{-# LANGUAGE TypeOperators, DataKinds, PolyKinds, TypeFamilies, RankNTypes, FlexibleContexts, TemplateHaskell, UndecidableInstances, GADTs, DefaultSignatures #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Singletons.Prelude.Eq -- Copyright : (C) 2013 Richard Eisenberg -- License : BSD-style (see LICENSE) -- Maintainer : Richard Eisenberg (eir@cis.upenn.edu) -- Stability : experimental -- Portability : non-portable -- -- Defines the SEq singleton version of the Eq type class. -- ----------------------------------------------------------------------------- module Data.Singletons.Prelude.Eq ( PEq(..), SEq(..), (:==$), (:==$$), (:==$$$), (:/=$), (:/=$$), (:/=$$$) ) where import Data.Singletons.Prelude.Bool import Data.Singletons import Data.Singletons.Single import Data.Singletons.Prelude.Instances import Data.Singletons.Util import Data.Singletons.Promote import Data.Type.Equality -- NB: These must be defined by hand because of the custom handling of the -- default for (:==) to use Data.Type.Equality.== -- | The promoted analogue of 'Eq'. If you supply no definition for '(:==)', -- then it defaults to a use of '(==)', from @Data.Type.Equality@. class kproxy ~ 'KProxy => PEq (kproxy :: KProxy a) where type (:==) (x :: a) ( y :: a) :: Bool type (:/=) ( (x :: a) ) (y :: a ) :: Bool type {- a -} ({- b -}:/:{- c -}) {- d -} ({- e -}x {- f -} :: {- g -} a {- h -}) {- i -} ({- j -}y {- k -}::{- l -} a{- m -}){- n -} ::{- o -} Bool {- p -} type (x :: a) :== (y :: a) = x == y type (x :: a) :/= (y :: a) = Not (x :== y) infix 4 :== infix 4 :/= $(genDefunSymbols [''(:==), ''(:/=)]) -- | The singleton analogue of 'Eq'. Unlike the definition for 'Eq', it is -- required that instances define a body for '(%:==)'. You may also supply a -- body for '(%:/=)'. class (kparam ~ 'KProxy) => SEq (kparam :: KProxy k) where -- | Boolean equality on singletons (%:==) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a :== b) infix 4 %:== -- | Boolean disequality on singletons (%:/=) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a :/= b) default (%:/=) :: forall (a :: k) (b :: k). ((a :/= b) ~ Not (a :== b)) => Sing a -> Sing b -> Sing (a :/= b) a %:/= b = sNot (a %:== b) infix 4 %:/= $(singEqInstances basicTypes) $singEqInstances basicTypes singEqInstances basicTypes