertible on @ℝ <-> ]-1…1[@. , invDeviation @Double atanh tanh <$> [-0.99, -0.87 .. 0.9] , invDeviation @Float atanh tanh <$> [-0.99, -0.87 .. 0.9] ] invDeviation :: KnownNumDeviation a => (a -> a) -- ^ Some numerical function @f@. -> (a -> a) -- ^ Inverse @g = f⁻¹@ of that function. -> a -- ^ Value @x@ which to compare with @g (f x)@. -> Double -- ^ Relative discrepancy between original/expected -- value and actual function result. invDeviation f g 0 = rmNumericDeviation (g (f 0) + 1) - 1 invDeviation f g x = rmNumericDeviation (g (f x) / x) - 1 -- | We need to round results to some sensible precision, -- because floating-point arithmetic generally makes -- it impossible to /exactly/ invert functions. -- What precision this is depends on the type. The bounds -- here are rather generous; the functions should usually -- perform substantially better than that. class (Floating a, Eq a) => KnownNumDeviation a where rmNumericDeviation :: a -> Double instance KnownNumDeviation Double where rmNumericDeviation x = fromIntegral (round $ x * 2^36) / 2^36 instance KnownNumDeviation Float where rmNumericDeviation x = fromIntegral (round $ x * 2^16) / 2^16