1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
module GHC.Cmm.Expr
( CmmExpr(..), cmmExprType, cmmExprWidth, cmmExprAlignment, maybeInvertCmmExpr
, CmmReg(..), cmmRegType, cmmRegWidth
, CmmLit(..), cmmLitType
, LocalReg(..), localRegType
, GlobalReg(..), isArgReg, globalRegType
, spReg, hpReg, spLimReg, hpLimReg, nodeReg
, currentTSOReg, currentNurseryReg, hpAllocReg, cccsReg
, node, baseReg
, VGcPtr(..)
, DefinerOfRegs, UserOfRegs
, foldRegsDefd, foldRegsUsed
, foldLocalRegsDefd, foldLocalRegsUsed
, RegSet, LocalRegSet, GlobalRegSet
, emptyRegSet, elemRegSet, extendRegSet, deleteFromRegSet, mkRegSet
, plusRegSet, minusRegSet, timesRegSet, sizeRegSet, nullRegSet
, regSetToList
, Area(..)
, module GHC.Cmm.MachOp
, module GHC.Cmm.Type
)
where
import GhcPrelude
import GHC.Platform
import GHC.Cmm.BlockId
import GHC.Cmm.CLabel
import GHC.Cmm.MachOp
import GHC.Cmm.Type
import GHC.Driver.Session
import Outputable (panic)
import GHC.Types.Unique
import Data.Set (Set)
import qualified Data.Set as Set
import GHC.Types.Basic (Alignment, mkAlignment, alignmentOf)
-----------------------------------------------------------------------------
-- CmmExpr
-- An expression. Expressions have no side effects.
-----------------------------------------------------------------------------
data CmmExpr
= CmmLit CmmLit -- Literal
| CmmLoad !CmmExpr !CmmType -- Read memory location
| CmmReg !CmmReg -- Contents of register
| CmmMachOp MachOp [CmmExpr] -- Machine operation (+, -, *, etc.)
| CmmStackSlot Area {-# UNPACK #-} !Int
-- addressing expression of a stack slot
-- See Note [CmmStackSlot aliasing]
| CmmRegOff !CmmReg Int
-- CmmRegOff reg i
-- ** is shorthand only, meaning **
-- CmmMachOp (MO_Add rep) [x, CmmLit (CmmInt (fromIntegral i) rep)]
-- where rep = typeWidth (cmmRegType reg)
instance Eq CmmExpr where -- Equality ignores the types
CmmLit l1 == CmmLit l2 = l1==l2
CmmLoad e1 _ == CmmLoad e2 _ = e1==e2
CmmReg r1 == CmmReg r2 = r1==r2
CmmRegOff r1 i1 == CmmRegOff r2 i2 = r1==r2 && i1==i2
CmmMachOp op1 es1 == CmmMachOp op2 es2 = op1==op2 && es1==es2
CmmStackSlot a1 i1 == CmmStackSlot a2 i2 = a1==a2 && i1==i2
_e1 == _e2 = False
data CmmReg
= CmmLocal {-# UNPACK #-} !LocalReg
| CmmGlobal GlobalReg
deriving( Eq, Ord )
-- | A stack area is either the stack slot where a variable is spilled
-- or the stack space where function arguments and results are passed.
data Area
= Old -- See Note [Old Area]
| Young {-# UNPACK #-} !BlockId -- Invariant: must be a continuation BlockId
-- See Note [Continuation BlockId] in GHC.Cmm.Node.
deriving (Eq, Ord)
{- Note [Old Area]
~~~~~~~~~~~~~~~~~~
There is a single call area 'Old', allocated at the extreme old
end of the stack frame (ie just younger than the return address)
which holds:
* incoming (overflow) parameters,
* outgoing (overflow) parameter to tail calls,
* outgoing (overflow) result values
* the update frame (if any)
Its size is the max of all these requirements. On entry, the stack
pointer will point to the youngest incoming parameter, which is not
necessarily at the young end of the Old area.
