summaryrefslogtreecommitdiff
path: root/compiler/GHC/Cmm/CommonBlockElim.hs
blob: 575e041e73384a756a725e64847ee2354bd5db5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
{-# LANGUAGE GADTs, BangPatterns, ScopedTypeVariables #-}

module GHC.Cmm.CommonBlockElim
  ( elimCommonBlocks
  )
where


import GhcPrelude hiding (iterate, succ, unzip, zip)

import GHC.Cmm.BlockId
import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Cmm.Switch (eqSwitchTargetWith)
import GHC.Cmm.ContFlowOpt

import GHC.Cmm.Dataflow.Block
import GHC.Cmm.Dataflow.Graph
import GHC.Cmm.Dataflow.Label
import GHC.Cmm.Dataflow.Collections
import Data.Bits
import Data.Maybe (mapMaybe)
import qualified Data.List as List
import Data.Word
import qualified Data.Map as M
import Outputable
import qualified TrieMap as TM
import GHC.Types.Unique.FM
import GHC.Types.Unique
import Control.Arrow (first, second)

-- -----------------------------------------------------------------------------
-- Eliminate common blocks

-- If two blocks are identical except for the label on the first node,
-- then we can eliminate one of the blocks. To ensure that the semantics
-- of the program are preserved, we have to rewrite each predecessor of the
-- eliminated block to proceed with the block we keep.

-- The algorithm iterates over the blocks in the graph,
-- checking whether it has seen another block that is equal modulo labels.
-- If so, then it adds an entry in a map indicating that the new block
-- is made redundant by the old block.
-- Otherwise, it is added to the useful blocks.

-- To avoid comparing every block with every other block repeatedly, we group
-- them by
--   * a hash of the block, ignoring labels (explained below)
--   * the list of outgoing labels
-- The hash is invariant under relabeling, so we only ever compare within
-- the same group of blocks.
--
-- The list of outgoing labels is updated as we merge blocks (that is why they
-- are not included in the hash, which we want to calculate only once).
--
-- All in all, two blocks should never be compared if they have different
-- hashes, and at most once otherwise. Previously, we were slower, and people
-- rightfully complained: #10397

-- TODO: Use optimization fuel
elimCommonBlocks :: CmmGraph -> CmmGraph
elimCommonBlocks g = replaceLabels env $ copyTicks env g
  where
     env = iterate mapEmpty blocks_with_key
     -- The order of blocks doesn't matter here. While we could use
     -- revPostorder which drops unreachable blocks this is done in
     -- ContFlowOpt already which runs before this pass. So we use
     -- toBlockList since it is faster.
     groups = groupByInt hash_block (toBlockList g) :: [[CmmBlock]]
     blocks_with_key = [ [ (successors b, [b]) | b <- bs] | bs <- groups]

-- Invariant: The blocks in the list are pairwise distinct
-- (so avoid comparing them again)
type DistinctBlocks = [CmmBlock]
type Key = [Label]
type Subst = LabelMap BlockId

-- The outer list groups by hash. We retain this grouping throughout.
iterate :: Subst -> [[(Key, DistinctBlocks)]] -> Subst
iterate subst blocks
    | mapNull new_substs = subst
    | otherwise = iterate subst' updated_blocks
  where
    grouped_blocks :: [[(Key, [DistinctBlocks])]]
    grouped_blocks = map groupByLabel blocks

    merged_blocks :: [[(Key, DistinctBlocks)]]
    (new_substs, merged_blocks) = List.mapAccumL (List.mapAccumL go) mapEmpty grouped_blocks
      where
        go !new_subst1 (k,dbs) = (new_subst1 `mapUnion` new_subst2, (k,db))
          where
            (new_subst2, db) = mergeBlockList subst dbs

    subst' = subst `mapUnion` new_substs
    updated_blocks = map (map (first (map (lookupBid subst')))) merged_blocks

