1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
|
-----------------------------------------------------------------------
--
-- (c) 2010 The University of Glasgow
--
-- Primitive Operations and Types
--
-- For more information on PrimOps, see
-- https://gitlab.haskell.org/ghc/ghc/wikis/commentary/prim-ops
--
-----------------------------------------------------------------------
-- This file is processed by the utility program genprimopcode to produce
-- a number of include files within the compiler and optionally to produce
-- human-readable documentation.
--
-- It should first be preprocessed.
--
-- Information on how PrimOps are implemented and the steps necessary to
-- add a new one can be found in the Commentary:
--
-- https://gitlab.haskell.org/ghc/ghc/wikis/commentary/prim-ops
--
-- Note in particular that Haskell block-style comments are not recognized
-- here, so stick to '--' (even for Notes spanning multiple lines).
-- This file is divided into named sections, each containing or more
-- primop entries. Section headers have the format:
--
-- section "section-name" {description}
--
-- This information is used solely when producing documentation; it is
-- otherwise ignored. The description is optional.
--
-- The format of each primop entry is as follows:
--
-- primop internal-name "name-in-program-text" category type {description} attributes
-- The default attribute values which apply if you don't specify
-- other ones. Attribute values can be True, False, or arbitrary
-- text between curly brackets. This is a kludge to enable
-- processors of this file to easily get hold of simple info
-- (eg, out_of_line), whilst avoiding parsing complex expressions
-- needed for strictness info.
--
-- type refers to the general category of the primop. Valid settings include,
--
-- * Compare: A comparison operation of the shape a -> a -> Int#
-- * Monadic: A unary operation of shape a -> a
-- * Dyadic: A binary operation of shape a -> a -> a
-- * GenPrimOp: Any other sort of primop
--
-- The vector attribute is rather special. It takes a list of 3-tuples, each of
-- which is of the form <ELEM_TYPE,SCALAR_TYPE,LENGTH>. ELEM_TYPE is the type of
-- the elements in the vector; LENGTH is the length of the vector; and
-- SCALAR_TYPE is the scalar type used to inject to/project from vector
-- element. Note that ELEM_TYPE and SCALAR_TYPE are not the same; for example,
-- to broadcast a scalar value to a vector whose elements are of type Int8, we
-- use an Int#.
-- When a primtype or primop has a vector attribute, it is instantiated at each
-- 3-tuple in the list of 3-tuples. That is, the vector attribute allows us to
-- define a family of types or primops. Vector support also adds three new
-- keywords: VECTOR, SCALAR, and VECTUPLE. These keywords are expanded to types
-- derived from the 3-tuple. For the 3-tuple <Int64,INT64,2>, VECTOR expands to
-- Int64X2#, SCALAR expands to INT64, and VECTUPLE expands to (# INT64, INT64
-- #).
defaults
has_side_effects = False
out_of_line = False -- See Note [When do out-of-line primops go in primops.txt.pp]
can_fail = False -- See Note [PrimOp can_fail and has_side_effects] in PrimOp
commutable = False
code_size = { primOpCodeSizeDefault }
strictness = { \ arity -> mkClosedStrictSig (replicate arity topDmd) topDiv }
fixity = Nothing
llvm_only = False
vector = []
deprecated_msg = {} -- A non-empty message indicates deprecation
-- Note [When do out-of-line primops go in primops.txt.pp]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Out of line primops are those with a C-- implementation. But that
-- doesn't mean they *just* have an C-- implementation. As mentioned in
-- Note [Inlining out-of-line primops and heap checks], some out-of-line
-- primops also have additional internal implementations under certain
-- conditions. Now that `foreign import prim` exists, only those primops
-- which have both internal and external implementations ought to be
-- this file. The rest aren't really primops, since they don't need
-- bespoke compiler support but just a general way to interface with
-- C--. They are just foreign calls.
--
-- Unfortunately, for the time being most of the primops which should be
-- moved according to the previous paragraph can't yet. There are some
-- superficial restrictions in `foreign import prim` which mus be fixed
-- first. Specifically, `foreign import prim` always requires:
--
-- - No polymorphism in type
-- - `strictness = <default>`
-- - `can_fail = False`
-- - `has_side_effects = True`
--
-- https://gitlab.haskell.org/ghc/ghc/issues/16929 tracks this issue,
-- and has a table of which external-only primops are blocked by which
-- of these. Hopefully those restrictions are relaxed so the rest of
-- those can be moved over.
--
-- 'module GHC.Prim.Ext is a temporarily "holding ground" for primops
-- that were formally in here, until they can be given a better home.
-- Likewise, their underlying C-- implementation need not live in the
-- RTS either. Best case (in my view), both the C-- and `foreign import
-- prim` can be moved to a small library tailured to the features being
-- implemented and dependencies of those features.
-- Currently, documentation is produced using latex, so contents of
-- description fields should be legal latex. Descriptions can contain
-- matched pairs of embedded curly brackets.
#include "MachDeps.h"
section "The word size story."
{Haskell98 specifies that signed integers (type {\tt Int})
must contain at least 30 bits. GHC always implements {\tt
Int} using the primitive type {\tt Int\#}, whose size equals
the {\tt MachDeps.h} constant {\tt WORD\_SIZE\_IN\_BITS}.
This is normally set based on the {\tt config.h} parameter
{\tt SIZEOF\_HSWORD}, i.e., 32 bits on 32-bit machines, 64
bits on 64-bit machines. However, it can also be explicitly
set to a smaller number than 64, e.g., 62 bits, to allow the
possibility of using tag bits. Currently GHC itself has only
32-bit and 64-bit variants, but 61, 62, or 63-bit code can be
exported as an external core file for use in other back ends.
30 and 31-bit code is no longer supported.
GHC also implements a primitive unsigned integer type {\tt
Word\#} which always has the same number of bits as {\tt
Int\#}.
In addition, GHC supports families of explicit-sized integers
and words at 8, 16, 32, and 64 bits, with the usual
arithmetic operations, comparisons, and a range of
conversions. The 8-bit and 16-bit sizes are always
represented as {\tt Int\#} and {\tt Word\#}, and the
operations implemented in terms of the primops on these
types, with suitable range restrictions on the results (using
the {\tt narrow$n$Int\#} and {\tt narrow$n$Word\#} families
of primops. The 32-bit sizes are represented using {\tt
Int\#} and {\tt Word\#} when {\tt WORD\_SIZE\_IN\_BITS}
$\geq$ 32; otherwise, these are represented using distinct
primitive types {\tt Int32\#} and {\tt Word32\#}. These (when
needed) have a complete set of corresponding operations;
however, nearly all of these are implemented as external C
functions rather than as primops. Exactly the same story
applies to the 64-bit sizes. All of these details are hidden
under the {\tt PrelInt} and {\tt PrelWord} modules, which use
{\tt \#if}-defs to invoke the appropriate types and
operators.
Word size also matters for the families of primops for
indexing/reading/writing fixed-size quantities at offsets
from an array base, address, or foreign pointer. Here, a
slightly different approach is taken. The names of these
primops are fixed, but their {\it types} vary according to
the value of {\tt WORD\_SIZE\_IN\_BITS}. For example, if word
size is at least 32 bits then an operator like
\texttt{indexInt32Array\#} has type {\tt ByteArray\# -> Int\#
-> Int\#}; otherwise it has type {\tt ByteArray\# -> Int\# ->
Int32\#}. This approach confines the necessary {\tt
\#if}-defs to this file; no conditional compilation is needed
in the files that expose these primops.
Finally, there are strongly deprecated primops for coercing
between {\tt Addr\#}, the primitive type of machine
addresses, and {\tt Int\#}. These are pretty bogus anyway,
but will work on existing 32-bit and 64-bit GHC targets; they
are completely bogus when tag bits are used in {\tt Int\#},
so are not available in this case. }
-- Define synonyms for indexing ops.
#define INT32 Int#
#define WORD32 Word#
#if WORD_SIZE_IN_BITS < 64
#define INT64 Int64#
#define WORD64 Word64#
#else
#define INT64 Int#
#define WORD64 Word#
#endif
-- This type won't be exported directly (since there is no concrete
-- syntax for this sort of export) so we'll have to manually patch
-- export lists in both GHC and Haddock.
primtype FUN m a b
{The builtin function type, written in infix form as {\tt a # m -> b}.
Values of this type are functions taking inputs of type {\tt a} and
producing outputs of type {\tt b}. The multiplicity of the input is
{\tt m}.
Note that {\tt FUN m a b} permits levity-polymorphism in both {\tt a} and
{\tt b}, so that types like {\tt Int\# -> Int\#} can still be well-kinded.
}
------------------------------------------------------------------------
section "Char#"
{Operations on 31-bit characters.}
------------------------------------------------------------------------
primtype Char#
primop CharGtOp "gtChar#" Compare Char# -> Char# -> Int#
primop CharGeOp "geChar#" Compare Char# -> Char# -> Int#
primop CharEqOp "eqChar#" Compare
Char# -> Char# -> Int#
with commutable = True
primop CharNeOp "neChar#" Compare
Char# -> Char# -> Int#
with commutable = True
primop CharLtOp "ltChar#" Compare Char# -> Char# -> Int#
primop CharLeOp "leChar#" Compare Char# -> Char# -> Int#
primop OrdOp "ord#" GenPrimOp Char# -> Int#
with code_size = 0
------------------------------------------------------------------------
section "Int8#"
{Operations on 8-bit integers.}
------------------------------------------------------------------------
primtype Int8#
primop Int8Extend "extendInt8#" GenPrimOp Int8# -> Int#
primop Int8Narrow "narrowInt8#" GenPrimOp Int# -> Int8#
primop Int8NegOp "negateInt8#" Monadic Int8# -> Int8#
primop Int8AddOp "plusInt8#" Dyadic Int8# -> Int8# -> Int8#
with
commutable = True
primop Int8SubOp "subInt8#" Dyadic Int8# -> Int8# -> Int8#
primop Int8MulOp "timesInt8#" Dyadic Int8# -> Int8# -> Int8#
with
commutable = True
primop Int8QuotOp "quotInt8#" Dyadic Int8# -> Int8# -> Int8#
with
can_fail = True
primop Int8RemOp "remInt8#" Dyadic Int8# -> Int8# -> Int8#
with
can_fail = True
primop Int8QuotRemOp "quotRemInt8#" GenPrimOp Int8# -> Int8# -> (# Int8#, Int8# #)
with
can_fail = True
primop Int8EqOp "eqInt8#" Compare Int8# -> Int8# -> Int#
primop Int8GeOp "geInt8#" Compare Int8# -> Int8# -> Int#
primop Int8GtOp "gtInt8#" Compare Int8# -> Int8# -> Int#
primop Int8LeOp "leInt8#" Compare Int8# -> Int8# -> Int#
primop Int8LtOp "ltInt8#" Compare Int8# -> Int8# -> Int#
primop Int8NeOp "neInt8#" Compare Int8# -> Int8# -> Int#
------------------------------------------------------------------------
section "Word8#"
{Operations on 8-bit unsigned integers.}
------------------------------------------------------------------------
primtype Word8#
primop Word8Extend "extendWord8#" GenPrimOp Word8# -> Word#
primop Word8Narrow "narrowWord8#" GenPrimOp Word# -> Word8#
primop Word8NotOp "notWord8#" Monadic Word8# -> Word8#
primop Word8AddOp "plusWord8#" Dyadic Word8# -> Word8# -> Word8#
with
commutable = True
primop Word8SubOp "subWord8#" Dyadic Word8# -> Word8# -> Word8#
primop Word8MulOp "timesWord8#" Dyadic Word8# -> Word8# -> Word8#
with
commutable = True
primop Word8QuotOp "quotWord8#" Dyadic Word8# -> Word8# -> Word8#
with
can_fail = True
primop Word8RemOp "remWord8#" Dyadic Word8# -> Word8# -> Word8#
with
can_fail = True
primop Word8QuotRemOp "quotRemWord8#" GenPrimOp Word8# -> Word8# -> (# Word8#, Word8# #)
with
can_fail = True
primop Word8EqOp "eqWord8#" Compare Word8# -> Word8# -> Int#
primop Word8GeOp "geWord8#" Compare Word8# -> Word8# -> Int#
primop Word8GtOp "gtWord8#" Compare Word8# -> Word8# -> Int#
primop Word8LeOp "leWord8#" Compare Word8# -> Word8# -> Int#
primop Word8LtOp "ltWord8#" Compare Word8# -> Word8# -> Int#
primop Word8NeOp "neWord8#" Compare Word8# -> Word8# -> Int#
------------------------------------------------------------------------
section "Int16#"
{Operations on 16-bit integers.}
------------------------------------------------------------------------
primtype Int16#
primop Int16Extend "extendInt16#" GenPrimOp Int16# -> Int#
primop Int16Narrow "narrowInt16#" GenPrimOp Int# -> Int16#
primop Int16NegOp "negateInt16#" Monadic Int16# -> Int16#
primop Int16AddOp "plusInt16#" Dyadic Int16# -> Int16# -> Int16#
with
commutable = True
primop Int16SubOp "subInt16#" Dyadic Int16# -> Int16# -> Int16#
primop Int16MulOp "timesInt16#" Dyadic Int16# -> Int16# -> Int16#
with
commutable = True
primop Int16QuotOp "quotInt16#" Dyadic Int16# -> Int16# -> Int16#
with
can_fail = True
primop Int16RemOp "remInt16#" Dyadic Int16# -> Int16# -> Int16#
with
can_fail = True
primop Int16QuotRemOp "quotRemInt16#" GenPrimOp Int16# -> Int16# -> (# Int16#, Int16# #)
with
can_fail = True
primop Int16EqOp "eqInt16#" Compare Int16# -> Int16# -> Int#
primop Int16GeOp "geInt16#" Compare Int16# -> Int16# -> Int#
primop Int16GtOp "gtInt16#" Compare Int16# -> Int16# -> Int#
primop Int16LeOp "leInt16#" Compare Int16# -> Int16# -> Int#
primop Int16LtOp "ltInt16#" Compare Int16# -> Int16# -> Int#
primop Int16NeOp "neInt16#" Compare Int16# -> Int16# -> Int#
------------------------------------------------------------------------
section "Word16#"
{Operations on 16-bit unsigned integers.}
------------------------------------------------------------------------
primtype Word16#
primop Word16Extend "extendWord16#" GenPrimOp Word16# -> Word#
primop Word16Narrow "narrowWord16#" GenPrimOp Word# -> Word16#
primop Word16NotOp "notWord16#" Monadic Word16# -> Word16#
primop Word16AddOp "plusWord16#" Dyadic Word16# -> Word16# -> Word16#
with
commutable = True
primop Word16SubOp "subWord16#" Dyadic Word16# -> Word16# -> Word16#
primop Word16MulOp "timesWord16#" Dyadic Word16# -> Word16# -> Word16#
with
commutable = True
primop Word16QuotOp "quotWord16#" Dyadic Word16# -> Word16# -> Word16#
with
can_fail = True
primop Word16RemOp "remWord16#" Dyadic Word16# -> Word16# -> Word16#
with
can_fail = True
primop Word16QuotRemOp "quotRemWord16#" GenPrimOp Word16# -> Word16# -> (# Word16#, Word16# #)
with
can_fail = True
primop Word16EqOp "eqWord16#" Compare Word16# -> Word16# -> Int#
primop Word16GeOp "geWord16#" Compare Word16# -> Word16# -> Int#
primop Word16GtOp "gtWord16#" Compare Word16# -> Word16# -> Int#
primop Word16LeOp "leWord16#" Compare Word16# -> Word16# -> Int#
primop Word16LtOp "ltWord16#" Compare Word16# -> Word16# -> Int#
primop Word16NeOp "neWord16#" Compare Word16# -> Word16# -> Int#
#if WORD_SIZE_IN_BITS < 64
------------------------------------------------------------------------
section "Int64#"
{Operations on 64-bit unsigned words. This type is only used
if plain {\tt Int\#} has less than 64 bits. In any case, the operations
are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------
primtype Int64#
------------------------------------------------------------------------
section "Word64#"
{Operations on 64-bit unsigned words. This type is only used
if plain {\tt Word\#} has less than 64 bits. In any case, the operations
are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------
primtype Word64#
#endif
------------------------------------------------------------------------
section "Int#"
{Operations on native-size integers (32+ bits).}
------------------------------------------------------------------------
primtype Int#
primop IntAddOp "+#" Dyadic
Int# -> Int# -> Int#
with commutable = True
fixity = infixl 6
primop IntSubOp "-#" Dyadic Int# -> Int# -> Int#
with fixity = infixl 6
primop IntMulOp "*#"
Dyadic Int# -> Int# -> Int#
{Low word of signed integer multiply.}
with commutable = True
fixity = infixl 7
primop IntMul2Op "timesInt2#" GenPrimOp
Int# -> Int# -> (# Int#, Int#, Int# #)
{Return a triple (isHighNeeded,high,low) where high and low are respectively
the high and low bits of the double-word result. isHighNeeded is a cheap way
to test if the high word is a sign-extension of the low word (isHighNeeded =
0#) or not (isHighNeeded = 1#).}
primop IntMulMayOfloOp "mulIntMayOflo#"
Dyadic Int# -> Int# -> Int#
{Return non-zero if there is any possibility that the upper word of a
signed integer multiply might contain useful information. Return
zero only if you are completely sure that no overflow can occur.
