module Main (main) -- TEST where { import Fast2haskell; import Data.Complex;--1.3 import Data.Array;--1.3 c_eps=(5.00000e-06 :: Double); c_t=True; c_f=False; c_input=(0 :: Int); f_main a_n= let { r_x=[(a_tf,(++) (show a_i) ((++) "\t" a_str))|(a_i,(a_tf,a_str))<-f_zip2 (enumFrom (1 :: Int)) c_testlist]; r_noks=[(++) a_str "\n"|(a_tf,a_str)<-r_x,not a_tf]; r_oks=[(++) a_str "\n"|(a_tf,a_str)<-r_x,a_tf] } in if (((>) :: (Int -> Int -> Bool)) a_n (0 :: Int)) then (f_onetest ((!!) c_testlist (((-) :: (Int -> Int -> Int)) a_n (1 :: Int)))) else ((++) (show (length r_oks)) ((++) " tests passed and " ((++) (show (length r_noks)) ((++) " failed\n" (c_concat r_noks))))); f_onetest (True,a_str)=(++) "true: " ((++) a_str "\n"); f_onetest (False,a_str)=(++) "false: " ((++) a_str "\n"); f_booltest a_name True a_try= if a_try then (True,"") else (False,(++) a_name "\tok: true is: false"); f_booltest a_name False a_try= if (not a_try) then (True,"") else (False,(++) a_name "\tok: false is: true"); f_inttest a_name a_ok a_try= if (((==) :: (Int -> Int -> Bool)) a_ok a_try) then (True,"") else (False,(++) a_name ((++) "\tok: " ((++) (show a_ok) ((++) "\tis: " (show a_try))))); f_chartest a_name a_ok a_try= if (((==) :: (Int -> Int -> Bool)) (fromEnum a_ok) (fromEnum a_try)) then (True,"") else (False,(++) a_name ((++) "\tok: " ((++) ((:) a_ok []) ((++) "\tis: " ((:) a_try []))))); f_strtest a_name a_ok a_try= if (strcmp a_ok a_try) then (True,"") else (False,(++) a_name ((++) "\tok: " ((++) a_ok ((++) "\tis: " a_try)))); f_linttest a_name a_ok a_try= if (f_lintcmp a_ok a_try) then (True,"") else (False,(++) a_name ((++) "\tok: " ((++) (f_showlint a_ok) ((++) "\tis: " (f_showlint a_try))))); f_doubtest a_name a_ok a_try= if (((<=) :: (Double -> Double -> Bool)) (f_abs (((-) :: (Double -> Double -> Double)) a_ok a_try)) c_eps) then (True,"") else (False,(++) a_name ((++) "\tok: " ((++) (show a_ok) ((++) "\tis: " ((++) (show a_try) ((++) "\tok-is: " (show (((-) :: (Double -> Double -> Double)) a_ok a_try)))))))); f_alternating a_l=(:) (0 :: Int) ((:) (1 :: Int) a_l); f_showlint []=[]; f_showlint a_xs=tail (c_concat [(++) "," (show a_x)|a_x<-a_xs]); f_lintcmp [] []=True; f_lintcmp [] a_ys=False; f_lintcmp a_xs []=False; f_lintcmp (a_x:a_xs) (a_y:a_ys)= if (((==) :: (Int -> Int -> Bool)) a_x a_y) then (f_lintcmp a_xs a_ys) else False; c_testlist=(:) (f_inttest "array" (10 :: Int) ((!) (array (descr (1 :: Int) (3 :: Int)) ((:) ((,) (3 :: Int) (30 :: Int)) ((:) ((,) (1 :: Int) (10 :: Int)) ((:) ((,) (2 :: Int) (20 :: Int)) [])))) (1 :: Int))) ((:) (f_inttest "array" (20 :: Int) ((!) (array (descr (1 :: Int) (3 :: Int)) ((:) ((,) (3 :: Int) (30 :: Int)) ((:) ((,) (1 :: Int) (10 :: Int)) ((:) ((,) (2 :: Int) (20 :: Int)) [])))) (2 :: Int))) ((:) (f_inttest "array" (30 :: Int) ((!) (array (descr (1 :: Int) (3 :: Int)) ((:) ((,) (3 :: Int) (30 :: Int)) [])) (3 :: Int))) ((:) (f_inttest "assoc" (0 :: Int) (indassoc ((,) (0 :: Int) (1 :: Int)))) ((:) (f_inttest "assoc" (1 :: Int) (valassoc ((,) (0 :: Int) (1 :: Int)))) ((:) (f_inttest "bounds" (1 :: Int) (lowbound (bounds (listArray (descr (1 :: Int) (3 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) []))))))) ((:) (f_inttest "bounds" (3 :: Int) (upbound (bounds (listArray (descr (1 :: Int) (3 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) []))))))) ((:) (f_inttest "descr" (0 :: Int) (lowbound (descr (0 :: Int) (1 :: Int)))) ((:) (f_inttest "descr" (1 :: Int) (upbound (descr (0 :: Int) (1 :: Int)))) ((:) (f_linttest "destr_update" ((:) (1 :: Int) ((:) (0 :: Int) ((:) (3 :: Int) []))) (elems (destr_update (listArray (descr (0 :: Int) (2 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (1 :: Int) (0 :: Int)))) ((:) (f_linttest "destr_update" ((:) (0 :: Int) []) (elems (destr_update (listArray (descr (0 :: Int) (0 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (0 :: Int) (0 :: Int)))) ((:) (f_linttest "elems" ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) []))) (elems (listArray (descr (0 :: Int) (2 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))))) ((:) (f_linttest "elems" ((:) (1 :: Int) []) (elems (listArray (descr (0 :: Int) (0 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))))) ((:) (f_inttest "indassoc" (0 :: Int) (indassoc ((,) (0 :: Int) (1 :: Int)))) ((:) (f_linttest "listarray" ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) []))) (elems (listArray (descr (0 :: Int) (2 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))))) ((:) (f_linttest "listarray" ((:) (1 :: Int) []) (elems (listArray (descr (0 :: Int) (0 :: Int)) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))))) ((:) (f_inttest "lowbound" (0 :: Int) (lowbound (descr (0 :: Int) (1 :: Int)))) ((:) (f_inttest "subscript" (1 :: Int) ((!) (tabulate ((!!) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (descr (0 :: Int) (2 :: Int))) (0 :: Int))) ((:) (f_inttest "subscript" (2 :: Int) ((!) (tabulate ((!!) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (descr (0 :: Int) (2 :: Int))) (1 :: Int))) ((:) (f_inttest "subscript" (3 :: Int) ((!) (tabulate ((!!) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (descr (0 :: Int) (2 :: Int))) (2 :: Int))) ((:) (f_linttest "tabulate" ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) []))) (elems (tabulate ((!!) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (descr (0 :: Int) (2 :: Int))))) ((:) (f_linttest "tabulate" ((:) (1 :: Int) []) (elems (tabulate ((!!) ((:) (1 :: Int) ((:) (2 :: Int) ((:) (3 :: Int) [])))) (descr (0 :: Int) (0 :: Int))))) ((:) (f_inttest "upbound" (1 :: Int) (upbound (descr (0 :: Int) (1 :: Int)))) ((:) (f_inttest "valassoc" (1 :: Int) (valassoc ((,) (0 :: Int) (1 :: Int)))) ((:) (f_doubtest "add_x" (0.00000 :: Double) (realPart (((+) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "add_x" (0.00000 :: Double) (imagPart (((+) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "add_x" (4.00000 :: Double) (realPart (((+) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_doubtest "add_x" (6.00000 :: Double) (imagPart (((+) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_doubtest "complex" (1.00000 :: Double) (realPart ((:+) (1.00000 :: Double) (0.00000 :: Double)))) ((:) (f_doubtest "complex" (1.00000 :: Double) (imagPart ((:+) (0.00000 :: Double) (1.00000 :: Double)))) ((:) (f_doubtest "complex_im" (0.00000 :: Double) (imagPart ((:+) (1.00000 :: Double) (0.00000 :: Double)))) ((:) (f_doubtest "complex_im" (1.00000 :: Double) (imagPart ((:+) (0.00000 :: Double) (1.00000 :: Double)))) ((:) (f_doubtest "complex_re" (0.00000 :: Double) (realPart ((:+) (0.00000 :: Double) (1.00000 :: Double)))) ((:) (f_doubtest "complex_re" (1.00000 :: Double) (realPart ((:+) (1.00000 :: Double) (0.00000 :: Double)))) ((:) (f_doubtest "mul_x" (0.00000 :: Double) (realPart (((*) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "mul_x" (0.00000 :: Double) (imagPart (((*) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "mul_x" (((negate) :: (Double -> Double)) (5.00000 :: Double)) (realPart (((*) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_doubtest "mul_x" (10.0000 :: Double) (imagPart (((*) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_doubtest "sub_x" (0.00000 :: Double) (realPart (((-) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "sub_x" (0.00000 :: Double) (imagPart (((-) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (0.00000 :: Double) (0.00000 :: Double)) ((:+) (0.00000 :: Double) (0.00000 :: Double))))) ((:) (f_doubtest "sub_x" (((negate) :: (Double -> Double)) (2.00000 :: Double)) (realPart (((-) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_doubtest "sub_x" (((negate) :: (Double -> Double)) (2.00000 :: Double)) (imagPart (((-) :: (Complex_type -> Complex_type -> Complex_type)) ((:+) (1.00000 :: Double) (2.00000 :: Double)) ((:+) (3.00000 :: Double) (4.00000 :: Double))))) ((:) (f_inttest "seq" (2 :: Int) (seq (enumFrom (1 :: Int)) (2 :: Int))) ((:) (f_strtest "**" "this one" "should fail") []))))))))))))))))))))))))))))))))))))))))))); f_abs a_x= if (((<=) :: (Double -> Double -> Bool)) a_x (0.00000 :: Double)) then (((negate) :: (Double -> Double)) a_x) else a_x; c_and=f_foldr (&&) True; f_cjustify a_n