-- Combine two lists of blocks.
-- While they are internally distinct they can still share common blocks.
mergeBlocks :: Subst -> DistinctBlocks -> DistinctBlocks -> (Subst, DistinctBlocks)
mergeBlocks subst existing new = go new
  where
    go [] = (mapEmpty, existing)
    go (b:bs) = case List.find (eqBlockBodyWith (eqBid subst) b) existing of
        -- This block is a duplicate. Drop it, and add it to the substitution
        Just b' -> first (mapInsert (entryLabel b) (entryLabel b')) $ go bs
        -- This block is not a duplicate, keep it.
        Nothing -> second (b:) $ go bs

mergeBlockList :: Subst -> [DistinctBlocks] -> (Subst, DistinctBlocks)
mergeBlockList _ [] = pprPanic "mergeBlockList" empty
mergeBlockList subst (b:bs) = go mapEmpty b bs
  where
    go !new_subst1 b [] = (new_subst1, b)
    go !new_subst1 b1 (b2:bs) = go new_subst b bs
      where
        (new_subst2, b) =  mergeBlocks subst b1 b2
        new_subst = new_subst1 `mapUnion` new_subst2


-- -----------------------------------------------------------------------------
-- Hashing and equality on blocks

-- Below here is mostly boilerplate: hashing blocks ignoring labels,
-- and comparing blocks modulo a label mapping.

-- To speed up comparisons, we hash each basic block modulo jump labels.
-- The hashing is a bit arbitrary (the numbers are completely arbitrary),
-- but it should be fast and good enough.

-- We want to get as many small buckets as possible, as comparing blocks is
-- expensive. So include as much as possible in the hash. Ideally everything
-- that is compared with (==) in eqBlockBodyWith.

type HashCode = Int

hash_block :: CmmBlock -> HashCode
hash_block block =
  fromIntegral (foldBlockNodesB3 (hash_fst, hash_mid, hash_lst) block (0 :: Word32) .&. (0x7fffffff :: Word32))
  -- UniqFM doesn't like negative Ints
  where hash_fst _ h = h
        hash_mid m h = hash_node m + h `shiftL` 1
        hash_lst m h = hash_node m + h `shiftL` 1

        hash_node :: CmmNode O x -> Word32
        hash_node n | dont_care n = 0 -- don't care
        hash_node (CmmAssign r e) = hash_reg r + hash_e e
        hash_node (CmmStore e e') = hash_e e + hash_e e'
        hash_node (CmmUnsafeForeignCall t _ as) = hash_tgt t + hash_list hash_e as
        hash_node (CmmBranch _) = 23 -- NB. ignore the label
        hash_node (CmmCondBranch p _ _ _) = hash_e p
        hash_node (CmmCall e _ _ _ _ _) = hash_e e
        hash_node (CmmForeignCall t _ _ _ _ _ _) = hash_tgt t
        hash_node (CmmSwitch e _) = hash_e e
        hash_node _ = error "hash_node: unknown Cmm node!"

        hash_reg :: CmmReg -> Word32
        hash_reg   (CmmLocal localReg) = hash_unique localReg -- important for performance, see #10397
        hash_reg   (CmmGlobal _)    = 19

        hash_e :: CmmExpr -> Word32
        hash_e (CmmLit l) = hash_lit l
        hash_e (CmmLoad e _) = 67 + hash_e e
        hash_e (CmmReg r) = hash_reg r
        hash_e (CmmMachOp _ es) = hash_list hash_e es -- pessimal - no operator check
        hash_e (CmmRegOff r i) = hash_reg r + cvt i
        hash_e (CmmStackSlot _ _) = 13

        hash_lit :: CmmLit -> Word32
        hash_lit (CmmInt i _) = fromInteger i
        hash_lit (CmmFloat r _) = truncate r
        hash_lit (CmmVec ls) = hash_list hash_lit ls
        hash_lit (CmmLabel _) = 119 -- ugh
        hash_lit (CmmLabelOff _ i) = cvt $ 199 + i
        hash_lit (CmmLabelDiffOff _ _ i _) = cvt $ 299 + i
        hash_lit (CmmBlock _) = 191 -- ugh
        hash_lit (CmmHighStackMark) = cvt 313