On a 32-bit platform, the recommended implementation is to do a
32 x 32 -> 64 signed multiply, and subtract result[63:32] from
(result[31] >>signed 31). If this is zero, meaning that the
upper word is merely a sign extension of the lower one, no
overflow can occur.
On a 64-bit platform it is not always possible to
acquire the top 64 bits of the result. Therefore, a recommended
implementation is to take the absolute value of both operands, and
return 0 iff bits[63:31] of them are zero, since that means that their
magnitudes fit within 31 bits, so the magnitude of the product must fit
into 62 bits.
If in doubt, return non-zero, but do make an effort to create the
correct answer for small args, since otherwise the performance of
\texttt{(*) :: Integer -> Integer -> Integer} will be poor.
}
with commutable = True
primop IntQuotOp "quotInt#" Dyadic
Int# -> Int# -> Int#
{Rounds towards zero. The behavior is undefined if the second argument is
zero.
}
with can_fail = True
primop IntRemOp "remInt#" Dyadic
Int# -> Int# -> Int#
{Satisfies \texttt{(quotInt\# x y) *\# y +\# (remInt\# x y) == x}. The
behavior is undefined if the second argument is zero.
}
with can_fail = True
primop IntQuotRemOp "quotRemInt#" GenPrimOp
Int# -> Int# -> (# Int#, Int# #)
{Rounds towards zero.}
with can_fail = True
primop AndIOp "andI#" Dyadic Int# -> Int# -> Int#
{Bitwise "and".}
with commutable = True
primop OrIOp "orI#" Dyadic Int# -> Int# -> Int#
{Bitwise "or".}
with commutable = True
primop XorIOp "xorI#" Dyadic Int# -> Int# -> Int#
{Bitwise "xor".}
with commutable = True
primop NotIOp "notI#" Monadic Int# -> Int#
{Bitwise "not", also known as the binary complement.}
primop IntNegOp "negateInt#" Monadic Int# -> Int#
{Unary negation.
Since the negative {\tt Int#} range extends one further than the
positive range, {\tt negateInt#} of the most negative number is an
identity operation. This way, {\tt negateInt#} is always its own inverse.}
primop IntAddCOp "addIntC#" GenPrimOp Int# -> Int# -> (# Int#, Int# #)
{Add signed integers reporting overflow.
First member of result is the sum truncated to an {\tt Int#};
second member is zero if the true sum fits in an {\tt Int#},
nonzero if overflow occurred (the sum is either too large
or too small to fit in an {\tt Int#}).}
with code_size = 2
commutable = True
primop IntSubCOp "subIntC#" GenPrimOp Int# -> Int# -> (# Int#, Int# #)
{Subtract signed integers reporting overflow.
First member of result is the difference truncated to an {\tt Int#};
second member is zero if the true difference fits in an {\tt Int#},
nonzero if overflow occurred (the difference is either too large
or too small to fit in an {\tt Int#}).}
with code_size = 2
primop IntGtOp ">#" Compare Int# -> Int# -> Int#
with fixity = infix 4
primop IntGeOp ">=#" Compare Int# -> Int# -> Int#
with fixity = infix 4
primop IntEqOp "==#" Compare
Int# -> Int# -> Int#
with commutable = True
fixity = infix 4
primop IntNeOp "/=#" Compare
Int# -> Int# -> Int#
with commutable = True
fixity = infix 4
primop IntLtOp "<#" Compare Int# -> Int# -> Int#
with fixity = infix 4
primop IntLeOp "<=#" Compare Int# -> Int# -> Int#
with fixity = infix 4
primop ChrOp "chr#" GenPrimOp Int# -> Char#
with code_size = 0
primop Int2WordOp "int2Word#" GenPrimOp Int# -> Word#
with code_size = 0
primop Int2FloatOp "int2Float#" GenPrimOp Int# -> Float#
primop Int2DoubleOp "int2Double#" GenPrimOp Int# -> Double#
primop Word2FloatOp "word2Float#" GenPrimOp Word# -> Float#
primop Word2DoubleOp "word2Double#" GenPrimOp Word# -> Double#
primop ISllOp "uncheckedIShiftL#" GenPrimOp Int# -> Int# -> Int#
{Shift left. Result undefined if shift amount is not
in the range 0 to word size - 1 inclusive.}
primop ISraOp "uncheckedIShiftRA#" GenPrimOp Int# -> Int# -> Int#
{Shift right arithmetic. Result undefined if shift amount is not
in the range 0 to word size - 1 inclusive.}
primop ISrlOp "uncheckedIShiftRL#" GenPrimOp Int# -> Int# -> Int#
{Shift right logical. Result undefined if shift amount is not
in the range 0 to word size - 1 inclusive.}
------------------------------------------------------------------------
section "Word#"
{Operations on native-sized unsigned words (32+ bits).}
------------------------------------------------------------------------
primtype Word#
primop WordAddOp "plusWord#" Dyadic Word# -> Word# -> Word#
with commutable = True
primop WordAddCOp "addWordC#" GenPrimOp Word# -> Word# -> (# Word#, Int# #)
{Add unsigned integers reporting overflow.
The first element of the pair is the result. The second element is
the carry flag, which is nonzero on overflow. See also {\tt plusWord2#}.}
with code_size = 2
commutable = True
primop WordSubCOp "subWordC#" GenPrimOp Word# -> Word# -> (# Word#, Int# #)
{Subtract unsigned integers reporting overflow.
The first element of the pair is the result. The second element is
the carry flag, which is nonzero on overflow.}
with code_size = 2
primop WordAdd2Op "plusWord2#" GenPrimOp Word# -> Word# -> (# Word#, Word# #)
{Add unsigned integers, with the high part (carry) in the first
component of the returned pair and the low part in the second
component of the pair. See also {\tt addWordC#}.}
with code_size = 2
commutable = True
primop WordSubOp "minusWord#" Dyadic Word# -> Word# -> Word#
primop WordMulOp "timesWord#" Dyadic Word# -> Word# -> Word#
with commutable = True
-- Returns (# high, low #)
primop WordMul2Op "timesWord2#" GenPrimOp
Word# -> Word# -> (# Word#, Word# #)
with commutable = True
primop WordQuotOp "quotWord#" Dyadic Word# -> Word# -> Word#
with can_fail = True
primop WordRemOp "remWord#" Dyadic Word# -> Word# -> Word#
with can_fail = True
primop WordQuotRemOp "quotRemWord#" GenPrimOp
Word# -> Word# -> (# Word#, Word# #)
with can_fail = True
primop WordQuotRem2Op "quotRemWord2#" GenPrimOp
Word# -> Word# -> Word# -> (# Word#, Word# #)
{ Takes high word of dividend, then low word of dividend, then divisor.
Requires that high word < divisor.}
with can_fail = True
primop AndOp "and#" Dyadic Word# -> Word# -> Word#
with commutable = True
primop OrOp "or#" Dyadic Word# -> Word# -> Word#
with commutable = True
primop XorOp "xor#" Dyadic Word# -> Word# -> Word#
with commutable = True
primop NotOp "not#" Monadic Word# -> Word#
primop SllOp "uncheckedShiftL#" GenPrimOp Word# -> Int# -> Word#
{Shift left logical. Result undefined if shift amount is not
in the range 0 to word size - 1 inclusive.}
primop SrlOp "uncheckedShiftRL#" GenPrimOp Word# -> Int# -> Word#
{Shift right logical. Result undefined if shift amount is not
in the range 0 to word size - 1 inclusive.}
primop Word2IntOp "word2Int#" GenPrimOp Word# -> Int#
with code_size = 0
primop WordGtOp "gtWord#" Compare Word# -> Word# -> Int#
primop WordGeOp "geWord#" Compare Word# -> Word# -> Int#
primop WordEqOp "eqWord#" Compare Word# -> Word# -> Int#
primop WordNeOp "neWord#" Compare Word# -> Word# -> Int#
primop WordLtOp "ltWord#" Compare Word# -> Word# -> Int#
primop WordLeOp "leWord#" Compare Word# -> Word# -> Int#
primop PopCnt8Op "popCnt8#" Monadic Word# -> Word#
{Count the number of set bits in the lower 8 bits of a word.}
primop PopCnt16Op "popCnt16#" Monadic Word# -> Word#
{Count the number of set bits in the lower 16 bits of a word.}
primop PopCnt32Op "popCnt32#" Monadic Word# -> Word#
{Count the number of set bits in the lower 32 bits of a word.}
primop PopCnt64Op "popCnt64#" GenPrimOp WORD64 -> Word#
{Count the number of set bits in a 64-bit word.}
primop PopCntOp "popCnt#" Monadic Word# -> Word#
{Count the number of set bits in a word.}
primop Pdep8Op "pdep8#" Dyadic Word# -> Word# -> Word#
{Deposit bits to lower 8 bits of a word at locations specified by a mask.}
primop Pdep16Op "pdep16#" Dyadic Word# -> Word# -> Word#
{Deposit bits to lower 16 bits of a word at locations specified by a mask.}
primop Pdep32Op "pdep32#" Dyadic Word# -> Word# -> Word#
{Deposit bits to lower 32 bits of a word at locations specified by a mask.}
primop Pdep64Op "pdep64#" GenPrimOp WORD64 -> WORD64 -> WORD64
{Deposit bits to a word at locations specified by a mask.}
primop PdepOp "pdep#" Dyadic Word# -> Word# -> Word#
{Deposit bits to a word at locations specified by a mask.}
primop Pext8Op "pext8#" Dyadic Word# -> Word# -> Word#
{Extract bits from lower 8 bits of a word at locations specified by a mask.}
primop Pext16Op "pext16#" Dyadic Word# -> Word# -> Word#
{Extract bits from lower 16 bits of a word at locations specified by a mask.}
primop Pext32Op "pext32#" Dyadic Word# -> Word# -> Word#
{Extract bits from lower 32 bits of a word at locations specified by a mask.}
primop Pext64Op "pext64#" GenPrimOp WORD64 -> WORD64 -> WORD64
{Extract bits from a word at locations specified by a mask.}
primop PextOp "pext#" Dyadic Word# -> Word# -> Word#
{Extract bits from a word at locations specified by a mask.}
primop Clz8Op "clz8#" Monadic Word# -> Word#
{Count leading zeros in the lower 8 bits of a word.}
primop Clz16Op "clz16#" Monadic Word# -> Word#
{Count leading zeros in the lower 16 bits of a word.}
primop Clz32Op "clz32#" Monadic Word# -> Word#
{Count leading zeros in the lower 32 bits of a word.}
primop Clz64Op "clz64#" GenPrimOp WORD64 -> Word#
{Count leading zeros in a 64-bit word.}
primop ClzOp "clz#" Monadic Word# -> Word#
{Count leading zeros in a word.}
primop Ctz8Op "ctz8#" Monadic Word# -> Word#
{Count trailing zeros in the lower 8 bits of a word.}
primop Ctz16Op "ctz16#" Monadic Word# -> Word#
{Count trailing zeros in the lower 16 bits of a word.}
primop Ctz32Op "ctz32#" Monadic Word# -> Word#
{Count trailing zeros in the lower 32 bits of a word.}
primop Ctz64Op "ctz64#" GenPrimOp WORD64 -> Word#
{Count trailing zeros in a 64-bit word.}
primop CtzOp "ctz#" Monadic Word# -> Word#
{Count trailing zeros in a word.}
primop BSwap16Op "byteSwap16#" Monadic Word# -> Word#
{Swap bytes in the lower 16 bits of a word. The higher bytes are undefined. }
primop BSwap32Op "byteSwap32#" Monadic Word# -> Word#
{Swap bytes in the lower 32 bits of a word. The higher bytes are undefined. }
primop BSwap64Op "byteSwap64#" Monadic WORD64 -> WORD64
{Swap bytes in a 64 bits of a word.}
primop BSwapOp "byteSwap#" Monadic Word# -> Word#
{Swap bytes in a word.}
primop BRev8Op "bitReverse8#" Monadic Word# -> Word#
{Reverse the order of the bits in a 8-bit word.}
primop BRev16Op "bitReverse16#" Monadic Word# -> Word#
{Reverse the order of the bits in a 16-bit word.}
primop BRev32Op "bitReverse32#" Monadic Word# -> Word#
{Reverse the order of the bits in a 32-bit word.}
primop BRev64Op "bitReverse64#" Monadic WORD64 -> WORD64
{Reverse the order of the bits in a 64-bit word.}
primop BRevOp "bitReverse#" Monadic Word# -> Word#
{Reverse the order of the bits in a word.}
------------------------------------------------------------------------
section "Narrowings"
{Explicit narrowing of native-sized ints or words.}
------------------------------------------------------------------------
primop Narrow8IntOp "narrow8Int#" Monadic Int# -> Int#
primop Narrow16IntOp "narrow16Int#" Monadic Int# -> Int#
primop Narrow32IntOp "narrow32Int#" Monadic Int# -> Int#
primop Narrow8WordOp "narrow8Word#" Monadic Word# -> Word#
primop Narrow16WordOp "narrow16Word#" Monadic Word# -> Word#
primop Narrow32WordOp "narrow32Word#" Monadic Word# -> Word#
------------------------------------------------------------------------
section "Double#"
{Operations on double-precision (64 bit) floating-point numbers.}
------------------------------------------------------------------------
primtype Double#
primop DoubleGtOp ">##" Compare Double# -> Double# -> Int#
with fixity = infix 4
primop DoubleGeOp ">=##" Compare Double# -> Double# -> Int#
with fixity = infix 4
primop DoubleEqOp "==##" Compare
Double# -> Double# -> Int#
with commutable = True
fixity = infix 4
primop DoubleNeOp "/=##" Compare
Double# -> Double# -> Int#
with commutable = True
fixity = infix 4
primop DoubleLtOp "<##" Compare Double# -> Double# -> Int#
with fixity = infix 4
primop DoubleLeOp "<=##" Compare Double# -> Double# -> Int#
with fixity = infix 4
primop DoubleAddOp "+##" Dyadic
Double# -> Double# -> Double#
with commutable = True
fixity = infixl 6
primop DoubleSubOp "-##" Dyadic Double# -> Double# -> Double#
with fixity = infixl 6
primop DoubleMulOp "*##" Dyadic
Double# -> Double# -> Double#
with commutable = True
fixity = infixl 7
primop DoubleDivOp "/##" Dyadic
Double# -> Double# -> Double#
with can_fail = True
fixity = infixl 7
primop DoubleNegOp "negateDouble#" Monadic Double# -> Double#
primop DoubleFabsOp "fabsDouble#" Monadic Double# -> Double#
primop Double2IntOp "double2Int#" GenPrimOp Double# -> Int#
{Truncates a {\tt Double#} value to the nearest {\tt Int#}.
