-- This module should compile with -XIncoherentInstances, but didn't in 7.4 {- Here we define all the stuff that is needed for our singleton types: - phantom types (when GHC 7.4 arrives, the user-defined kinds) - corresponding singleton types These are basically the constructs from Omega, reimplemented in Haskell for our purposes. -} {-# LANGUAGE GADTs, KindSignatures, StandaloneDeriving, RankNTypes, TypeFamilies, FlexibleInstances, IncoherentInstances #-} module TypeMachinery where import Data.Kind (Type) -- The natural numbers: -- o first the phantom types data Z; data S n -- o the using the above the singleton type Nat' data Nat' :: Type -> Type where Z :: Nat' Z S :: Nat' n -> Nat' (S n) deriving instance Show (Nat' a) -- Type-level addition type family Plus m n :: Type type instance Plus Z n = n type instance Plus (S m) n = S (Plus m n) -- Nat' addition plus :: Nat' a -> Nat' b -> Nat' (Plus a b) plus Z n = n plus (S m) n = S (plus m n) -- Equality on Nat' sameNat' :: Nat' a -> Nat' b -> Bool sameNat' Z Z = True sameNat' (S m) (S n) = sameNat' m n sameNat' _ _ = False -- A data type for existentially hiding -- (e.g.) Nat' values data Hidden :: (Type -> Type) -> Type where Hide :: Show (a n) => a n -> Hidden a deriving instance Show (Hidden t) toNat' :: Integral i => i -> Hidden Nat' toNat' 0 = Hide Z toNat' n = case toNat' (n - 1) of Hide n -> Hide (S n) -- Now we are ready to make Hidden Nat' an Integral type instance Eq (Hidden Nat') where Hide a == Hide b = sameNat' a b instance Ord (Hidden Nat') where Hide Z `compare` Hide Z = EQ Hide Z `compare` Hide _ = LT Hide _ `compare` Hide Z = GT Hide (S m) `compare` Hide (S n) = Hide m `compare` Hide n instance Enum (Hidden Nat') where toEnum = toEnum . fromIntegral fromEnum = fromIntegral instance Num (Hidden Nat') where fromInteger = toNat' signum (Hide Z) = 0 signum _ = 1 abs n = n Hide a + Hide b = Hide $ plus a b a * b = fromInteger $ toInteger a * toInteger b negate a = error "negate(Hidden Nat')" instance Real (Hidden Nat') where toRational = toRational . toInteger instance Integral (Hidden Nat') where toInteger (Hide Z) = 0 toInteger (Hide (S n)) = 1 + toInteger (Hide n) quotRem a b = let (a', b') = toInteger a `quotRem` toInteger b in (fromInteger a', fromInteger b') -- McBride's Fin data type. By counting backwards from the -- result index, it only admits a fixed number of inhabitants. data Fin :: Type -> Type where Stop :: Fin (S Z) Retreat :: Fin s -> Fin (S s) deriving instance Show (Fin a)