        hash_tgt (ForeignTarget e _) = hash_e e
        hash_tgt (PrimTarget _) = 31 -- lots of these

        hash_list f = foldl' (\z x -> f x + z) (0::Word32)

        cvt = fromInteger . toInteger

        hash_unique :: Uniquable a => a -> Word32
        hash_unique = cvt . getKey . getUnique

-- | Ignore these node types for equality
dont_care :: CmmNode O x -> Bool
dont_care CmmComment {}  = True
dont_care CmmTick {}     = True
dont_care CmmUnwind {}   = True
dont_care _other         = False

-- Utilities: equality and substitution on the graph.

-- Given a map ``subst'' from BlockID -> BlockID, we define equality.
eqBid :: LabelMap BlockId -> BlockId -> BlockId -> Bool
eqBid subst bid bid' = lookupBid subst bid == lookupBid subst bid'
lookupBid :: LabelMap BlockId -> BlockId -> BlockId
lookupBid subst bid = case mapLookup bid subst of
                        Just bid  -> lookupBid subst bid
                        Nothing -> bid

-- Middle nodes and expressions can contain BlockIds, in particular in
-- CmmStackSlot and CmmBlock, so we have to use a special equality for
-- these.
--
eqMiddleWith :: (BlockId -> BlockId -> Bool)
             -> CmmNode O O -> CmmNode O O -> Bool
eqMiddleWith eqBid (CmmAssign r1 e1) (CmmAssign r2 e2)
  = r1 == r2 && eqExprWith eqBid e1 e2
eqMiddleWith eqBid (CmmStore l1 r1) (CmmStore l2 r2)
  = eqExprWith eqBid l1 l2 && eqExprWith eqBid r1 r2
eqMiddleWith eqBid (CmmUnsafeForeignCall t1 r1 a1)
                   (CmmUnsafeForeignCall t2 r2 a2)
  = t1 == t2 && r1 == r2 && eqListWith (eqExprWith eqBid) a1 a2
eqMiddleWith _ _ _ = False

eqExprWith :: (BlockId -> BlockId -> Bool)
           -> CmmExpr -> CmmExpr -> Bool
eqExprWith eqBid = eq
 where
  CmmLit l1          `eq` CmmLit l2          = eqLit l1 l2
  CmmLoad e1 _       `eq` CmmLoad e2 _       = e1 `eq` e2
  CmmReg r1          `eq` CmmReg r2          = r1==r2
  CmmRegOff r1 i1    `eq` CmmRegOff r2 i2    = r1==r2 && i1==i2
  CmmMachOp op1 es1  `eq` CmmMachOp op2 es2  = op1==op2 && es1 `eqs` es2
  CmmStackSlot a1 i1 `eq` CmmStackSlot a2 i2 = eqArea a1 a2 && i1==i2
  _e1                `eq` _e2                = False

  xs `eqs` ys = eqListWith eq xs ys

  eqLit (CmmBlock id1) (CmmBlock id2) = eqBid id1 id2
  eqLit l1 l2 = l1 == l2

  eqArea Old Old = True
  eqArea (Young id1) (Young id2) = eqBid id1 id2
  eqArea _ _ = False