Results are undefined if the truncation if truncation yields
a value outside the range of {\tt Int#}.}
primop Double2FloatOp "double2Float#" GenPrimOp Double# -> Float#
primop DoubleExpOp "expDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleExpM1Op "expm1Double#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleLogOp "logDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop DoubleLog1POp "log1pDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop DoubleSqrtOp "sqrtDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleSinOp "sinDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleCosOp "cosDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleTanOp "tanDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleAsinOp "asinDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop DoubleAcosOp "acosDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop DoubleAtanOp "atanDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleSinhOp "sinhDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleCoshOp "coshDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleTanhOp "tanhDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleAsinhOp "asinhDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleAcoshOp "acoshDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleAtanhOp "atanhDouble#" Monadic
Double# -> Double#
with
code_size = { primOpCodeSizeForeignCall }
primop DoublePowerOp "**##" Dyadic
Double# -> Double# -> Double#
{Exponentiation.}
with
code_size = { primOpCodeSizeForeignCall }
primop DoubleDecode_2IntOp "decodeDouble_2Int#" GenPrimOp
Double# -> (# Int#, Word#, Word#, Int# #)
{Convert to integer.
First component of the result is -1 or 1, indicating the sign of the
mantissa. The next two are the high and low 32 bits of the mantissa
respectively, and the last is the exponent.}
with out_of_line = True
primop DoubleDecode_Int64Op "decodeDouble_Int64#" GenPrimOp
Double# -> (# INT64, Int# #)
{Decode {\tt Double\#} into mantissa and base-2 exponent.}
with out_of_line = True
------------------------------------------------------------------------
section "Float#"
{Operations on single-precision (32-bit) floating-point numbers.}
------------------------------------------------------------------------
primtype Float#
primop FloatGtOp "gtFloat#" Compare Float# -> Float# -> Int#
primop FloatGeOp "geFloat#" Compare Float# -> Float# -> Int#
primop FloatEqOp "eqFloat#" Compare
Float# -> Float# -> Int#
with commutable = True
primop FloatNeOp "neFloat#" Compare
Float# -> Float# -> Int#
with commutable = True
primop FloatLtOp "ltFloat#" Compare Float# -> Float# -> Int#
primop FloatLeOp "leFloat#" Compare Float# -> Float# -> Int#
primop FloatAddOp "plusFloat#" Dyadic
Float# -> Float# -> Float#
with commutable = True
primop FloatSubOp "minusFloat#" Dyadic Float# -> Float# -> Float#
primop FloatMulOp "timesFloat#" Dyadic
Float# -> Float# -> Float#
with commutable = True
primop FloatDivOp "divideFloat#" Dyadic
Float# -> Float# -> Float#
with can_fail = True
primop FloatNegOp "negateFloat#" Monadic Float# -> Float#
primop FloatFabsOp "fabsFloat#" Monadic Float# -> Float#
primop Float2IntOp "float2Int#" GenPrimOp Float# -> Int#
{Truncates a {\tt Float#} value to the nearest {\tt Int#}.
Results are undefined if the truncation if truncation yields
a value outside the range of {\tt Int#}.}
primop FloatExpOp "expFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatExpM1Op "expm1Float#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatLogOp "logFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop FloatLog1POp "log1pFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop FloatSqrtOp "sqrtFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatSinOp "sinFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatCosOp "cosFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatTanOp "tanFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatAsinOp "asinFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop FloatAcosOp "acosFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
can_fail = True
primop FloatAtanOp "atanFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatSinhOp "sinhFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatCoshOp "coshFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatTanhOp "tanhFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatAsinhOp "asinhFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatAcoshOp "acoshFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatAtanhOp "atanhFloat#" Monadic
Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop FloatPowerOp "powerFloat#" Dyadic
Float# -> Float# -> Float#
with
code_size = { primOpCodeSizeForeignCall }
primop Float2DoubleOp "float2Double#" GenPrimOp Float# -> Double#
primop FloatDecode_IntOp "decodeFloat_Int#" GenPrimOp
Float# -> (# Int#, Int# #)
{Convert to integers.
First {\tt Int\#} in result is the mantissa; second is the exponent.}
with out_of_line = True
------------------------------------------------------------------------
section "Arrays"
{Operations on {\tt Array\#}.}
------------------------------------------------------------------------
primtype Array# a
primtype MutableArray# s a
primop NewArrayOp "newArray#" GenPrimOp
Int# -> a -> State# s -> (# State# s, MutableArray# s a #)
{Create a new mutable array with the specified number of elements,
in the specified state thread,
with each element containing the specified initial value.}
with
out_of_line = True
has_side_effects = True
primop SameMutableArrayOp "sameMutableArray#" GenPrimOp
MutableArray# s a -> MutableArray# s a -> Int#
primop ReadArrayOp "readArray#" GenPrimOp
MutableArray# s a -> Int# -> State# s -> (# State# s, a #)
{Read from specified index of mutable array. Result is not yet evaluated.}
with
has_side_effects = True
can_fail = True
primop WriteArrayOp "writeArray#" GenPrimOp
MutableArray# s a -> Int# -> a -> State# s -> State# s
{Write to specified index of mutable array.}
with
has_side_effects = True
can_fail = True
code_size = 2 -- card update too
primop SizeofArrayOp "sizeofArray#" GenPrimOp
Array# a -> Int#
{Return the number of elements in the array.}
primop SizeofMutableArrayOp "sizeofMutableArray#" GenPrimOp
MutableArray# s a -> Int#
{Return the number of elements in the array.}
primop IndexArrayOp "indexArray#" GenPrimOp
Array# a -> Int# -> (# a #)
{Read from the specified index of an immutable array. The result is packaged
into an unboxed unary tuple; the result itself is not yet
evaluated. Pattern matching on the tuple forces the indexing of the
array to happen but does not evaluate the element itself. Evaluating
the thunk prevents additional thunks from building up on the
heap. Avoiding these thunks, in turn, reduces references to the
argument array, allowing it to be garbage collected more promptly.}
with
can_fail = True
primop UnsafeFreezeArrayOp "unsafeFreezeArray#" GenPrimOp
MutableArray# s a -> State# s -> (# State# s, Array# a #)
{Make a mutable array immutable, without copying.}
with
has_side_effects = True
primop UnsafeThawArrayOp "unsafeThawArray#" GenPrimOp
Array# a -> State# s -> (# State# s, MutableArray# s a #)
{Make an immutable array mutable, without copying.}
with
out_of_line = True
has_side_effects = True
primop CopyArrayOp "copyArray#" GenPrimOp
Array# a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
{Given a source array, an offset into the source array, a
destination array, an offset into the destination array, and a
number of elements to copy, copy the elements from the source array
to the destination array. Both arrays must fully contain the
specified ranges, but this is not checked. The two arrays must not
be the same array in different states, but this is not checked
either.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CopyMutableArrayOp "copyMutableArray#" GenPrimOp
MutableArray# s a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
{Given a source array, an offset into the source array, a
destination array, an offset into the destination array, and a
number of elements to copy, copy the elements from the source array
to the destination array. Both arrays must fully contain the
specified ranges, but this is not checked. In the case where
the source and destination are the same array the source and
destination regions may overlap.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CloneArrayOp "cloneArray#" GenPrimOp
Array# a -> Int# -> Int# -> Array# a
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CloneMutableArrayOp "cloneMutableArray#" GenPrimOp
MutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, MutableArray# s a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop FreezeArrayOp "freezeArray#" GenPrimOp
MutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, Array# a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop ThawArrayOp "thawArray#" GenPrimOp
Array# a -> Int# -> Int# -> State# s -> (# State# s, MutableArray# s a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CasArrayOp "casArray#" GenPrimOp
MutableArray# s a -> Int# -> a -> a -> State# s -> (# State# s, Int#, a #)
{Given an array, an offset, the expected old value, and
the new value, perform an atomic compare and swap (i.e. write the new
value if the current value and the old value are the same pointer).
Returns 0 if the swap succeeds and 1 if it fails. Additionally, returns
the element at the offset after the operation completes. This means that
on a success the new value is returned, and on a failure the actual old
value (not the expected one) is returned. Implies a full memory barrier.
The use of a pointer equality on a lifted value makes this function harder
to use correctly than {\tt casIntArray\#}. All of the difficulties
of using {\tt reallyUnsafePtrEquality\#} correctly apply to
{\tt casArray\#} as well.
}
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "Small Arrays"
{Operations on {\tt SmallArray\#}. A {\tt SmallArray\#} works
just like an {\tt Array\#}, but with different space use and
performance characteristics (that are often useful with small
arrays). The {\tt SmallArray\#} and {\tt SmallMutableArray#}
lack a `card table'. The purpose of a card table is to avoid
having to scan every element of the array on each GC by
keeping track of which elements have changed since the last GC
and only scanning those that have changed. So the consequence
of there being no card table is that the representation is
somewhat smaller and the writes are somewhat faster (because
the card table does not need to be updated). The disadvantage
of course is that for a {\tt SmallMutableArray#} the whole
array has to be scanned on each GC. Thus it is best suited for
use cases where the mutable array is not long lived, e.g.
where a mutable array is initialised quickly and then frozen
to become an immutable {\tt SmallArray\#}.
}
------------------------------------------------------------------------
primtype SmallArray# a
primtype SmallMutableArray# s a
primop NewSmallArrayOp "newSmallArray#" GenPrimOp
Int# -> a -> State# s -> (# State# s, SmallMutableArray# s a #)
{Create a new mutable array with the specified number of elements,
in the specified state thread,
with each element containing the specified initial value.}
with
out_of_line = True
has_side_effects = True
primop SameSmallMutableArrayOp "sameSmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> SmallMutableArray# s a -> Int#
primop ShrinkSmallMutableArrayOp_Char "shrinkSmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> State# s -> State# s
{Shrink mutable array to new specified size, in
the specified state thread. The new size argument must be less than or
equal to the current size as reported by {\tt getSizeofSmallMutableArray\#}.}
with out_of_line = True
has_side_effects = True
primop ReadSmallArrayOp "readSmallArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> State# s -> (# State# s, a #)
{Read from specified index of mutable array. Result is not yet evaluated.}
with
has_side_effects = True
can_fail = True
primop WriteSmallArrayOp "writeSmallArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> a -> State# s -> State# s
{Write to specified index of mutable array.}
with
has_side_effects = True
can_fail = True
primop SizeofSmallArrayOp "sizeofSmallArray#" GenPrimOp
SmallArray# a -> Int#
{Return the number of elements in the array.}
primop SizeofSmallMutableArrayOp "sizeofSmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> Int#
{Return the number of elements in the array. Note that this is deprecated
as it is unsafe in the presence of shrink and resize operations on the
same small mutable array.}
with deprecated_msg = { Use 'getSizeofSmallMutableArray#' instead }
primop GetSizeofSmallMutableArrayOp "getSizeofSmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> State# s -> (# State# s, Int# #)
{Return the number of elements in the array.}
primop IndexSmallArrayOp "indexSmallArray#" GenPrimOp
SmallArray# a -> Int# -> (# a #)
{Read from specified index of immutable array. Result is packaged into
an unboxed singleton; the result itself is not yet evaluated.}
with
can_fail = True
primop UnsafeFreezeSmallArrayOp "unsafeFreezeSmallArray#" GenPrimOp
SmallMutableArray# s a -> State# s -> (# State# s, SmallArray# a #)
{Make a mutable array immutable, without copying.}
with
has_side_effects = True
primop UnsafeThawSmallArrayOp "unsafeThawSmallArray#" GenPrimOp
SmallArray# a -> State# s -> (# State# s, SmallMutableArray# s a #)
{Make an immutable array mutable, without copying.}
with
out_of_line = True
has_side_effects = True
-- The code_size is only correct for the case when the copy family of
-- primops aren't inlined. It would be nice to keep track of both.
primop CopySmallArrayOp "copySmallArray#" GenPrimOp
SmallArray# a -> Int# -> SmallMutableArray# s a -> Int# -> Int# -> State# s -> State# s
{Given a source array, an offset into the source array, a
destination array, an offset into the destination array, and a
number of elements to copy, copy the elements from the source array
to the destination array. Both arrays must fully contain the
specified ranges, but this is not checked. The two arrays must not
be the same array in different states, but this is not checked
either.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CopySmallMutableArrayOp "copySmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> SmallMutableArray# s a -> Int# -> Int# -> State# s -> State# s
{Given a source array, an offset into the source array, a
destination array, an offset into the destination array, and a
number of elements to copy, copy the elements from the source array
to the destination array. The source and destination arrays can
refer to the same array. Both arrays must fully contain the
specified ranges, but this is not checked.
