{-# LANGUAGE RebindableSyntax, MultiParamTypeClasses, FlexibleInstances, FlexibleContexts #-} -- Tests of the do-notation for the restricted monads -- We demonstrate that all ordinary monads are restricted monads, -- and show the frequently requested implementation -- of MonadPlus in terms of Data.Set. -- -- The tests are based on the code -- http://okmij.org/ftp/Haskell/types.html#restricted-datatypes module DoRestrictedM where import Data.List import Prelude (const, String, ($), (.), Maybe(..)) import qualified Prelude import qualified Data.Set as Set -- Defining the restricted monad class MN2 m a where return :: a -> m a fail :: String -> m a class (MN2 m a, MN2 m b) => MN3 m a b where (>>=) :: m a -> (a -> m b) -> m b m1 >> m2 = m1 >>= (const m2) -- All regular monads are the instances of the restricted monad newtype RegularM m a = RegularM{unRM :: m a} instance Prelude.Monad m => MN2 (RegularM m) a where return = RegularM . Prelude.return fail = RegularM . Prelude.fail instance Prelude.Monad m => MN3 (RegularM m) a b where m >>= f = RegularM ((Prelude.>>=) (unRM m) (unRM . f)) -- We try to inject Maybe (as the regular monad) into Restricted Monad test1s () = return "a" >>= (\x -> return $ "b" ++ x) test1f () = fail "" >>= (\x -> return $ "b" ++ x) -- the same with the do-notation test1s_do () = do x <- return "a" return $ "b" ++ x {- whose inferred type is *DoRestrictedM> :t test1s test1s :: (MN3 m [Prelude.Char] [Prelude.Char]) => () -> m [Prelude.Char] -} test1sr :: Maybe String test1sr = unRM $ test1s () -- Just "ba" test1fr :: Maybe String test1fr = unRM $ test1f () -- Nothing test1sr_do :: Maybe String test1sr_do = unRM $ test1s_do () -- Just "ba" -- As often requested, we implement a MonadPlus `monad' -- in terms of a Set. Set requires the Ord constraint. newtype SMPlus a = SMPlus{unSM:: Set.Set a} instance MN2 SMPlus a where return = SMPlus . Set.singleton fail x = SMPlus $ Set.empty instance Prelude.Ord b => MN3 SMPlus a b where m >>= f = SMPlus (Set.fold (Set.union . unSM . f) Set.empty (unSM m)) -- We cannot forget the Ord constraint, because the typechecker -- will complain (and tell us exactly what we have forgotten). -- Now we can instantiate the previously written test1s and test1d -- functions for this Set monad: test2sr :: Set.Set String test2sr = unSM $ test1s () -- fromList ["ba"] test2fr :: Set.Set String test2fr = unSM $ test1f () -- fromList [] test2sr_do :: Set.Set String test2sr_do = unSM $ test1s_do () -- fromList ["ba"]