summaryrefslogtreecommitdiff
path: root/compiler/GHC/Cmm/Dataflow/Block.hs
blob: 1fa8d4dfd668d44da2d3205f95601bab12423b9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
module GHC.Cmm.Dataflow.Block
    ( Extensibility (..)
    , O
    , C
    , MaybeO(..)
    , IndexedCO
    , Block(..)
    , blockAppend
    , blockCons
    , blockFromList
    , blockJoin
    , blockJoinHead
    , blockJoinTail
    , blockSnoc
    , blockSplit
    , blockSplitHead
    , blockSplitTail
    , blockToList
    , emptyBlock
    , firstNode
    , foldBlockNodesB
    , foldBlockNodesB3
    , foldBlockNodesF
    , isEmptyBlock
    , lastNode
    , mapBlock
    , mapBlock'
    , mapBlock3'
    , replaceFirstNode
    , replaceLastNode
    ) where

import GHC.Prelude

-- -----------------------------------------------------------------------------
-- Shapes: Open and Closed

-- | Used at the type level to indicate "open" vs "closed" structure.
data Extensibility
  -- | An "open" structure with a unique, unnamed control-flow edge flowing in
  -- or out. "Fallthrough" and concatenation are permitted at an open point.
  = Open
  -- | A "closed" structure which supports control transfer only through the use
  -- of named labels---no "fallthrough" is permitted. The number of control-flow
  -- edges is unconstrained.
  | Closed

type O = 'Open
type C = 'Closed

-- | Either type indexed by closed/open using type families
type family IndexedCO (ex :: Extensibility) (a :: k) (b :: k) :: k
type instance IndexedCO C a _b = a
type instance IndexedCO O _a b = b

-- | Maybe type indexed by open/closed
data MaybeO ex t where
  JustO    :: t -> MaybeO O t
  NothingO ::      MaybeO C t

deriving instance Functor (MaybeO ex)

-- -----------------------------------------------------------------------------
-- The Block type

-- | A sequence of nodes.  May be any of four shapes (O/O, O/C, C/O, C/C).
-- Open at the entry means single entry, mutatis mutandis for exit.
-- A closed/closed block is a /basic/ block and can't be extended further.
-- Clients should avoid manipulating blocks and should stick to either nodes
-- or graphs.
data Block n e x where
  BlockCO  :: n C O -> Block n O O          -> Block n C O
  BlockCC  :: n C O -> Block n O O -> n O C -> Block n C C
  BlockOC  ::          Block n O O -> n O C -> Block n O C

  BNil    :: Block n O O
  BMiddle :: n O O                      -> Block n O O
  BCat    :: Block n O O -> Block n O O -> Block n O O
  BSnoc   :: Block n O O -> n O O       -> Block n O O
  BCons   :: n O O       -> Block n O O -> Block n O O


-- -----------------------------------------------------------------------------
-- Simple operations on Blocks

-- Predicates

isEmptyBlock :: Block n e x -> Bool
isEmptyBlock BNil       = True
isEmptyBlock (BCat l r) = isEmptyBlock l && isEmptyBlock r
isEmptyBlock _          = False


-- Building

emptyBlock :: Block n O O
emptyBlock = BNil

blockCons :: n O O -> Block n O x -> Block n O x
blockCons n b = case b of
  BlockOC b l  -> (BlockOC $! (n `blockCons` b)) l
  BNil{}    -> BMiddle n
  BMiddle{} -> n `BCons` b
  BCat{}    -> n `BCons` b
  BSnoc{}   -> n `BCons` b
  BCons{}   -> n `BCons` b

blockSnoc :: Block n e O -> n O O -> Block n e O
blockSnoc b n = case b of
  BlockCO f b -> BlockCO f $! (b `blockSnoc` n)
  BNil{}      -> BMiddle n
  BMiddle{}   -> b `BSnoc` n
  BCat{}      -> b `BSnoc` n
  BSnoc{}     -> b `BSnoc` n
  BCons{}     -> b `BSnoc` n

blockJoinHead :: n C O -> Block n O x -> Block n C x
blockJoinHead f (BlockOC b l) = BlockCC f b l
blockJoinHead f b = BlockCO f BNil `cat` b

blockJoinTail :: Block n e O -> n O C -> Block n e C
blockJoinTail (BlockCO f b) t = BlockCC f b t
blockJoinTail b t = b `cat` BlockOC BNil t