The regions are allowed to overlap, although this is only possible when the same
array is provided as both the source and the destination. }
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CloneSmallArrayOp "cloneSmallArray#" GenPrimOp
SmallArray# a -> Int# -> Int# -> SmallArray# a
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CloneSmallMutableArrayOp "cloneSmallMutableArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, SmallMutableArray# s a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop FreezeSmallArrayOp "freezeSmallArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, SmallArray# a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop ThawSmallArrayOp "thawSmallArray#" GenPrimOp
SmallArray# a -> Int# -> Int# -> State# s -> (# State# s, SmallMutableArray# s a #)
{Given a source array, an offset into the source array, and a number
of elements to copy, create a new array with the elements from the
source array. The provided array must fully contain the specified
range, but this is not checked.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CasSmallArrayOp "casSmallArray#" GenPrimOp
SmallMutableArray# s a -> Int# -> a -> a -> State# s -> (# State# s, Int#, a #)
{Unsafe, machine-level atomic compare and swap on an element within an array.
See the documentation of {\tt casArray\#}.}
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "Byte Arrays"
{Operations on {\tt ByteArray\#}. A {\tt ByteArray\#} is a just a region of
raw memory in the garbage-collected heap, which is not
scanned for pointers. It carries its own size (in bytes).
There are
three sets of operations for accessing byte array contents:
index for reading from immutable byte arrays, and read/write
for mutable byte arrays. Each set contains operations for a
range of useful primitive data types. Each operation takes
an offset measured in terms of the size of the primitive type
being read or written.}
------------------------------------------------------------------------
primtype ByteArray#
primtype MutableByteArray# s
primop NewByteArrayOp_Char "newByteArray#" GenPrimOp
Int# -> State# s -> (# State# s, MutableByteArray# s #)
{Create a new mutable byte array of specified size (in bytes), in
the specified state thread.}
with out_of_line = True
has_side_effects = True
primop NewPinnedByteArrayOp_Char "newPinnedByteArray#" GenPrimOp
Int# -> State# s -> (# State# s, MutableByteArray# s #)
{Create a mutable byte array that the GC guarantees not to move.}
with out_of_line = True
has_side_effects = True
primop NewAlignedPinnedByteArrayOp_Char "newAlignedPinnedByteArray#" GenPrimOp
Int# -> Int# -> State# s -> (# State# s, MutableByteArray# s #)
{Create a mutable byte array, aligned by the specified amount, that the GC guarantees not to move.}
with out_of_line = True
has_side_effects = True
primop MutableByteArrayIsPinnedOp "isMutableByteArrayPinned#" GenPrimOp
MutableByteArray# s -> Int#
{Determine whether a {\tt MutableByteArray\#} is guaranteed not to move
during GC.}
with out_of_line = True
primop ByteArrayIsPinnedOp "isByteArrayPinned#" GenPrimOp
ByteArray# -> Int#
{Determine whether a {\tt ByteArray\#} is guaranteed not to move during GC.}
with out_of_line = True
primop ByteArrayContents_Char "byteArrayContents#" GenPrimOp
ByteArray# -> Addr#
{Intended for use with pinned arrays; otherwise very unsafe!}
primop SameMutableByteArrayOp "sameMutableByteArray#" GenPrimOp
MutableByteArray# s -> MutableByteArray# s -> Int#
primop ShrinkMutableByteArrayOp_Char "shrinkMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
{Shrink mutable byte array to new specified size (in bytes), in
the specified state thread. The new size argument must be less than or
equal to the current size as reported by {\tt getSizeofMutableByteArray\#}.}
with out_of_line = True
has_side_effects = True
primop ResizeMutableByteArrayOp_Char "resizeMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s,MutableByteArray# s #)
{Resize (unpinned) mutable byte array to new specified size (in bytes).
The returned {\tt MutableByteArray\#} is either the original
{\tt MutableByteArray\#} resized in-place or, if not possible, a newly
allocated (unpinned) {\tt MutableByteArray\#} (with the original content
copied over).
To avoid undefined behaviour, the original {\tt MutableByteArray\#} shall
not be accessed anymore after a {\tt resizeMutableByteArray\#} has been
performed. Moreover, no reference to the old one should be kept in order
to allow garbage collection of the original {\tt MutableByteArray\#} in
case a new {\tt MutableByteArray\#} had to be allocated.}
with out_of_line = True
has_side_effects = True
primop UnsafeFreezeByteArrayOp "unsafeFreezeByteArray#" GenPrimOp
MutableByteArray# s -> State# s -> (# State# s, ByteArray# #)
{Make a mutable byte array immutable, without copying.}
with
has_side_effects = True
primop SizeofByteArrayOp "sizeofByteArray#" GenPrimOp
ByteArray# -> Int#
{Return the size of the array in bytes.}
primop SizeofMutableByteArrayOp "sizeofMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int#
{Return the size of the array in bytes. Note that this is deprecated as it is
unsafe in the presence of shrink and resize operations on the same mutable byte
array.}
with deprecated_msg = { Use 'getSizeofMutableByteArray#' instead }
primop GetSizeofMutableByteArrayOp "getSizeofMutableByteArray#" GenPrimOp
MutableByteArray# s -> State# s -> (# State# s, Int# #)
{Return the number of elements in the array.}
primop IndexByteArrayOp_Char "indexCharArray#" GenPrimOp
ByteArray# -> Int# -> Char#
{Read 8-bit character; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_WideChar "indexWideCharArray#" GenPrimOp
ByteArray# -> Int# -> Char#
{Read 31-bit character; offset in 4-byte words.}
with can_fail = True
primop IndexByteArrayOp_Int "indexIntArray#" GenPrimOp
ByteArray# -> Int# -> Int#
with can_fail = True
primop IndexByteArrayOp_Word "indexWordArray#" GenPrimOp
ByteArray# -> Int# -> Word#
with can_fail = True
primop IndexByteArrayOp_Addr "indexAddrArray#" GenPrimOp
ByteArray# -> Int# -> Addr#
with can_fail = True
primop IndexByteArrayOp_Float "indexFloatArray#" GenPrimOp
ByteArray# -> Int# -> Float#
with can_fail = True
primop IndexByteArrayOp_Double "indexDoubleArray#" GenPrimOp
ByteArray# -> Int# -> Double#
with can_fail = True
primop IndexByteArrayOp_StablePtr "indexStablePtrArray#" GenPrimOp
ByteArray# -> Int# -> StablePtr# a
with can_fail = True
primop IndexByteArrayOp_Int8 "indexInt8Array#" GenPrimOp
ByteArray# -> Int# -> Int#
{Read 8-bit integer; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Int16 "indexInt16Array#" GenPrimOp
ByteArray# -> Int# -> Int#
{Read 16-bit integer; offset in 16-bit words.}
with can_fail = True
primop IndexByteArrayOp_Int32 "indexInt32Array#" GenPrimOp
ByteArray# -> Int# -> INT32
{Read 32-bit integer; offset in 32-bit words.}
with can_fail = True
primop IndexByteArrayOp_Int64 "indexInt64Array#" GenPrimOp
ByteArray# -> Int# -> INT64
{Read 64-bit integer; offset in 64-bit words.}
with can_fail = True
primop IndexByteArrayOp_Word8 "indexWord8Array#" GenPrimOp
ByteArray# -> Int# -> Word#
{Read 8-bit word; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word16 "indexWord16Array#" GenPrimOp
ByteArray# -> Int# -> Word#
{Read 16-bit word; offset in 16-bit words.}
with can_fail = True
primop IndexByteArrayOp_Word32 "indexWord32Array#" GenPrimOp
ByteArray# -> Int# -> WORD32
{Read 32-bit word; offset in 32-bit words.}
with can_fail = True
primop IndexByteArrayOp_Word64 "indexWord64Array#" GenPrimOp
ByteArray# -> Int# -> WORD64
{Read 64-bit word; offset in 64-bit words.}
with can_fail = True
primop IndexByteArrayOp_Word8AsChar "indexWord8ArrayAsChar#" GenPrimOp
ByteArray# -> Int# -> Char#
{Read 8-bit character; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsWideChar "indexWord8ArrayAsWideChar#" GenPrimOp
ByteArray# -> Int# -> Char#
{Read 31-bit character; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsAddr "indexWord8ArrayAsAddr#" GenPrimOp
ByteArray# -> Int# -> Addr#
{Read address; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsFloat "indexWord8ArrayAsFloat#" GenPrimOp
ByteArray# -> Int# -> Float#
{Read float; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsDouble "indexWord8ArrayAsDouble#" GenPrimOp
ByteArray# -> Int# -> Double#
{Read double; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsStablePtr "indexWord8ArrayAsStablePtr#" GenPrimOp
ByteArray# -> Int# -> StablePtr# a
{Read stable pointer; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsInt16 "indexWord8ArrayAsInt16#" GenPrimOp
ByteArray# -> Int# -> Int#
{Read 16-bit int; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsInt32 "indexWord8ArrayAsInt32#" GenPrimOp
ByteArray# -> Int# -> INT32
{Read 32-bit int; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsInt64 "indexWord8ArrayAsInt64#" GenPrimOp
ByteArray# -> Int# -> INT64
{Read 64-bit int; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsInt "indexWord8ArrayAsInt#" GenPrimOp
ByteArray# -> Int# -> Int#
{Read int; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsWord16 "indexWord8ArrayAsWord16#" GenPrimOp
ByteArray# -> Int# -> Word#
{Read 16-bit word; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsWord32 "indexWord8ArrayAsWord32#" GenPrimOp
ByteArray# -> Int# -> WORD32
{Read 32-bit word; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsWord64 "indexWord8ArrayAsWord64#" GenPrimOp
ByteArray# -> Int# -> WORD64
{Read 64-bit word; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsWord "indexWord8ArrayAsWord#" GenPrimOp
ByteArray# -> Int# -> Word#
{Read word; offset in bytes.}
with can_fail = True
primop ReadByteArrayOp_Char "readCharArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
{Read 8-bit character; offset in bytes.}
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_WideChar "readWideCharArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
{Read 31-bit character; offset in 4-byte words.}
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Int "readIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
{Read integer; offset in machine words.}
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word "readWordArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
{Read word; offset in machine words.}
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Addr "readAddrArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Addr# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Float "readFloatArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Float# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Double "readDoubleArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Double# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_StablePtr "readStablePtrArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr# a #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Int8 "readInt8Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Int16 "readInt16Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Int32 "readInt32Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, INT32 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Int64 "readInt64Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, INT64 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8 "readWord8Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word16 "readWord16Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word32 "readWord32Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD32 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word64 "readWord64Array#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD64 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsChar "readWord8ArrayAsChar#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsWideChar "readWord8ArrayAsWideChar#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsAddr "readWord8ArrayAsAddr#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Addr# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsFloat "readWord8ArrayAsFloat#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Float# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsDouble "readWord8ArrayAsDouble#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Double# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsStablePtr "readWord8ArrayAsStablePtr#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr# a #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsInt16 "readWord8ArrayAsInt16#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsInt32 "readWord8ArrayAsInt32#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, INT32 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsInt64 "readWord8ArrayAsInt64#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, INT64 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsInt "readWord8ArrayAsInt#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsWord16 "readWord8ArrayAsWord16#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsWord32 "readWord8ArrayAsWord32#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD32 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsWord64 "readWord8ArrayAsWord64#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD64 #)
with has_side_effects = True
can_fail = True
primop ReadByteArrayOp_Word8AsWord "readWord8ArrayAsWord#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Char "writeCharArray#" GenPrimOp
MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
{Write 8-bit character; offset in bytes.}
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_WideChar "writeWideCharArray#" GenPrimOp
MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
{Write 31-bit character; offset in 4-byte words.}
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Int "writeIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word "writeWordArray#" GenPrimOp
MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Addr "writeAddrArray#" GenPrimOp
MutableByteArray# s -> Int# -> Addr# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Float "writeFloatArray#" GenPrimOp
MutableByteArray# s -> Int# -> Float# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Double "writeDoubleArray#" GenPrimOp
MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_StablePtr "writeStablePtrArray#" GenPrimOp
MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Int8 "writeInt8Array#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Int16 "writeInt16Array#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Int32 "writeInt32Array#" GenPrimOp
MutableByteArray# s -> Int# -> INT32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Int64 "writeInt64Array#" GenPrimOp
MutableByteArray# s -> Int# -> INT64 -> State# s -> State# s
with can_fail = True
has_side_effects = True
primop WriteByteArrayOp_Word8 "writeWord8Array#" GenPrimOp
MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word16 "writeWord16Array#" GenPrimOp
MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word32 "writeWord32Array#" GenPrimOp
MutableByteArray# s -> Int# -> WORD32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word64 "writeWord64Array#" GenPrimOp
MutableByteArray# s -> Int# -> WORD64 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsChar "writeWord8ArrayAsChar#" GenPrimOp
MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsWideChar "writeWord8ArrayAsWideChar#" GenPrimOp
MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsAddr "writeWord8ArrayAsAddr#" GenPrimOp
MutableByteArray# s -> Int# -> Addr# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsFloat "writeWord8ArrayAsFloat#" GenPrimOp
MutableByteArray# s -> Int# -> Float# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsDouble "writeWord8ArrayAsDouble#" GenPrimOp
MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsStablePtr "writeWord8ArrayAsStablePtr#" GenPrimOp
MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsInt16 "writeWord8ArrayAsInt16#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsInt32 "writeWord8ArrayAsInt32#" GenPrimOp
MutableByteArray# s -> Int# -> INT32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsInt64 "writeWord8ArrayAsInt64#" GenPrimOp
MutableByteArray# s -> Int# -> INT64 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsInt "writeWord8ArrayAsInt#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsWord16 "writeWord8ArrayAsWord16#" GenPrimOp
MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsWord32 "writeWord8ArrayAsWord32#" GenPrimOp
MutableByteArray# s -> Int# -> WORD32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsWord64 "writeWord8ArrayAsWord64#" GenPrimOp
MutableByteArray# s -> Int# -> WORD64 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteByteArrayOp_Word8AsWord "writeWord8ArrayAsWord#" GenPrimOp
MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop CompareByteArraysOp "compareByteArrays#" GenPrimOp
ByteArray# -> Int# -> ByteArray# -> Int# -> Int# -> Int#
{{\tt compareByteArrays# src1 src1_ofs src2 src2_ofs n} compares
{\tt n} bytes starting at offset {\tt src1_ofs} in the first
{\tt ByteArray#} {\tt src1} to the range of {\tt n} bytes
(i.e. same length) starting at offset {\tt src2_ofs} of the second
{\tt ByteArray#} {\tt src2}. Both arrays must fully contain the
specified ranges, but this is not checked. Returns an {\tt Int#}
less than, equal to, or greater than zero if the range is found,
respectively, to be byte-wise lexicographically less than, to
match, or be greater than the second range.}
with
can_fail = True
primop CopyByteArrayOp "copyByteArray#" GenPrimOp
ByteArray# -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
{{\tt copyByteArray# src src_ofs dst dst_ofs n} copies the range
starting at offset {\tt src_ofs} of length {\tt n} from the
{\tt ByteArray#} {\tt src} to the {\tt MutableByteArray#} {\tt dst}
starting at offset {\tt dst_ofs}. Both arrays must fully contain
the specified ranges, but this is not checked. The two arrays must
not be the same array in different states, but this is not checked
either.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4}
can_fail = True
primop CopyMutableByteArrayOp "copyMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
{Copy a range of the first MutableByteArray\# to the specified region in the second MutableByteArray\#.