-- Equality on the body of a block, modulo a function mapping block
-- IDs to block IDs.
eqBlockBodyWith :: (BlockId -> BlockId -> Bool) -> CmmBlock -> CmmBlock -> Bool
eqBlockBodyWith eqBid block block'
  {-
  | equal     = pprTrace "equal" (vcat [ppr block, ppr block']) True
  | otherwise = pprTrace "not equal" (vcat [ppr block, ppr block']) False
  -}
  = equal
  where (_,m,l)   = blockSplit block
        nodes     = filter (not . dont_care) (blockToList m)
        (_,m',l') = blockSplit block'
        nodes'    = filter (not . dont_care) (blockToList m')

        equal = eqListWith (eqMiddleWith eqBid) nodes nodes' &&
                eqLastWith eqBid l l'


eqLastWith :: (BlockId -> BlockId -> Bool) -> CmmNode O C -> CmmNode O C -> Bool
eqLastWith eqBid (CmmBranch bid1) (CmmBranch bid2) = eqBid bid1 bid2
eqLastWith eqBid (CmmCondBranch c1 t1 f1 l1) (CmmCondBranch c2 t2 f2 l2) =
  c1 == c2 && l1 == l2 && eqBid t1 t2 && eqBid f1 f2
eqLastWith eqBid (CmmCall t1 c1 g1 a1 r1 u1) (CmmCall t2 c2 g2 a2 r2 u2) =
  t1 == t2 && eqMaybeWith eqBid c1 c2 && a1 == a2 && r1 == r2 && u1 == u2 && g1 == g2
eqLastWith eqBid (CmmSwitch e1 ids1) (CmmSwitch e2 ids2) =
  e1 == e2 && eqSwitchTargetWith eqBid ids1 ids2
eqLastWith _ _ _ = False

eqMaybeWith :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool
eqMaybeWith eltEq (Just e) (Just e') = eltEq e e'
eqMaybeWith _ Nothing Nothing = True
eqMaybeWith _ _ _ = False

eqListWith :: (a -> b -> Bool) -> [a] -> [b] -> Bool
eqListWith f (a : as) (b : bs) = f a b && eqListWith f as bs
eqListWith _ []       []       = True
eqListWith _ _        _        = False

-- | Given a block map, ensure that all "target" blocks are covered by
-- the same ticks as the respective "source" blocks. This not only
-- means copying ticks, but also adjusting tick scopes where
-- necessary.
copyTicks :: LabelMap BlockId -> CmmGraph -> CmmGraph
copyTicks env g
  | mapNull env = g
  | otherwise   = ofBlockMap (g_entry g) $ mapMap copyTo blockMap
  where -- Reverse block merge map
        blockMap = toBlockMap g
        revEnv = mapFoldlWithKey insertRev M.empty env
        insertRev m k x = M.insertWith (const (k:)) x [k] m
        -- Copy ticks and scopes into the given block
        copyTo block = case M.lookup (entryLabel block) revEnv of
          Nothing -> block
          Just ls -> foldr copy block $ mapMaybe (flip mapLookup blockMap) ls
        copy from to =
          let ticks = blockTicks from
              CmmEntry  _   scp0        = firstNode from
              (CmmEntry lbl scp1, code) = blockSplitHead to
          in CmmEntry lbl (combineTickScopes scp0 scp1) `blockJoinHead`
             foldr blockCons code (map CmmTick ticks)

-- Group by [Label]
-- See Note [Compressed TrieMap] in GHC.Core.Map about the usage of GenMap.
groupByLabel :: [(Key, DistinctBlocks)] -> [(Key, [DistinctBlocks])]
groupByLabel =
  go (TM.emptyTM :: TM.ListMap (TM.GenMap LabelMap) (Key, [DistinctBlocks]))
    where
      go !m [] = TM.foldTM (:) m []
      go !m ((k,v) : entries) = go (TM.alterTM k adjust m) entries
        where --k' = map (getKey . getUnique) k
              adjust Nothing       = Just (k,[v])
              adjust (Just (_,vs)) = Just (k,v:vs)

groupByInt :: (a -> Int) -> [a] -> [[a]]
groupByInt f xs = nonDetEltsUFM $ List.foldl' go emptyUFM xs
   -- See Note [Unique Determinism and code generation]
  where
    go m x = alterUFM addEntry m (f x)
      where
        addEntry xs = Just $! maybe [x] (x:) xs