blockJoin :: n C O -> Block n O O -> n O C -> Block n C C
blockJoin f b t = BlockCC f b t

blockAppend :: Block n e O -> Block n O x -> Block n e x
blockAppend = cat


-- Taking apart

firstNode :: Block n C x -> n C O
firstNode (BlockCO n _)   = n
firstNode (BlockCC n _ _) = n

lastNode :: Block n x C -> n O C
lastNode (BlockOC   _ n) = n
lastNode (BlockCC _ _ n) = n

blockSplitHead :: Block n C x -> (n C O, Block n O x)
blockSplitHead (BlockCO n b)   = (n, b)
blockSplitHead (BlockCC n b t) = (n, BlockOC b t)

blockSplitTail :: Block n e C -> (Block n e O, n O C)
blockSplitTail (BlockOC b n)   = (b, n)
blockSplitTail (BlockCC f b t) = (BlockCO f b, t)

-- | Split a closed block into its entry node, open middle block, and
-- exit node.
blockSplit :: Block n C C -> (n C O, Block n O O, n O C)
blockSplit (BlockCC f b t) = (f, b, t)

blockToList :: Block n O O -> [n O O]
blockToList b = go b []
   where go :: Block n O O -> [n O O] -> [n O O]
         go BNil         r = r
         go (BMiddle n)  r = n : r
         go (BCat b1 b2) r = go b1 $! go b2 r
         go (BSnoc b1 n) r = go b1 (n:r)
         go (BCons n b1) r = n : go b1 r

blockFromList :: [n O O] -> Block n O O
blockFromList = foldr BCons BNil

-- Modifying

replaceFirstNode :: Block n C x -> n C O -> Block n C x
replaceFirstNode (BlockCO _ b)   f = BlockCO f b
replaceFirstNode (BlockCC _ b n) f = BlockCC f b n

replaceLastNode :: Block n x C -> n O C -> Block n x C
replaceLastNode (BlockOC   b _) n = BlockOC b n
replaceLastNode (BlockCC l b _) n = BlockCC l b n

-- -----------------------------------------------------------------------------
-- General concatenation

cat :: Block n e O -> Block n O x -> Block n e x
cat x y = case x of
  BNil -> y

  BlockCO l b1 -> case y of
                   BlockOC b2 n -> (BlockCC l $! (b1 `cat` b2)) n
                   BNil         -> x
                   BMiddle _    -> BlockCO l $! (b1 `cat` y)
                   BCat{}       -> BlockCO l $! (b1 `cat` y)
                   BSnoc{}      -> BlockCO l $! (b1 `cat` y)
                   BCons{}      -> BlockCO l $! (b1 `cat` y)

  BMiddle n -> case y of
                   BlockOC b2 n2 -> (BlockOC $! (x `cat` b2)) n2
                   BNil          -> x
                   BMiddle{}     -> BCons n y
                   BCat{}        -> BCons n y
                   BSnoc{}       -> BCons n y
                   BCons{}       -> BCons n y

  BCat{} -> case y of
                   BlockOC b3 n2 -> (BlockOC $! (x `cat` b3)) n2
                   BNil          -> x
                   BMiddle n     -> BSnoc x n
                   BCat{}        -> BCat x y
                   BSnoc{}       -> BCat x y
                   BCons{}       -> BCat x y

  BSnoc{} -> case y of
                   BlockOC b2 n2 -> (BlockOC $! (x `cat` b2)) n2
                   BNil          -> x
                   BMiddle n     -> BSnoc x n
                   BCat{}        -> BCat x y
                   BSnoc{}       -> BCat x y
                   BCons{}       -> BCat x y


  BCons{} -> case y of
                   BlockOC b2 n2 -> (BlockOC $! (x `cat` b2)) n2
                   BNil          -> x
                   BMiddle n     -> BSnoc x n
                   BCat{}        -> BCat x y
                   BSnoc{}       -> BCat x y
                   BCons{}       -> BCat x y


-- -----------------------------------------------------------------------------
-- Mapping