Both arrays must fully contain the specified ranges, but this is not checked. The regions are
allowed to overlap, although this is only possible when the same array is provided
as both the source and the destination.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4 }
can_fail = True
primop CopyByteArrayToAddrOp "copyByteArrayToAddr#" GenPrimOp
ByteArray# -> Int# -> Addr# -> Int# -> State# s -> State# s
{Copy a range of the ByteArray\# to the memory range starting at the Addr\#.
The ByteArray\# and the memory region at Addr\# must fully contain the
specified ranges, but this is not checked. The Addr\# must not point into the
ByteArray\# (e.g. if the ByteArray\# were pinned), but this is not checked
either.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4}
can_fail = True
primop CopyMutableByteArrayToAddrOp "copyMutableByteArrayToAddr#" GenPrimOp
MutableByteArray# s -> Int# -> Addr# -> Int# -> State# s -> State# s
{Copy a range of the MutableByteArray\# to the memory range starting at the
Addr\#. The MutableByteArray\# and the memory region at Addr\# must fully
contain the specified ranges, but this is not checked. The Addr\# must not
point into the MutableByteArray\# (e.g. if the MutableByteArray\# were
pinned), but this is not checked either.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4}
can_fail = True
primop CopyAddrToByteArrayOp "copyAddrToByteArray#" GenPrimOp
Addr# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
{Copy a memory range starting at the Addr\# to the specified range in the
MutableByteArray\#. The memory region at Addr\# and the ByteArray\# must fully
contain the specified ranges, but this is not checked. The Addr\# must not
point into the MutableByteArray\# (e.g. if the MutableByteArray\# were pinned),
but this is not checked either.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4}
can_fail = True
primop SetByteArrayOp "setByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> State# s
{{\tt setByteArray# ba off len c} sets the byte range {\tt [off, off+len]} of
the {\tt MutableByteArray#} to the byte {\tt c}.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4 }
can_fail = True
-- Atomic operations
primop AtomicReadByteArrayOp_Int "atomicReadIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
{Given an array and an offset in machine words, read an element. The
index is assumed to be in bounds. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop AtomicWriteByteArrayOp_Int "atomicWriteIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
{Given an array and an offset in machine words, write an element. The
index is assumed to be in bounds. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop CasByteArrayOp_Int "casIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, an offset in machine words, the expected old value, and
the new value, perform an atomic compare and swap i.e. write the new
value if the current value matches the provided old value. Returns
the value of the element before the operation. Implies a full memory
barrier.}
with has_side_effects = True
can_fail = True
primop FetchAddByteArrayOp_Int "fetchAddIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to add,
atomically add the value to the element. Returns the value of the
element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop FetchSubByteArrayOp_Int "fetchSubIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to subtract,
atomically subtract the value to the element. Returns the value of
the element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop FetchAndByteArrayOp_Int "fetchAndIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to AND,
atomically AND the value to the element. Returns the value of the
element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop FetchNandByteArrayOp_Int "fetchNandIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to NAND,
atomically NAND the value to the element. Returns the value of the
element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop FetchOrByteArrayOp_Int "fetchOrIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to OR,
atomically OR the value to the element. Returns the value of the
element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
primop FetchXorByteArrayOp_Int "fetchXorIntArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> State# s -> (# State# s, Int# #)
{Given an array, and offset in machine words, and a value to XOR,
atomically XOR the value to the element. Returns the value of the
element before the operation. Implies a full memory barrier.}
with has_side_effects = True
can_fail = True
------------------------------------------------------------------------
section "Arrays of arrays"
{Operations on {\tt ArrayArray\#}. An {\tt ArrayArray\#} contains references to {\em unpointed}
arrays, such as {\tt ByteArray\#s}. Hence, it is not parameterised by the element types,
just like a {\tt ByteArray\#}, but it needs to be scanned during GC, just like an {\tt Array\#}.
We represent an {\tt ArrayArray\#} exactly as a {\tt Array\#}, but provide element-type-specific
indexing, reading, and writing.}
------------------------------------------------------------------------
primtype ArrayArray#
primtype MutableArrayArray# s
primop NewArrayArrayOp "newArrayArray#" GenPrimOp
Int# -> State# s -> (# State# s, MutableArrayArray# s #)
{Create a new mutable array of arrays with the specified number of elements,
in the specified state thread, with each element recursively referring to the
newly created array.}
with
out_of_line = True
has_side_effects = True
primop SameMutableArrayArrayOp "sameMutableArrayArray#" GenPrimOp
MutableArrayArray# s -> MutableArrayArray# s -> Int#
primop UnsafeFreezeArrayArrayOp "unsafeFreezeArrayArray#" GenPrimOp
MutableArrayArray# s -> State# s -> (# State# s, ArrayArray# #)
{Make a mutable array of arrays immutable, without copying.}
with
has_side_effects = True
primop SizeofArrayArrayOp "sizeofArrayArray#" GenPrimOp
ArrayArray# -> Int#
{Return the number of elements in the array.}
primop SizeofMutableArrayArrayOp "sizeofMutableArrayArray#" GenPrimOp
MutableArrayArray# s -> Int#
{Return the number of elements in the array.}
primop IndexArrayArrayOp_ByteArray "indexByteArrayArray#" GenPrimOp
ArrayArray# -> Int# -> ByteArray#
with can_fail = True
primop IndexArrayArrayOp_ArrayArray "indexArrayArrayArray#" GenPrimOp
ArrayArray# -> Int# -> ArrayArray#
with can_fail = True
primop ReadArrayArrayOp_ByteArray "readByteArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> State# s -> (# State# s, ByteArray# #)
with has_side_effects = True
can_fail = True
primop ReadArrayArrayOp_MutableByteArray "readMutableByteArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> State# s -> (# State# s, MutableByteArray# s #)
with has_side_effects = True
can_fail = True
primop ReadArrayArrayOp_ArrayArray "readArrayArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> State# s -> (# State# s, ArrayArray# #)
with has_side_effects = True
can_fail = True
primop ReadArrayArrayOp_MutableArrayArray "readMutableArrayArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> State# s -> (# State# s, MutableArrayArray# s #)
with has_side_effects = True
can_fail = True
primop WriteArrayArrayOp_ByteArray "writeByteArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> ByteArray# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteArrayArrayOp_MutableByteArray "writeMutableByteArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> MutableByteArray# s -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteArrayArrayOp_ArrayArray "writeArrayArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> ArrayArray# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteArrayArrayOp_MutableArrayArray "writeMutableArrayArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> MutableArrayArray# s -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop CopyArrayArrayOp "copyArrayArray#" GenPrimOp
ArrayArray# -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
{Copy a range of the ArrayArray\# to the specified region in the MutableArrayArray\#.
Both arrays must fully contain the specified ranges, but this is not checked.
The two arrays must not be the same array in different states, but this is not checked either.}
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CopyMutableArrayArrayOp "copyMutableArrayArray#" GenPrimOp
MutableArrayArray# s -> Int# -> MutableArrayArray# s -> Int# -> Int# -> State# s -> State# s
{Copy a range of the first MutableArrayArray# to the specified region in the second
MutableArrayArray#.
Both arrays must fully contain the specified ranges, but this is not checked.
The regions are allowed to overlap, although this is only possible when the same
array is provided as both the source and the destination.
}
with
out_of_line = True
has_side_effects = True
can_fail = True
------------------------------------------------------------------------
section "Addr#"
------------------------------------------------------------------------
primtype Addr#
{ An arbitrary machine address assumed to point outside
the garbage-collected heap. }
pseudoop "nullAddr#" Addr#
{ The null address. }
primop AddrAddOp "plusAddr#" GenPrimOp Addr# -> Int# -> Addr#
primop AddrSubOp "minusAddr#" GenPrimOp Addr# -> Addr# -> Int#
{Result is meaningless if two {\tt Addr\#}s are so far apart that their
difference doesn't fit in an {\tt Int\#}.}
primop AddrRemOp "remAddr#" GenPrimOp Addr# -> Int# -> Int#
{Return the remainder when the {\tt Addr\#} arg, treated like an {\tt Int\#},
is divided by the {\tt Int\#} arg.}
primop Addr2IntOp "addr2Int#" GenPrimOp Addr# -> Int#
{Coerce directly from address to int.}
with code_size = 0
deprecated_msg = { This operation is strongly deprecated. }
primop Int2AddrOp "int2Addr#" GenPrimOp Int# -> Addr#
{Coerce directly from int to address.}
with code_size = 0
deprecated_msg = { This operation is strongly deprecated. }
primop AddrGtOp "gtAddr#" Compare Addr# -> Addr# -> Int#
primop AddrGeOp "geAddr#" Compare Addr# -> Addr# -> Int#
primop AddrEqOp "eqAddr#" Compare Addr# -> Addr# -> Int#
primop AddrNeOp "neAddr#" Compare Addr# -> Addr# -> Int#
primop AddrLtOp "ltAddr#" Compare Addr# -> Addr# -> Int#
primop AddrLeOp "leAddr#" Compare Addr# -> Addr# -> Int#
primop IndexOffAddrOp_Char "indexCharOffAddr#" GenPrimOp
Addr# -> Int# -> Char#
{Reads 8-bit character; offset in bytes.}
with can_fail = True
primop IndexOffAddrOp_WideChar "indexWideCharOffAddr#" GenPrimOp
Addr# -> Int# -> Char#
{Reads 31-bit character; offset in 4-byte words.}
with can_fail = True
primop IndexOffAddrOp_Int "indexIntOffAddr#" GenPrimOp
Addr# -> Int# -> Int#
with can_fail = True
primop IndexOffAddrOp_Word "indexWordOffAddr#" GenPrimOp
Addr# -> Int# -> Word#
with can_fail = True
primop IndexOffAddrOp_Addr "indexAddrOffAddr#" GenPrimOp
Addr# -> Int# -> Addr#
with can_fail = True
primop IndexOffAddrOp_Float "indexFloatOffAddr#" GenPrimOp
Addr# -> Int# -> Float#
with can_fail = True
primop IndexOffAddrOp_Double "indexDoubleOffAddr#" GenPrimOp
Addr# -> Int# -> Double#
with can_fail = True
primop IndexOffAddrOp_StablePtr "indexStablePtrOffAddr#" GenPrimOp
Addr# -> Int# -> StablePtr# a
with can_fail = True
primop IndexOffAddrOp_Int8 "indexInt8OffAddr#" GenPrimOp
Addr# -> Int# -> Int#
with can_fail = True
primop IndexOffAddrOp_Int16 "indexInt16OffAddr#" GenPrimOp
Addr# -> Int# -> Int#
with can_fail = True
primop IndexOffAddrOp_Int32 "indexInt32OffAddr#" GenPrimOp
Addr# -> Int# -> INT32
with can_fail = True
primop IndexOffAddrOp_Int64 "indexInt64OffAddr#" GenPrimOp
Addr# -> Int# -> INT64
with can_fail = True
primop IndexOffAddrOp_Word8 "indexWord8OffAddr#" GenPrimOp
Addr# -> Int# -> Word#
with can_fail = True
primop IndexOffAddrOp_Word16 "indexWord16OffAddr#" GenPrimOp
Addr# -> Int# -> Word#
with can_fail = True
primop IndexOffAddrOp_Word32 "indexWord32OffAddr#" GenPrimOp
Addr# -> Int# -> WORD32
with can_fail = True
primop IndexOffAddrOp_Word64 "indexWord64OffAddr#" GenPrimOp
Addr# -> Int# -> WORD64
with can_fail = True
primop ReadOffAddrOp_Char "readCharOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Char# #)
{Reads 8-bit character; offset in bytes.}
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_WideChar "readWideCharOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Char# #)
{Reads 31-bit character; offset in 4-byte words.}
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Int "readIntOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Word "readWordOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Addr "readAddrOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Addr# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Float "readFloatOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Float# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Double "readDoubleOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Double# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_StablePtr "readStablePtrOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, StablePtr# a #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Int8 "readInt8OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Int16 "readInt16OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Int# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Int32 "readInt32OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, INT32 #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Int64 "readInt64OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, INT64 #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Word8 "readWord8OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Word16 "readWord16OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Word# #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Word32 "readWord32OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, WORD32 #)
with has_side_effects = True
can_fail = True
primop ReadOffAddrOp_Word64 "readWord64OffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, WORD64 #)
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Char "writeCharOffAddr#" GenPrimOp
Addr# -> Int# -> Char# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_WideChar "writeWideCharOffAddr#" GenPrimOp
Addr# -> Int# -> Char# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Int "writeIntOffAddr#" GenPrimOp
Addr# -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Word "writeWordOffAddr#" GenPrimOp
Addr# -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Addr "writeAddrOffAddr#" GenPrimOp
Addr# -> Int# -> Addr# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Float "writeFloatOffAddr#" GenPrimOp
Addr# -> Int# -> Float# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Double "writeDoubleOffAddr#" GenPrimOp
Addr# -> Int# -> Double# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_StablePtr "writeStablePtrOffAddr#" GenPrimOp
Addr# -> Int# -> StablePtr# a -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Int8 "writeInt8OffAddr#" GenPrimOp
Addr# -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Int16 "writeInt16OffAddr#" GenPrimOp
Addr# -> Int# -> Int# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Int32 "writeInt32OffAddr#" GenPrimOp
Addr# -> Int# -> INT32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Int64 "writeInt64OffAddr#" GenPrimOp
Addr# -> Int# -> INT64 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Word8 "writeWord8OffAddr#" GenPrimOp
Addr# -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Word16 "writeWord16OffAddr#" GenPrimOp
Addr# -> Int# -> Word# -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Word32 "writeWord32OffAddr#" GenPrimOp
Addr# -> Int# -> WORD32 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop WriteOffAddrOp_Word64 "writeWord64OffAddr#" GenPrimOp
Addr# -> Int# -> WORD64 -> State# s -> State# s
with has_side_effects = True
can_fail = True
primop InterlockedExchange_Addr "interlockedExchangeAddr#" GenPrimOp
Addr# -> Addr# -> State# s -> (# State# s, Addr# #)
{The atomic exchange operation. Atomically exchanges the value at the first address
with the Addr# given as second argument. Implies a read barrier.}
with has_side_effects = True
primop InterlockedExchange_Int "interlockedExchangeInt#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, Int# #)
{The atomic exchange operation. Atomically exchanges the value at the address
with the given value. Returns the old value. Implies a read barrier.}
with has_side_effects = True
------------------------------------------------------------------------
section "Mutable variables"
{Operations on MutVar\#s.}
------------------------------------------------------------------------
primtype MutVar# s a
{A {\tt MutVar\#} behaves like a single-element mutable array.}
primop NewMutVarOp "newMutVar#" GenPrimOp
a -> State# s -> (# State# s, MutVar# s a #)
{Create {\tt MutVar\#} with specified initial value in specified state thread.}
with
out_of_line = True
has_side_effects = True
-- Note [Why MutVar# ops can't fail]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- We don't label readMutVar# or writeMutVar# as can_fail.
-- This may seem a bit peculiar, because they surely *could*
-- fail spectacularly if passed a pointer to unallocated memory.