a_s= let { r_margin=((-) :: (Int -> Int -> Int)) a_n (length a_s); r_lmargin=((div) :: (Int -> Int -> Int)) r_margin (2 :: Int); r_rmargin=((-) :: (Int -> Int -> Int)) r_margin r_lmargin } in (++) (f_spaces r_lmargin) ((++) a_s (f_spaces r_rmargin)); c_concat=f_foldr (++) []; f_const a_x a_y=a_x; f_digit a_x= if (((<=) :: (Int -> Int -> Bool)) (fromEnum '0') (fromEnum a_x)) then (((<=) :: (Int -> Int -> Bool)) (fromEnum a_x) (fromEnum '9')) else False; f_drop 0 a_x=a_x; f_drop a_n (a_a:a_x)=f_drop (((-) :: (Int -> Int -> Int)) a_n (1 :: Int)) a_x; f_drop a_n a_x=[]; f_dropwhile a_f []=[]; f_dropwhile a_f (a_a:a_x)= if (a_f a_a) then (f_dropwhile a_f a_x) else ((:) a_a a_x); c_e=((exp) :: (Double -> Double)) (1.00000 :: Double); f_filter a_f a_x=[a_a|a_a<-a_x,a_f a_a]; f_foldl a_op a_r []=a_r; f_foldl a_op a_r (a_a:a_x)= let { f_strict a_f a_x=seq a_x (a_f a_x) } in f_foldl a_op (f_strict a_op a_r a_a) a_x; f_foldl1 a_op (a_a:a_x)=f_foldl a_op a_a a_x; f_foldr a_op a_r []=a_r; f_foldr a_op a_r (a_a:a_x)=a_op a_a (f_foldr a_op a_r a_x); f_foldr1 a_op (a_a:[])=a_a; f_foldr1 a_op (a_a:a_b:a_x)=a_op a_a (f_foldr1 a_op ((:) a_b a_x)); f_fst (a_a,a_b)=a_a; f_id a_x=a_x; f_index a_x= let { f_f a_n []=[]; f_f a_n (a_a:a_x)=(:) a_n (f_f (((+) :: (Int -> Int -> Int)) a_n (1 :: Int)) a_x) } in f_f (0 :: Int) a_x; f_init (a_a:a_x)= if (null a_x) then [] else ((:) a_a (f_init a_x)); f_iterate a_f a_x=(:) a_x (f_iterate a_f (a_f a_x)); f_last a_x=(!!) a_x (((-) :: (Int -> Int -> Int)) (length a_x) (1 :: Int)); f_lay []=[]; f_lay (a_a:a_x)=(++) a_a ((++) "\n" (f_lay a_x)); f_layn a_x= let { f_f a_n []=[]; f_f a_n (a_a:a_x)=(++) (f_rjustify (4 :: Int) (show a_n)) ((++) ") " ((++) a_a ((++) "\n" (f_f (((+) :: (Int -> Int -> Int)) a_n (1 :: Int)) a_x)))) } in f_f (1 :: Int) a_x; f_letter a_c= if ( if (((<=) :: (Int -> Int -> Bool)) (fromEnum 'a') (fromEnum a_c)) then (((<=) :: (Int -> Int -> Bool)) (fromEnum a_c) (fromEnum 'z')) else False) then True else if (((<=) :: (Int -> Int -> Bool)) (fromEnum 'A') (fromEnum a_c)) then (((<=) :: (Int -> Int -> Bool)) (fromEnum a_c) (fromEnum 'Z')) else False; f_limit (a_a:a_b:a_x)= if (((==) :: (Double -> Double -> Bool)) a_a a_b) then a_a else (f_limit ((:) a_b a_x)); f_lines []=[]; f_lines (a_a:a_x)= let { r_xs= if (pair a_x) then (f_lines a_x) else ((:) [] []) } in if (((==) :: (Int -> Int -> Bool)) (fromEnum a_a) (fromEnum '\o012')) then ((:) [] (f_lines a_x)) else ((:) ((:) a_a (head r_xs)) (tail r_xs)); f_ljustify a_n a_s=(++) a_s (f_spaces (((-) :: (Int -> Int -> Int)) a_n (length a_s))); f_map a_f a_x=[a_f a_a|a_a<-a_x]; f_map2 a_f a_x a_y=[a_f a_a a_b|(a_a,a_b)<-f_zip2 a_x a_y]; f_max a_xs=f_foldl1 f_max2 a_xs; f_max2 a_a a_b= if (((>=) :: (Int -> Int -> Bool)) a_a