-- | map a function over the nodes of a 'Block'
mapBlock :: (forall e x. n e x -> n' e x) -> Block n e x -> Block n' e x
mapBlock f (BlockCO n b  ) = BlockCO (f n) (mapBlock f b)
mapBlock f (BlockOC   b n) = BlockOC       (mapBlock f b) (f n)
mapBlock f (BlockCC n b m) = BlockCC (f n) (mapBlock f b) (f m)
mapBlock _  BNil           = BNil
mapBlock f (BMiddle n)     = BMiddle (f n)
mapBlock f (BCat b1 b2)    = BCat    (mapBlock f b1) (mapBlock f b2)
mapBlock f (BSnoc b n)     = BSnoc   (mapBlock f b)  (f n)
mapBlock f (BCons n b)     = BCons   (f n)  (mapBlock f b)

-- | A strict 'mapBlock'
mapBlock' :: (forall e x. n e x -> n' e x) -> (Block n e x -> Block n' e x)
mapBlock' f = mapBlock3' (f, f, f)

-- | map over a block, with different functions to apply to first nodes,
-- middle nodes and last nodes respectively.  The map is strict.
--
mapBlock3' :: forall n n' e x .
             ( n C O -> n' C O
             , n O O -> n' O O,
               n O C -> n' O C)
          -> Block n e x -> Block n' e x
mapBlock3' (f, m, l) b = go b
  where go :: forall e x . Block n e x -> Block n' e x
        go (BlockOC b y)   = (BlockOC $! go b) $! l y
        go (BlockCO x b)   = (BlockCO $! f x) $! (go b)
        go (BlockCC x b y) = ((BlockCC $! f x) $! go b) $! (l y)
        go BNil            = BNil
        go (BMiddle n)     = BMiddle $! m n
        go (BCat x y)      = (BCat $! go x) $! (go y)
        go (BSnoc x n)     = (BSnoc $! go x) $! (m n)
        go (BCons n x)     = (BCons $! m n) $! (go x)

-- -----------------------------------------------------------------------------
-- Folding


-- | Fold a function over every node in a block, forward or backward.
-- The fold function must be polymorphic in the shape of the nodes.
foldBlockNodesF3 :: forall n a b c .
                   ( n C O       -> a -> b
                   , n O O       -> b -> b
                   , n O C       -> b -> c)
                 -> (forall e x . Block n e x -> IndexedCO e a b -> IndexedCO x c b)
foldBlockNodesF  :: forall n a .
                    (forall e x . n e x       -> a -> a)
                 -> (forall e x . Block n e x -> IndexedCO e a a -> IndexedCO x a a)
foldBlockNodesB3 :: forall n a b c .
                   ( n C O       -> b -> c
                   , n O O       -> b -> b
                   , n O C       -> a -> b)
                 -> (forall e x . Block n e x -> IndexedCO x a b -> IndexedCO e c b)
foldBlockNodesB  :: forall n a .
                    (forall e x . n e x       -> a -> a)
                 -> (forall e x . Block n e x -> IndexedCO x a a -> IndexedCO e a a)

foldBlockNodesF3 (ff, fm, fl) = block
  where block :: forall e x . Block n e x -> IndexedCO e a b -> IndexedCO x c b
        block (BlockCO f b  )   = ff f `cat` block b
        block (BlockCC f b l)   = ff f `cat` block b `cat` fl l
        block (BlockOC   b l)   =            block b `cat` fl l
        block BNil              = id
        block (BMiddle node)    = fm node
        block (b1 `BCat`    b2) = block b1 `cat` block b2
        block (b1 `BSnoc` n)    = block b1 `cat` fm n
        block (n `BCons` b2)    = fm n `cat` block b2
        cat :: forall a b c. (a -> b) -> (b -> c) -> a -> c
        cat f f' = f' . f

foldBlockNodesF f = foldBlockNodesF3 (f, f, f)

foldBlockNodesB3 (ff, fm, fl) = block
  where block :: forall e x . Block n e x -> IndexedCO x a b -> IndexedCO e c b
        block (BlockCO f b  )   = ff f `cat` block b
        block (BlockCC f b l)   = ff f `cat` block b `cat` fl l
        block (BlockOC   b l)   =            block b `cat` fl l
        block BNil              = id
        block (BMiddle node)    = fm node
        block (b1 `BCat`    b2) = block b1 `cat` block b2
        block (b1 `BSnoc` n)    = block b1 `cat` fm n
        block (n `BCons` b2)    = fm n `cat` block b2
        cat :: forall a b c. (b -> c) -> (a -> b) -> a -> c
        cat f f' = f . f'

foldBlockNodesB f = foldBlockNodesB3 (f, f, f)