-- But MutVar#s are always correct by construction; we never
-- test if a pointer is valid before using it with these operations.
-- So we never have to worry about floating the pointer reference
-- outside a validity test. At the moment, has_side_effects blocks
-- up the relevant optimizations anyway, but we hope to draw finer
-- distinctions soon, which should improve matters for readMutVar#
-- at least.
primop ReadMutVarOp "readMutVar#" GenPrimOp
MutVar# s a -> State# s -> (# State# s, a #)
{Read contents of {\tt MutVar\#}. Result is not yet evaluated.}
with
-- See Note [Why MutVar# ops can't fail]
has_side_effects = True
primop WriteMutVarOp "writeMutVar#" GenPrimOp
MutVar# s a -> a -> State# s -> State# s
{Write contents of {\tt MutVar\#}.}
with
-- See Note [Why MutVar# ops can't fail]
has_side_effects = True
code_size = { primOpCodeSizeForeignCall } -- for the write barrier
primop SameMutVarOp "sameMutVar#" GenPrimOp
MutVar# s a -> MutVar# s a -> Int#
-- Note [Why not an unboxed tuple in atomicModifyMutVar2#?]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Looking at the type of atomicModifyMutVar2#, one might wonder why
-- it doesn't return an unboxed tuple. e.g.,
--
-- MutVar# s a -> (a -> (# a, b #)) -> State# s -> (# State# s, a, (# a, b #) #)
--
-- The reason is that atomicModifyMutVar2# relies on laziness for its atomicity.
-- Given a MutVar# containing x, atomicModifyMutVar2# merely replaces
-- its contents with a thunk of the form (fst (f x)). This can be done using an
-- atomic compare-and-swap as it is merely replacing a pointer.
primop AtomicModifyMutVar2Op "atomicModifyMutVar2#" GenPrimOp
MutVar# s a -> (a -> c) -> State# s -> (# State# s, a, c #)
{ Modify the contents of a {\tt MutVar\#}, returning the previous
contents and the result of applying the given function to the
previous contents. Note that this isn't strictly
speaking the correct type for this function; it should really be
{\tt MutVar\# s a -> (a -> (a,b)) -> State\# s -> (\# State\# s, a, (a, b) \#)},
but we don't know about pairs here. }
with
out_of_line = True
has_side_effects = True
can_fail = True
primop AtomicModifyMutVar_Op "atomicModifyMutVar_#" GenPrimOp
MutVar# s a -> (a -> a) -> State# s -> (# State# s, a, a #)
{ Modify the contents of a {\tt MutVar\#}, returning the previous
contents and the result of applying the given function to the
previous contents. }
with
out_of_line = True
has_side_effects = True
can_fail = True
primop CasMutVarOp "casMutVar#" GenPrimOp
MutVar# s a -> a -> a -> State# s -> (# State# s, Int#, a #)
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "Exceptions"
------------------------------------------------------------------------
-- Note [Strictness for mask/unmask/catch]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Consider this example, which comes from GHC.IO.Handle.Internals:
-- wantReadableHandle3 f ma b st
-- = case ... of
-- DEFAULT -> case ma of MVar a -> ...
-- 0# -> maskAsyncExceptions# (\st -> case ma of MVar a -> ...)
-- The outer case just decides whether to mask exceptions, but we don't want
-- thereby to hide the strictness in 'ma'! Hence the use of strictApply1Dmd
-- in mask and unmask. But catch really is lazy in its first argument, see
-- #11555. So for IO actions 'ma' we often use a wrapper around it that is
-- head-strict in 'ma': GHC.IO.catchException.
primop CatchOp "catch#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #) )
-> (b -> State# RealWorld -> (# State# RealWorld, a #) )
-> State# RealWorld
-> (# State# RealWorld, a #)
with
strictness = { \ _arity -> mkClosedStrictSig [ lazyApply1Dmd
, lazyApply2Dmd
, topDmd] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
primop RaiseOp "raise#" GenPrimOp
b -> o
-- NB: the type variable "o" is "a", but with OpenKind
with
-- In contrast to 'raiseIO#', which throws a *precise* exception,
-- exceptions thrown by 'raise#' are considered *imprecise*.
-- See Note [Precise vs imprecise exceptions] in GHC.Types.Demand.
-- Hence, it has 'botDiv', not 'exnDiv'.
-- For the same reasons, 'raise#' is marked as "can_fail" (which 'raiseIO#'
-- is not), but not as "has_side_effects" (which 'raiseIO#' is).
-- See Note [PrimOp can_fail and has_side_effects] in "GHC.Builtin.PrimOps".
strictness = { \ _arity -> mkClosedStrictSig [topDmd] botDiv }
out_of_line = True
can_fail = True
primop RaiseIOOp "raiseIO#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, b #)
with
-- See Note [Precise exceptions and strictness analysis] in "GHC.Types.Demand"
-- for why this is the *only* primop that has 'exnDiv'
strictness = { \ _arity -> mkClosedStrictSig [topDmd, topDmd] exnDiv }
out_of_line = True
has_side_effects = True
primop MaskAsyncExceptionsOp "maskAsyncExceptions#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #))
-> (State# RealWorld -> (# State# RealWorld, a #))
with
strictness = { \ _arity -> mkClosedStrictSig [strictApply1Dmd,topDmd] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
primop MaskUninterruptibleOp "maskUninterruptible#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #))
-> (State# RealWorld -> (# State# RealWorld, a #))
with
strictness = { \ _arity -> mkClosedStrictSig [strictApply1Dmd,topDmd] topDiv }
out_of_line = True
has_side_effects = True
primop UnmaskAsyncExceptionsOp "unmaskAsyncExceptions#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #))
-> (State# RealWorld -> (# State# RealWorld, a #))
with
strictness = { \ _arity -> mkClosedStrictSig [strictApply1Dmd,topDmd] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
primop MaskStatus "getMaskingState#" GenPrimOp
State# RealWorld -> (# State# RealWorld, Int# #)
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "STM-accessible Mutable Variables"
------------------------------------------------------------------------
primtype TVar# s a
primop AtomicallyOp "atomically#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #) )
-> State# RealWorld -> (# State# RealWorld, a #)
with
strictness = { \ _arity -> mkClosedStrictSig [strictApply1Dmd,topDmd] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
-- NB: retry#'s strictness information specifies it to diverge.
-- This lets the compiler perform some extra simplifications, since retry#
-- will technically never return.
--
-- This allows the simplifier to replace things like:
-- case retry# s1
-- (# s2, a #) -> e
-- with:
-- retry# s1
-- where 'e' would be unreachable anyway. See #8091.
primop RetryOp "retry#" GenPrimOp
State# RealWorld -> (# State# RealWorld, a #)
with
strictness = { \ _arity -> mkClosedStrictSig [topDmd] botDiv }
out_of_line = True
has_side_effects = True
primop CatchRetryOp "catchRetry#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #) )
-> (State# RealWorld -> (# State# RealWorld, a #) )
-> (State# RealWorld -> (# State# RealWorld, a #) )
with
strictness = { \ _arity -> mkClosedStrictSig [ lazyApply1Dmd
, lazyApply1Dmd
, topDmd ] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
primop CatchSTMOp "catchSTM#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, a #) )
-> (b -> State# RealWorld -> (# State# RealWorld, a #) )
-> (State# RealWorld -> (# State# RealWorld, a #) )
with
strictness = { \ _arity -> mkClosedStrictSig [ lazyApply1Dmd
, lazyApply2Dmd
, topDmd ] topDiv }
-- See Note [Strictness for mask/unmask/catch]
out_of_line = True
has_side_effects = True
primop NewTVarOp "newTVar#" GenPrimOp
a
-> State# s -> (# State# s, TVar# s a #)
{Create a new {\tt TVar\#} holding a specified initial value.}
with
out_of_line = True
has_side_effects = True
primop ReadTVarOp "readTVar#" GenPrimOp
TVar# s a
-> State# s -> (# State# s, a #)
{Read contents of {\tt TVar\#}. Result is not yet evaluated.}
with
out_of_line = True
has_side_effects = True
primop ReadTVarIOOp "readTVarIO#" GenPrimOp
TVar# s a
-> State# s -> (# State# s, a #)
{Read contents of {\tt TVar\#} outside an STM transaction}
with
out_of_line = True
has_side_effects = True
primop WriteTVarOp "writeTVar#" GenPrimOp
TVar# s a
-> a
-> State# s -> State# s
{Write contents of {\tt TVar\#}.}
with
out_of_line = True
has_side_effects = True
primop SameTVarOp "sameTVar#" GenPrimOp
TVar# s a -> TVar# s a -> Int#
------------------------------------------------------------------------
section "Synchronized Mutable Variables"
{Operations on {\tt MVar\#}s. }
------------------------------------------------------------------------
primtype MVar# s a
{ A shared mutable variable ({\it not} the same as a {\tt MutVar\#}!).
(Note: in a non-concurrent implementation, {\tt (MVar\# a)} can be
represented by {\tt (MutVar\# (Maybe a))}.) }
primop NewMVarOp "newMVar#" GenPrimOp
State# s -> (# State# s, MVar# s a #)
{Create new {\tt MVar\#}; initially empty.}
with
out_of_line = True
has_side_effects = True
primop TakeMVarOp "takeMVar#" GenPrimOp
MVar# s a -> State# s -> (# State# s, a #)
{If {\tt MVar\#} is empty, block until it becomes full.
Then remove and return its contents, and set it empty.}
with
out_of_line = True
has_side_effects = True
primop TryTakeMVarOp "tryTakeMVar#" GenPrimOp
MVar# s a -> State# s -> (# State# s, Int#, a #)
{If {\tt MVar\#} is empty, immediately return with integer 0 and value undefined.
Otherwise, return with integer 1 and contents of {\tt MVar\#}, and set {\tt MVar\#} empty.}
with
out_of_line = True
has_side_effects = True
primop PutMVarOp "putMVar#" GenPrimOp
MVar# s a -> a -> State# s -> State# s
{If {\tt MVar\#} is full, block until it becomes empty.
Then store value arg as its new contents.}
with
out_of_line = True
has_side_effects = True
primop TryPutMVarOp "tryPutMVar#" GenPrimOp
MVar# s a -> a -> State# s -> (# State# s, Int# #)
{If {\tt MVar\#} is full, immediately return with integer 0.
Otherwise, store value arg as {\tt MVar\#}'s new contents, and return with integer 1.}
with
out_of_line = True
has_side_effects = True
primop ReadMVarOp "readMVar#" GenPrimOp
MVar# s a -> State# s -> (# State# s, a #)
{If {\tt MVar\#} is empty, block until it becomes full.
Then read its contents without modifying the MVar, without possibility
of intervention from other threads.}
with
out_of_line = True
has_side_effects = True
primop TryReadMVarOp "tryReadMVar#" GenPrimOp
MVar# s a -> State# s -> (# State# s, Int#, a #)
{If {\tt MVar\#} is empty, immediately return with integer 0 and value undefined.
Otherwise, return with integer 1 and contents of {\tt MVar\#}.}
with
out_of_line = True
has_side_effects = True
primop SameMVarOp "sameMVar#" GenPrimOp
MVar# s a -> MVar# s a -> Int#
primop IsEmptyMVarOp "isEmptyMVar#" GenPrimOp
MVar# s a -> State# s -> (# State# s, Int# #)
{Return 1 if {\tt MVar\#} is empty; 0 otherwise.}
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "Delay/wait operations"
------------------------------------------------------------------------
primop DelayOp "delay#" GenPrimOp
Int# -> State# s -> State# s
{Sleep specified number of microseconds.}
with
has_side_effects = True
out_of_line = True
primop WaitReadOp "waitRead#" GenPrimOp
Int# -> State# s -> State# s
{Block until input is available on specified file descriptor.}
with
has_side_effects = True
out_of_line = True
primop WaitWriteOp "waitWrite#" GenPrimOp
Int# -> State# s -> State# s
{Block until output is possible on specified file descriptor.}
with
has_side_effects = True
out_of_line = True
------------------------------------------------------------------------
section "Concurrency primitives"
------------------------------------------------------------------------
primtype State# s
{ {\tt State\#} is the primitive, unlifted type of states. It has
one type parameter, thus {\tt State\# RealWorld}, or {\tt State\# s},
where s is a type variable. The only purpose of the type parameter
is to keep different state threads separate. It is represented by
nothing at all. }
primtype RealWorld
{ {\tt RealWorld} is deeply magical. It is {\it primitive}, but it is not
{\it unlifted} (hence {\tt ptrArg}). We never manipulate values of type
{\tt RealWorld}; it's only used in the type system, to parameterise {\tt State\#}. }
primtype ThreadId#
{(In a non-concurrent implementation, this can be a singleton
type, whose (unique) value is returned by {\tt myThreadId\#}. The
other operations can be omitted.)}
primop ForkOp "fork#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, ThreadId# #)
with
has_side_effects = True
out_of_line = True
primop ForkOnOp "forkOn#" GenPrimOp
Int# -> a -> State# RealWorld -> (# State# RealWorld, ThreadId# #)
with
has_side_effects = True
out_of_line = True
primop KillThreadOp "killThread#" GenPrimOp
ThreadId# -> a -> State# RealWorld -> State# RealWorld
with
has_side_effects = True
out_of_line = True
primop YieldOp "yield#" GenPrimOp
State# RealWorld -> State# RealWorld
with
has_side_effects = True
out_of_line = True
primop MyThreadIdOp "myThreadId#" GenPrimOp
State# RealWorld -> (# State# RealWorld, ThreadId# #)
with
has_side_effects = True
primop LabelThreadOp "labelThread#" GenPrimOp
ThreadId# -> Addr# -> State# RealWorld -> State# RealWorld
with
has_side_effects = True
out_of_line = True
primop IsCurrentThreadBoundOp "isCurrentThreadBound#" GenPrimOp
State# RealWorld -> (# State# RealWorld, Int# #)
with
out_of_line = True
has_side_effects = True
primop NoDuplicateOp "noDuplicate#" GenPrimOp
State# s -> State# s
with
out_of_line = True
has_side_effects = True
primop ThreadStatusOp "threadStatus#" GenPrimOp
ThreadId# -> State# RealWorld -> (# State# RealWorld, Int#, Int#, Int# #)
with
out_of_line = True
has_side_effects = True
------------------------------------------------------------------------
section "Weak pointers"
------------------------------------------------------------------------
primtype Weak# b
-- note that tyvar "o" denotes openAlphaTyVar
primop MkWeakOp "mkWeak#" GenPrimOp
o -> b -> (State# RealWorld -> (# State# RealWorld, c #))
-> State# RealWorld -> (# State# RealWorld, Weak# b #)
{ {\tt mkWeak# k v finalizer s} creates a weak reference to value {\tt k},
with an associated reference to some value {\tt v}. If {\tt k} is still
alive then {\tt v} can be retrieved using {\tt deRefWeak#}. Note that
the type of {\tt k} must be represented by a pointer (i.e. of kind {\tt
TYPE 'LiftedRep} or {\tt TYPE 'UnliftedRep}). }
with
has_side_effects = True
out_of_line = True
primop MkWeakNoFinalizerOp "mkWeakNoFinalizer#" GenPrimOp
o -> b -> State# RealWorld -> (# State# RealWorld, Weak# b #)
with
has_side_effects = True
out_of_line = True
primop AddCFinalizerToWeakOp "addCFinalizerToWeak#" GenPrimOp
Addr# -> Addr# -> Int# -> Addr# -> Weak# b
-> State# RealWorld -> (# State# RealWorld, Int# #)
{ {\tt addCFinalizerToWeak# fptr ptr flag eptr w} attaches a C
function pointer {\tt fptr} to a weak pointer {\tt w} as a finalizer. If
{\tt flag} is zero, {\tt fptr} will be called with one argument,
{\tt ptr}. Otherwise, it will be called with two arguments,
{\tt eptr} and {\tt ptr}. {\tt addCFinalizerToWeak#} returns
1 on success, or 0 if {\tt w} is already dead. }
with
has_side_effects = True
out_of_line = True
primop DeRefWeakOp "deRefWeak#" GenPrimOp
Weak# a -> State# RealWorld -> (# State# RealWorld, Int#, a #)
with
has_side_effects = True
out_of_line = True
primop FinalizeWeakOp "finalizeWeak#" GenPrimOp
Weak# a -> State# RealWorld -> (# State# RealWorld, Int#,
(State# RealWorld -> (# State# RealWorld, b #) ) #)
{ Finalize a weak pointer. The return value is an unboxed tuple
containing the new state of the world and an "unboxed Maybe",
represented by an {\tt Int#} and a (possibly invalid) finalization
action. An {\tt Int#} of {\tt 1} indicates that the finalizer is valid. The
return value {\tt b} from the finalizer should be ignored. }
with
has_side_effects = True
out_of_line = True
primop TouchOp "touch#" GenPrimOp
o -> State# RealWorld -> State# RealWorld
with
code_size = { 0 }
has_side_effects = True
------------------------------------------------------------------------
section "Stable pointers and names"
------------------------------------------------------------------------
primtype StablePtr# a
primtype StableName# a
primop MakeStablePtrOp "makeStablePtr#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
with
has_side_effects = True
out_of_line = True
primop DeRefStablePtrOp "deRefStablePtr#" GenPrimOp
StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
with
has_side_effects = True
out_of_line = True
primop EqStablePtrOp "eqStablePtr#" GenPrimOp
StablePtr# a -> StablePtr# a -> Int#
with
has_side_effects = True
primop MakeStableNameOp "makeStableName#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, StableName# a #)
with
has_side_effects = True
out_of_line = True
primop EqStableNameOp "eqStableName#" GenPrimOp
StableName# a -> StableName# b -> Int#
primop StableNameToIntOp "stableNameToInt#" GenPrimOp
StableName# a -> Int#
------------------------------------------------------------------------
section "Compact normal form"
{Primitives for working with compact regions. The {\tt ghc\-compact}
library and the {\tt compact} library demonstrate how to use these
primitives. The documentation below draws a distinction between
a CNF and a compact block. A CNF contains one or more compact
blocks. The source file {\tt rts\/sm\/CNF.c}
diagrams this relationship. When discussing a compact
block, an additional distinction is drawn between capacity and
utilized bytes. The capacity is the maximum number of bytes that
the compact block can hold. The utilized bytes is the number of
bytes that are actually used by the compact block.
