{-# LANGUAGE Haskell2010 #-} {- - Instant Insanity using Type Families. - - See: The Monad Read, Issue #8 - http://www.haskell.org/wikiupload/d/dd/TMR-Issue8.pdf -} {-# OPTIONS_GHC -freduction-depth=400 #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} import Prelude hiding (all, flip, map, filter ) data Proxy a = Proxy main = print (Proxy :: Proxy (Solutions Cubes)) data R -- Red data G -- Green data B -- Blue data W -- White data Cube u f r b l d data True data False type family And b1 b2 :: * type instance And True True = True type instance And True False = False type instance And False False = False type instance And False True = False type family NE x y :: * type instance NE R R = False type instance NE R G = True type instance NE R B = True type instance NE R W = True type instance NE G R = True type instance NE G G = False type instance NE G B = True type instance NE G W = True type instance NE B R = True type instance NE B G = True type instance NE B B = False type instance NE B W = True type instance NE W R = True type instance NE W G = True type instance NE W B = True type instance NE W W = False type family EQ x y :: * type instance EQ R R = True type instance EQ R G = False type instance EQ R B = False type instance EQ R W = False type instance EQ G R = False type instance EQ G G = True type instance EQ G B = False type instance EQ G W = False type instance EQ B R = False type instance EQ B G = False type instance EQ B B = True type instance EQ B W = False type instance EQ W R = False type instance EQ W G = False type instance EQ W B = False type instance EQ W W = True data Nil = Nil data Cons x xs = Cons x xs type family All l :: * type instance All Nil = True type instance All (Cons False xs) = False type instance All (Cons True xs) = All xs type family ListConcat xs ys :: * type instance ListConcat Nil ys = ys type instance ListConcat (Cons x xs) ys = Cons x (ListConcat xs ys) type family AppendIf b a as :: * type instance AppendIf False a as = as type instance AppendIf True a as = Cons a as data Rotate data Twist data Flip type family Apply f a :: * type instance Apply Rotate (Cube u f r b l d) = (Cube u r b l f d) type instance Apply Twist (Cube u f r b l d) = (Cube f r u l d b) type instance Apply Flip (Cube u f r b l d) = (Cube d l b r f u) -- orientations c = [ z | x <- [ c, flip c ], y <- [ x, twist x, twist (twist x) ], z <- [y, rot y, rot(rot y), rot(rot(rot(y))) ] ] type family Map f as :: * type instance Map f Nil = Nil type instance Map f (Cons a as) = Cons (Apply f a) (Map f as) type family MapAppend f as :: * type instance MapAppend f xs = ListConcat xs (Map f xs) type family MapAppend2 f as :: * type instance MapAppend2 f xs = ListConcat xs (MapAppend f (Map f xs)) type family MapAppend3 f as :: * type instance MapAppend3 f xs = ListConcat xs (MapAppend2 f (Map f xs)) type family Iterate2 f as :: * type instance Iterate2 f Nil = Nil type instance Iterate2 f (Cons a as) = ListConcat (Cons (Apply f a) (Cons a Nil)) (Iterate2 f as) type family Iterate3 f as :: * type instance Iterate3 f (Cons a as) = ListConcat (Cons a (Cons (Apply f a) (Cons (Apply f (Apply f a)) Nil))) (Iterate3 f as) type family Iterate4 f as :: * type instance Iterate4 f Nil = Nil type instance Iterate4 f (Cons a as) = ListConcat (Cons a (Cons (Apply f a) (Cons (Apply f (Apply f a)) (Cons (Apply f (Apply f (Apply f a))) Nil)))) (Iterate4 f as) type family Orientations c :: * -- type instance Orientations c = Iterate4 Rotate (Iterate3 Twist (Iterate2 Flip (Cons c Nil))) type instance Orientations c = MapAppend3 Rotate (MapAppend2 Twist (MapAppend Flip (Cons c Nil))) type Cube1 = Cube B G W G B R type Cube2 = Cube W G B W R R type Cube3 = Cube G W R B R R type Cube4 = Cube B R G G W W type Cubes = Cons Cube1 (Cons Cube2 (Cons Cube3 (Cons Cube4 Nil))) type family Compatible c d :: * type instance Compatible (Cube u1 f1 r1 b1 l1 d1) (Cube u2 f2 r2 b2 l2 d2) = All (Cons (NE f1 f2) (Cons (NE r1 r2) (Cons (NE b1 b2) (Cons (NE l1 l2) Nil)))) type family Allowed c cs :: * type instance Allowed c Nil = True type instance Allowed c (Cons s ss) = And (Compatible c s) (Allowed c ss) type family MatchingOrientations as sol :: * type instance MatchingOrientations Nil sol = Nil type instance MatchingOrientations (Cons o os) sol = AppendIf (Allowed o sol) (Cons o sol) (MatchingOrientations os sol) type family AllowedCombinations os sols :: * type instance AllowedCombinations os Nil = Nil type instance AllowedCombinations os (Cons sol sols) = ListConcat (MatchingOrientations os sol) (AllowedCombinations os sols) type family Solutions c :: * type instance Solutions Nil = Cons Nil Nil type instance Solutions (Cons c cs) = AllowedCombinations (Orientations c) (Solutions cs) {- - solutions [] = [ [] ] - solutions (c:cs) = [ (o:sol) | sol <- solutions cs, o <- orientations c, allowed o -}