a_b) then a_a else a_b; f_member a_x a_a=c_or (f_map (flip ((==) :: (Int -> Int -> Bool)) a_a) a_x); f_merge [] a_y=a_y; f_merge (a_a:a_x) []=(:) a_a a_x; f_merge (a_a:a_x) (a_b:a_y)= if (((<=) :: (Int -> Int -> Bool)) a_a a_b) then ((:) a_a (f_merge a_x ((:) a_b a_y))) else ((:) a_b (f_merge ((:) a_a a_x) a_y)); f_min a_xs=f_foldl1 f_min2 a_xs; f_min2 a_a a_b= if (((>) :: (Int -> Int -> Bool)) a_a a_b) then a_b else a_a; f_mkset []=[]; f_mkset (a_a:a_x)=(:) a_a (f_filter (flip ((/=) :: (Int -> Int -> Bool)) a_a) (f_mkset a_x)); c_or=f_foldr (||) False; c_pi=((*) :: (Double -> Double -> Double)) (4.00000 :: Double) (((atan) :: (Double -> Double)) (1.00000 :: Double)); f_postfix a_a a_x=(++) a_x ((:) a_a []); c_product=f_foldl ((*) :: (Int -> Int -> Int)) (1 :: Int); f_rep a_n a_x=f_take a_n (f_repeat a_x); f_repeat a_x=(:) a_x (f_repeat a_x); c_reverse=f_foldl (flip (:)) []; f_rjustify a_n a_s=(++) (f_spaces (((-) :: (Int -> Int -> Int)) a_n (length a_s))) a_s; f_scan a_op= let { f_g a_r []=(:) a_r []; f_g a_r (a_a:a_x)=(:) a_r (f_g (a_op a_r a_a) a_x) } in f_g; f_snd (a_a,a_b)=a_b; f_sort a_x= let { r_n=length a_x; r_n2=((div) :: (Int -> Int -> Int)) r_n (2 :: Int) } in if (((<=) :: (Int -> Int -> Bool)) r_n (1 :: Int)) then a_x else (f_merge (f_sort (f_take r_n2 a_x)) (f_sort (f_drop r_n2 a_x))); f_spaces a_n=f_rep a_n ' '; f_subtract a_x a_y=((-) :: (Int -> Int -> Int)) a_y a_x; c_sum=f_foldl ((+) :: (Int -> Int -> Int)) (0 :: Int); data T_sys_message=F_Stdout [Char] | F_Stderr [Char] | F_Tofile [Char] [Char] | F_Closefile [Char] | F_Appendfile [Char] | F_System [Char] | F_Exit Int; f_take 0 a_x=[]; f_take a_n (a_a:a_x)=(:) a_a (f_take (((-) :: (Int -> Int -> Int)) a_n (1 :: Int)) a_x); f_take a_n a_x=[]; f_takewhile a_f []=[]; f_takewhile a_f (a_a:a_x)= if (a_f a_a) then ((:) a_a (f_takewhile a_f a_x)) else []; f_transpose a_x= let { r_x'=f_takewhile pair a_x } in if (null r_x') then [] else ((:) (f_map head r_x') (f_transpose (f_map tail r_x'))); f_until a_f a_g a_x= if (a_f a_x) then a_x else (f_until a_f a_g (a_g a_x)); f_zip2 (a_a:a_x) (a_b:a_y)=(:) (a_a,a_b) (f_zip2 a_x a_y); f_zip2 a_x a_y=[]; f_zip3 (a_a:a_x) (a_b:a_y) (a_c:a_z)=(:) (a_a,a_b,a_c) (f_zip3 a_x a_y a_z); f_zip3 a_x a_y a_z=[]; f_zip4 (a_a:a_w) (a_b:a_x) (a_c:a_y) (a_d:a_z)=(:) (a_a,a_b,a_c,a_d) (f_zip4 a_w a_x a_y a_z); f_zip4 a_w a_x a_y a_z=[]; f_zip5 (a_a:a_v) (a_b:a_w) (a_c:a_x) (a_d:a_y) (a_e:a_z)=(:) (a_a,a_b,a_c,a_d,a_e) (f_zip5 a_v a_w a_x a_y a_z); f_zip5 a_v a_w a_x a_y a_z=[]; f_zip6 (a_a:a_u) (a_b:a_v) (a_c:a_w) (a_d:a_x) (a_e:a_y) (a_f:a_z)=(:) (a_a,a_b,a_c,a_d,a_e,a_f) (f_zip6 a_u a_v a_w a_x a_y a_z); f_zip6 a_u a_v a_w a_x a_y a_z=[]; f_zip (a_x,a_y)=f_zip2 a_x a_y; main = putStr (f_main c_input) }