}
------------------------------------------------------------------------
primtype Compact#
primop CompactNewOp "compactNew#" GenPrimOp
Word# -> State# RealWorld -> (# State# RealWorld, Compact# #)
{ Create a new CNF with a single compact block. The argument is
the capacity of the compact block (in bytes, not words).
The capacity is rounded up to a multiple of the allocator block size
and is capped to one mega block. }
with
has_side_effects = True
out_of_line = True
primop CompactResizeOp "compactResize#" GenPrimOp
Compact# -> Word# -> State# RealWorld ->
State# RealWorld
{ Set the new allocation size of the CNF. This value (in bytes)
determines the capacity of each compact block in the CNF. It
does not retroactively affect existing compact blocks in the CNF. }
with
has_side_effects = True
out_of_line = True
primop CompactContainsOp "compactContains#" GenPrimOp
Compact# -> a -> State# RealWorld -> (# State# RealWorld, Int# #)
{ Returns 1\# if the object is contained in the CNF, 0\# otherwise. }
with
out_of_line = True
primop CompactContainsAnyOp "compactContainsAny#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, Int# #)
{ Returns 1\# if the object is in any CNF at all, 0\# otherwise. }
with
out_of_line = True
primop CompactGetFirstBlockOp "compactGetFirstBlock#" GenPrimOp
Compact# -> State# RealWorld -> (# State# RealWorld, Addr#, Word# #)
{ Returns the address and the utilized size (in bytes) of the
first compact block of a CNF.}
with
out_of_line = True
primop CompactGetNextBlockOp "compactGetNextBlock#" GenPrimOp
Compact# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr#, Word# #)
{ Given a CNF and the address of one its compact blocks, returns the
next compact block and its utilized size, or {\tt nullAddr\#} if the
argument was the last compact block in the CNF. }
with
out_of_line = True
primop CompactAllocateBlockOp "compactAllocateBlock#" GenPrimOp
Word# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr# #)
{ Attempt to allocate a compact block with the capacity (in
bytes) given by the first argument. The {\texttt Addr\#} is a pointer
to previous compact block of the CNF or {\texttt nullAddr\#} to create a
new CNF with a single compact block.
The resulting block is not known to the GC until
{\texttt compactFixupPointers\#} is called on it, and care must be taken
so that the address does not escape or memory will be leaked.
}
with
has_side_effects = True
out_of_line = True
primop CompactFixupPointersOp "compactFixupPointers#" GenPrimOp
Addr# -> Addr# -> State# RealWorld -> (# State# RealWorld, Compact#, Addr# #)
{ Given the pointer to the first block of a CNF and the
address of the root object in the old address space, fix up
the internal pointers inside the CNF to account for
a different position in memory than when it was serialized.
This method must be called exactly once after importing
a serialized CNF. It returns the new CNF and the new adjusted
root address. }
with
has_side_effects = True
out_of_line = True
primop CompactAdd "compactAdd#" GenPrimOp
Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #)
{ Recursively add a closure and its transitive closure to a
{\texttt Compact\#} (a CNF), evaluating any unevaluated components
at the same time. Note: {\texttt compactAdd\#} is not thread-safe, so
only one thread may call {\texttt compactAdd\#} with a particular
{\texttt Compact\#} at any given time. The primop does not
enforce any mutual exclusion; the caller is expected to
arrange this. }
with
has_side_effects = True
out_of_line = True
primop CompactAddWithSharing "compactAddWithSharing#" GenPrimOp
Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #)
{ Like {\texttt compactAdd\#}, but retains sharing and cycles
during compaction. }
with
has_side_effects = True
out_of_line = True
primop CompactSize "compactSize#" GenPrimOp
Compact# -> State# RealWorld -> (# State# RealWorld, Word# #)
{ Return the total capacity (in bytes) of all the compact blocks
in the CNF. }
with
has_side_effects = True
out_of_line = True
------------------------------------------------------------------------
section "Unsafe pointer equality"
-- (#1 Bad Guy: Alastair Reid :)
------------------------------------------------------------------------
primop ReallyUnsafePtrEqualityOp "reallyUnsafePtrEquality#" GenPrimOp
a -> a -> Int#
{ Returns {\texttt 1\#} if the given pointers are equal and {\texttt 0\#} otherwise. }
with
can_fail = True -- See Note [reallyUnsafePtrEquality#]
-- Note [reallyUnsafePtrEquality#]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- reallyUnsafePtrEquality# can't actually fail, per se, but we mark it can_fail
-- anyway. Until 5a9a1738023a, GHC considered primops okay for speculation only
-- when their arguments were known to be forced. This was unnecessarily
-- conservative, but it prevented reallyUnsafePtrEquality# from floating out of
-- places where its arguments were known to be forced. Unfortunately, GHC could
-- sometimes lose track of whether those arguments were forced, leading to let/app
-- invariant failures (see #13027 and the discussion in #11444). Now that
-- ok_for_speculation skips over lifted arguments, we need to explicitly prevent
-- reallyUnsafePtrEquality# from floating out. Imagine if we had
--
-- \x y . case x of x'
-- DEFAULT ->
-- case y of y'
-- DEFAULT ->
-- let eq = reallyUnsafePtrEquality# x' y'
-- in ...
--
-- If the let floats out, we'll get
--
-- \x y . let eq = reallyUnsafePtrEquality# x y
-- in case x of ...
--
-- The trouble is that pointer equality between thunks is very different
-- from pointer equality between the values those thunks reduce to, and the latter
-- is typically much more precise.
------------------------------------------------------------------------
section "Parallelism"
------------------------------------------------------------------------
primop ParOp "par#" GenPrimOp
a -> Int#
with
-- Note that Par is lazy to avoid that the sparked thing
-- gets evaluated strictly, which it should *not* be
has_side_effects = True
code_size = { primOpCodeSizeForeignCall }
deprecated_msg = { Use 'spark#' instead }
primop SparkOp "spark#" GenPrimOp
a -> State# s -> (# State# s, a #)
with has_side_effects = True
code_size = { primOpCodeSizeForeignCall }
primop SeqOp "seq#" GenPrimOp
a -> State# s -> (# State# s, a #)
-- See Note [seq# magic] in GHC.Core.Op.ConstantFold
primop GetSparkOp "getSpark#" GenPrimOp
State# s -> (# State# s, Int#, a #)
with
has_side_effects = True
out_of_line = True
primop NumSparks "numSparks#" GenPrimOp
State# s -> (# State# s, Int# #)
{ Returns the number of sparks in the local spark pool. }
with
has_side_effects = True
out_of_line = True
------------------------------------------------------------------------
section "Tag to enum stuff"
{Convert back and forth between values of enumerated types
and small integers.}
------------------------------------------------------------------------
primop DataToTagOp "dataToTag#" GenPrimOp
a -> Int# -- Zero-indexed; the first constructor has tag zero
with
strictness = { \ _arity -> mkClosedStrictSig [evalDmd] topDiv }
-- See Note [dataToTag# magic] in GHC.Core.Op.ConstantFold
primop TagToEnumOp "tagToEnum#" GenPrimOp
Int# -> a
------------------------------------------------------------------------
section "Bytecode operations"
{Support for manipulating bytecode objects used by the interpreter and
linker.
Bytecode objects are heap objects which represent top-level bindings and
contain a list of instructions and data needed by these instructions.}
------------------------------------------------------------------------
primtype BCO
{ Primitive bytecode type. }
primop AddrToAnyOp "addrToAny#" GenPrimOp
Addr# -> (# a #)
{ Convert an {\tt Addr\#} to a followable Any type. }
with
code_size = 0
primop AnyToAddrOp "anyToAddr#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, Addr# #)
{ Retrieve the address of any Haskell value. This is
essentially an {\texttt unsafeCoerce\#}, but if implemented as such
the core lint pass complains and fails to compile.
As a primop, it is opaque to core/stg, and only appears
in cmm (where the copy propagation pass will get rid of it).
Note that "a" must be a value, not a thunk! It's too late
for strictness analysis to enforce this, so you're on your
own to guarantee this. Also note that {\texttt Addr\#} is not a GC
pointer - up to you to guarantee that it does not become
a dangling pointer immediately after you get it.}
with
code_size = 0
primop MkApUpd0_Op "mkApUpd0#" GenPrimOp
BCO -> (# a #)
{ Wrap a BCO in a {\tt AP_UPD} thunk which will be updated with the value of
the BCO when evaluated. }
with
out_of_line = True
primop NewBCOOp "newBCO#" GenPrimOp
ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# s -> (# State# s, BCO #)
{ {\tt newBCO\# instrs lits ptrs arity bitmap} creates a new bytecode object. The
resulting object encodes a function of the given arity with the instructions
encoded in {\tt instrs}, and a static reference table usage bitmap given by
{\tt bitmap}. }
with
has_side_effects = True
out_of_line = True
primop UnpackClosureOp "unpackClosure#" GenPrimOp
a -> (# Addr#, ByteArray#, Array# b #)
{ {\tt unpackClosure\# closure} copies the closure and pointers in the
payload of the given closure into two new arrays, and returns a pointer to
the first word of the closure's info table, a non-pointer array for the raw
bytes of the closure, and a pointer array for the pointers in the payload. }
with
out_of_line = True
primop ClosureSizeOp "closureSize#" GenPrimOp
a -> Int#
{ {\tt closureSize\# closure} returns the size of the given closure in
machine words. }
with
out_of_line = True
primop GetApStackValOp "getApStackVal#" GenPrimOp
a -> Int# -> (# Int#, b #)
with
out_of_line = True
------------------------------------------------------------------------
section "Misc"
{These aren't nearly as wired in as Etc...}
------------------------------------------------------------------------
primtype Void#
primop GetCCSOfOp "getCCSOf#" GenPrimOp
a -> State# s -> (# State# s, Addr# #)
primop GetCurrentCCSOp "getCurrentCCS#" GenPrimOp
a -> State# s -> (# State# s, Addr# #)
{ Returns the current {\tt CostCentreStack} (value is {\tt NULL} if
not profiling). Takes a dummy argument which can be used to
avoid the call to {\tt getCurrentCCS\#} being floated out by the
simplifier, which would result in an uninformative stack
("CAF"). }
primop ClearCCSOp "clearCCS#" GenPrimOp
(State# s -> (# State# s, a #)) -> State# s -> (# State# s, a #)
{ Run the supplied IO action with an empty CCS. For example, this
is used by the interpreter to run an interpreted computation
without the call stack showing that it was invoked from GHC. }
with
out_of_line = True
------------------------------------------------------------------------
section "Etc"
{Miscellaneous built-ins}
------------------------------------------------------------------------
primtype Proxy# a
{ The type constructor {\tt Proxy#} is used to bear witness to some
type variable. It's used when you want to pass around proxy values
for doing things like modelling type applications. A {\tt Proxy#}
is not only unboxed, it also has a polymorphic kind, and has no
runtime representation, being totally free. }
pseudoop "proxy#"
Proxy# a
{ Witness for an unboxed {\tt Proxy#} value, which has no runtime
representation. }
pseudoop "seq"
a -> b -> b
{ The value of {\tt seq a b} is bottom if {\tt a} is bottom, and
otherwise equal to {\tt b}. In other words, it evaluates the first
argument {\tt a} to weak head normal form (WHNF). {\tt seq} is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression {\tt seq a b} does
{\it not} guarantee that {\tt a} will be evaluated before {\tt b}.
The only guarantee given by {\tt seq} is that the both {\tt a}
and {\tt b} will be evaluated before {\tt seq} returns a value.
In particular, this means that {\tt b} may be evaluated before
{\tt a}. If you need to guarantee a specific order of evaluation,
you must use the function {\tt pseq} from the "parallel" package. }
with fixity = infixr 0
-- This fixity is only the one picked up by Haddock. If you
-- change this, do update 'ghcPrimIface' in 'GHC.Iface.Load'.
pseudoop "unsafeCoerce#"
a -> b
{ The function {\tt unsafeCoerce\#} allows you to side-step the typechecker entirely. That
is, it allows you to coerce any type into any other type. If you use this function,
you had better get it right, otherwise segmentation faults await. It is generally
used when you want to write a program that you know is well-typed, but where Haskell's
type system is not expressive enough to prove that it is well typed.
The following uses of {\tt unsafeCoerce\#} are supposed to work (i.e. not lead to
spurious compile-time or run-time crashes):
* Casting any lifted type to {\tt Any}
* Casting {\tt Any} back to the real type
* Casting an unboxed type to another unboxed type of the same size.
(Casting between floating-point and integral types does not work.
See the {\tt GHC.Float} module for functions to do work.)
* Casting between two types that have the same runtime representation. One case is when
the two types differ only in "phantom" type parameters, for example
{\tt Ptr Int} to {\tt Ptr Float}, or {\tt [Int]} to {\tt [Float]} when the list is
known to be empty. Also, a {\tt newtype} of a type {\tt T} has the same representation
at runtime as {\tt T}.
Other uses of {\tt unsafeCoerce\#} are undefined. In particular, you should not use
{\tt unsafeCoerce\#} to cast a T to an algebraic data type D, unless T is also
an algebraic data type. For example, do not cast {\tt Int->Int} to {\tt Bool}, even if
you later cast that {\tt Bool} back to {\tt Int->Int} before applying it. The reasons
have to do with GHC's internal representation details (for the cognoscenti, data values
can be entered but function closures cannot). If you want a safe type to cast things
to, use {\tt Any}, which is not an algebraic data type.
}
with can_fail = True
-- NB. It is tempting to think that casting a value to a type that it doesn't have is safe
-- as long as you don't "do anything" with the value in its cast form, such as seq on it. This
-- isn't the case: the compiler can insert seqs itself, and if these happen at the wrong type,
-- Bad Things Might Happen. See bug #1616: in this case we cast a function of type (a,b) -> (a,b)
-- to () -> () and back again. The strictness analyser saw that the function was strict, but
-- the wrapper had type () -> (), and hence the wrapper de-constructed the (), the worker re-constructed
-- a new (), with the result that the code ended up with "case () of (a,b) -> ...".
primop TraceEventOp "traceEvent#" GenPrimOp
Addr# -> State# s -> State# s
{ Emits an event via the RTS tracing framework. The contents
of the event is the zero-terminated byte string passed as the first
argument. The event will be emitted either to the {\tt .eventlog} file,
or to stderr, depending on the runtime RTS flags. }
with
has_side_effects = True
out_of_line = True
primop TraceEventBinaryOp "traceBinaryEvent#" GenPrimOp
Addr# -> Int# -> State# s -> State# s
{ Emits an event via the RTS tracing framework. The contents
of the event is the binary object passed as the first argument with
the the given length passed as the second argument. The event will be
emitted to the {\tt .eventlog} file. }
with
has_side_effects = True
out_of_line = True
primop TraceMarkerOp "traceMarker#" GenPrimOp
Addr# -> State# s -> State# s
{ Emits a marker event via the RTS tracing framework. The contents
of the event is the zero-terminated byte string passed as the first
argument. The event will be emitted either to the {\tt .eventlog} file,
or to stderr, depending on the runtime RTS flags. }
with
has_side_effects = True
out_of_line = True
primop SetThreadAllocationCounter "setThreadAllocationCounter#" GenPrimOp
INT64 -> State# RealWorld -> State# RealWorld
{ Sets the allocation counter for the current thread to the given value. }
with
has_side_effects = True
out_of_line = True
------------------------------------------------------------------------
section "Safe coercions"
------------------------------------------------------------------------
pseudoop "coerce"
Coercible a b => a -> b
{ The function {\tt coerce} allows you to safely convert between values of
types that have the same representation with no run-time overhead. In the
simplest case you can use it instead of a newtype constructor, to go from
the newtype's concrete type to the abstract type. But it also works in
more complicated settings, e.g. converting a list of newtypes to a list of
concrete types.
This function is runtime-representation polymorphic, but the
{\tt RuntimeRep} type argument is marked as {\tt Inferred}, meaning
that it is not available for visible type application. This means
the typechecker will accept {\tt coerce @Int @Age 42}.
}
------------------------------------------------------------------------
section "SIMD Vectors"
{Operations on SIMD vectors.}
------------------------------------------------------------------------
#define ALL_VECTOR_TYPES \
[<Int8,Int#,16>,<Int16,Int#,8>,<Int32,INT32,4>,<Int64,INT64,2> \
,<Int8,Int#,32>,<Int16,Int#,16>,<Int32,INT32,8>,<Int64,INT64,4> \
,<Int8,Int#,64>,<Int16,Int#,32>,<Int32,INT32,16>,<Int64,INT64,8> \
,<Word8,Word#,16>,<Word16,Word#,8>,<Word32,WORD32,4>,<Word64,WORD64,2> \
,<Word8,Word#,32>,<Word16,Word#,16>,<Word32,WORD32,8>,<Word64,WORD64,4> \
,<Word8,Word#,64>,<Word16,Word#,32>,<Word32,WORD32,16>,<Word64,WORD64,8> \
,<Float,Float#,4>,<Double,Double#,2> \
,<Float,Float#,8>,<Double,Double#,4> \
,<Float,Float#,16>,<Double,Double#,8>]
#define SIGNED_VECTOR_TYPES \
[<Int8,Int#,16>,<Int16,Int#,8>,<Int32,INT32,4>,<Int64,INT64,2> \
,<Int8,Int#,32>,<Int16,Int#,16>,<Int32,INT32,8>,<Int64,INT64,4> \
,<Int8,Int#,64>,<Int16,Int#,32>,<Int32,INT32,16>,<Int64,INT64,8> \
,<Float,Float#,4>,<Double,Double#,2> \
,<Float,Float#,8>,<Double,Double#,4> \
,<Float,Float#,16>,<Double,Double#,8>]
#define FLOAT_VECTOR_TYPES \
[<Float,Float#,4>,<Double,Double#,2> \
,<Float,Float#,8>,<Double,Double#,4> \
,<Float,Float#,16>,<Double,Double#,8>]
#define INT_VECTOR_TYPES \
[<Int8,Int#,16>,<Int16,Int#,8>,<Int32,INT32,4>,<Int64,INT64,2> \
,<Int8,Int#,32>,<Int16,Int#,16>,<Int32,INT32,8>,<Int64,INT64,4> \
,<Int8,Int#,64>,<Int16,Int#,32>,<Int32,INT32,16>,<Int64,INT64,8> \
,<Word8,Word#,16>,<Word16,Word#,8>,<Word32,WORD32,4>,<Word64,WORD64,2> \
,<Word8,Word#,32>,<Word16,Word#,16>,<Word32,WORD32,8>,<Word64,WORD64,4> \
,<Word8,Word#,64>,<Word16,Word#,32>,<Word32,WORD32,16>,<Word64,WORD64,8>]
primtype VECTOR
with llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecBroadcastOp "broadcast#" GenPrimOp
SCALAR -> VECTOR
{ Broadcast a scalar to all elements of a vector. }
with llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecPackOp "pack#" GenPrimOp
VECTUPLE -> VECTOR
{ Pack the elements of an unboxed tuple into a vector. }
with llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecUnpackOp "unpack#" GenPrimOp
VECTOR -> VECTUPLE
{ Unpack the elements of a vector into an unboxed tuple. #}
with llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecInsertOp "insert#" GenPrimOp
VECTOR -> SCALAR -> Int# -> VECTOR
{ Insert a scalar at the given position in a vector. }
with can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecAddOp "plus#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Add two vectors element-wise. }
with commutable = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecSubOp "minus#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Subtract two vectors element-wise. }
with llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecMulOp "times#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Multiply two vectors element-wise. }
with commutable = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecDivOp "divide#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Divide two vectors element-wise. }
with can_fail = True
llvm_only = True
vector = FLOAT_VECTOR_TYPES
primop VecQuotOp "quot#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Rounds towards zero element-wise. }
with can_fail = True
llvm_only = True
vector = INT_VECTOR_TYPES
primop VecRemOp "rem#" Dyadic
VECTOR -> VECTOR -> VECTOR
{ Satisfies \texttt{(quot\# x y) times\# y plus\# (rem\# x y) == x}. }
with can_fail = True
llvm_only = True
vector = INT_VECTOR_TYPES
primop VecNegOp "negate#" Monadic
VECTOR -> VECTOR
{ Negate element-wise. }
with llvm_only = True
vector = SIGNED_VECTOR_TYPES
primop VecIndexByteArrayOp "indexArray#" GenPrimOp
ByteArray# -> Int# -> VECTOR
{ Read a vector from specified index of immutable array. }
with can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecReadByteArrayOp "readArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, VECTOR #)
{ Read a vector from specified index of mutable array. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecWriteByteArrayOp "writeArray#" GenPrimOp
MutableByteArray# s -> Int# -> VECTOR -> State# s -> State# s
{ Write a vector to specified index of mutable array. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecIndexOffAddrOp "indexOffAddr#" GenPrimOp
Addr# -> Int# -> VECTOR
{ Reads vector; offset in bytes. }
with can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecReadOffAddrOp "readOffAddr#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, VECTOR #)
{ Reads vector; offset in bytes. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecWriteOffAddrOp "writeOffAddr#" GenPrimOp
Addr# -> Int# -> VECTOR -> State# s -> State# s
{ Write vector; offset in bytes. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecIndexScalarByteArrayOp "indexArrayAs#" GenPrimOp
ByteArray# -> Int# -> VECTOR
{ Read a vector from specified index of immutable array of scalars; offset is in scalar elements. }
with can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecReadScalarByteArrayOp "readArrayAs#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, VECTOR #)
{ Read a vector from specified index of mutable array of scalars; offset is in scalar elements. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecWriteScalarByteArrayOp "writeArrayAs#" GenPrimOp
MutableByteArray# s -> Int# -> VECTOR -> State# s -> State# s
{ Write a vector to specified index of mutable array of scalars; offset is in scalar elements. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecIndexScalarOffAddrOp "indexOffAddrAs#" GenPrimOp
Addr# -> Int# -> VECTOR
{ Reads vector; offset in scalar elements. }
with can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecReadScalarOffAddrOp "readOffAddrAs#" GenPrimOp
Addr# -> Int# -> State# s -> (# State# s, VECTOR #)
{ Reads vector; offset in scalar elements. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
primop VecWriteScalarOffAddrOp "writeOffAddrAs#" GenPrimOp
Addr# -> Int# -> VECTOR -> State# s -> State# s
{ Write vector; offset in scalar elements. }
with has_side_effects = True
can_fail = True
llvm_only = True
vector = ALL_VECTOR_TYPES
------------------------------------------------------------------------
section "Prefetch"
{Prefetch operations: Note how every prefetch operation has a name
with the pattern prefetch*N#, where N is either 0,1,2, or 3.
This suffix number, N, is the "locality level" of the prefetch, following the
convention in GCC and other compilers.
Higher locality numbers correspond to the memory being loaded in more
levels of the cpu cache, and being retained after initial use. The naming
convention follows the naming convention of the prefetch intrinsic found
in the GCC and Clang C compilers.
On the LLVM backend, prefetch*N# uses the LLVM prefetch intrinsic
with locality level N. The code generated by LLVM is target architecture
dependent, but should agree with the GHC NCG on x86 systems.
On the Sparc and PPC native backends, prefetch*N is a No-Op.
On the x86 NCG, N=0 will generate prefetchNTA,
N=1 generates prefetcht2, N=2 generates prefetcht1, and
N=3 generates prefetcht0.
For streaming workloads, the prefetch*0 operations are recommended.
For workloads which do many reads or writes to a memory location in a short period of time,
prefetch*3 operations are recommended.
For further reading about prefetch and associated systems performance optimization,
the instruction set and optimization manuals by Intel and other CPU vendors are
excellent starting place.
The "Intel 64 and IA-32 Architectures Optimization Reference Manual" is
especially a helpful read, even if your software is meant for other CPU
architectures or vendor hardware. The manual can be found at
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html .
The {\tt prefetch*} family of operations has the order of operations
determined by passing around the {\tt State#} token.
To get a "pure" version of these operations, use {\tt inlinePerformIO} which is quite safe in this context.
It is important to note that while the prefetch operations will never change the
answer to a pure computation, They CAN change the memory locations resident
in a CPU cache and that may change the performance and timing characteristics
of an application. The prefetch operations are marked has_side_effects=True
to reflect that these operations have side effects with respect to the runtime
performance characteristics of the resulting code. Additionally, if the prefetchValue
operations did not have this attribute, GHC does a float out transformation that
results in a let/app violation, at least with the current design.
}
------------------------------------------------------------------------
--- the Int# argument for prefetch is the byte offset on the byteArray or Addr#
---
primop PrefetchByteArrayOp3 "prefetchByteArray3#" GenPrimOp
ByteArray# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchMutableByteArrayOp3 "prefetchMutableByteArray3#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchAddrOp3 "prefetchAddr3#" GenPrimOp
Addr# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchValueOp3 "prefetchValue3#" GenPrimOp
a -> State# s -> State# s
with strictness = { \ _arity -> mkClosedStrictSig [botDmd, topDmd] topDiv }
has_side_effects = True
----
primop PrefetchByteArrayOp2 "prefetchByteArray2#" GenPrimOp
ByteArray# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchMutableByteArrayOp2 "prefetchMutableByteArray2#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchAddrOp2 "prefetchAddr2#" GenPrimOp
Addr# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchValueOp2 "prefetchValue2#" GenPrimOp
a -> State# s -> State# s
with strictness = { \ _arity -> mkClosedStrictSig [botDmd, topDmd] topDiv }
has_side_effects = True
----
primop PrefetchByteArrayOp1 "prefetchByteArray1#" GenPrimOp
ByteArray# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchMutableByteArrayOp1 "prefetchMutableByteArray1#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchAddrOp1 "prefetchAddr1#" GenPrimOp
Addr# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchValueOp1 "prefetchValue1#" GenPrimOp
a -> State# s -> State# s
with strictness = { \ _arity -> mkClosedStrictSig [botDmd, topDmd] topDiv }
has_side_effects = True
----
primop PrefetchByteArrayOp0 "prefetchByteArray0#" GenPrimOp
ByteArray# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchMutableByteArrayOp0 "prefetchMutableByteArray0#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchAddrOp0 "prefetchAddr0#" GenPrimOp
Addr# -> Int# -> State# s -> State# s
with has_side_effects = True
primop PrefetchValueOp0 "prefetchValue0#" GenPrimOp
a -> State# s -> State# s
with strictness = { \ _arity -> mkClosedStrictSig [botDmd, topDmd] topDiv }
has_side_effects = True
------------------------------------------------------------------------
--- ---
------------------------------------------------------------------------
thats_all_folks
|