End of note -}
{- Note [CmmStackSlot aliasing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When do two CmmStackSlots alias?
- T[old+N] aliases with U[young(L)+M] for all T, U, L, N and M
- T[old+N] aliases with U[old+M] only if the areas actually overlap
Or more informally, different Areas may overlap with each other.
An alternative semantics, that we previously had, was that different
Areas do not overlap. The problem that lead to redefining the
semantics of stack areas is described below.
e.g. if we had
x = Sp[old + 8]
y = Sp[old + 16]
Sp[young(L) + 8] = L
Sp[young(L) + 16] = y
Sp[young(L) + 24] = x
call f() returns to L
if areas semantically do not overlap, then we might optimise this to
Sp[young(L) + 8] = L
Sp[young(L) + 16] = Sp[old + 8]
Sp[young(L) + 24] = Sp[old + 16]
call f() returns to L
and now young(L) cannot be allocated at the same place as old, and we
are doomed to use more stack.
- old+8 conflicts with young(L)+8
- old+16 conflicts with young(L)+16 and young(L)+8
so young(L)+8 == old+24 and we get
Sp[-8] = L
Sp[-16] = Sp[8]
Sp[-24] = Sp[0]
Sp -= 24
call f() returns to L
However, if areas are defined to be "possibly overlapping" in the
semantics, then we cannot commute any loads/stores of old with
young(L), and we will be able to re-use both old+8 and old+16 for
young(L).
x = Sp[8]
y = Sp[0]
Sp[8] = L
Sp[0] = y
Sp[-8] = x
Sp = Sp - 8
call f() returns to L
Now, the assignments of y go away,
x = Sp[8]
Sp[8] = L
Sp[-8] = x
Sp = Sp - 8
call f() returns to L
-}
data CmmLit
= CmmInt !Integer Width
-- Interpretation: the 2's complement representation of the value
-- is truncated to the specified size. This is easier than trying
-- to keep the value within range, because we don't know whether
-- it will be used as a signed or unsigned value (the CmmType doesn't
-- distinguish between signed & unsigned).
| CmmFloat Rational Width
| CmmVec [CmmLit] -- Vector literal
| CmmLabel CLabel -- Address of label
| CmmLabelOff CLabel Int -- Address of label + byte offset
-- Due to limitations in the C backend, the following
-- MUST ONLY be used inside the info table indicated by label2
-- (label2 must be the info label), and label1 must be an
-- SRT, a slow entrypoint or a large bitmap (see the Mangler)
-- Don't use it at all unless tablesNextToCode.
-- It is also used inside the NCG during when generating
-- position-independent code.
| CmmLabelDiffOff CLabel CLabel Int Width -- label1 - label2 + offset
-- In an expression, the width just has the effect of MO_SS_Conv
-- from wordWidth to the desired width.
--
-- In a static literal, the supported Widths depend on the
-- architecture: wordWidth is supported on all
-- architectures. Additionally W32 is supported on x86_64 when
-- using the small memory model.
| CmmBlock {-# UNPACK #-} !BlockId -- Code label
-- Invariant: must be a continuation BlockId
-- See Note [Continuation BlockId] in GHC.Cmm.Node.
| CmmHighStackMark -- A late-bound constant that stands for the max
-- #bytes of stack space used during a procedure.
-- During the stack-layout pass, CmmHighStackMark
-- is replaced by a CmmInt for the actual number
-- of bytes used
deriving Eq
cmmExprType :: Platform -> CmmExpr -> CmmType
cmmExprType platform = \case
(CmmLit lit) -> cmmLitType platform lit
(CmmLoad _ rep) -> rep
(CmmReg reg) -> cmmRegType platform reg
(CmmMachOp op args) -> machOpResultType platform op (map (cmmExprType platform) args)
(CmmRegOff reg _) -> cmmRegType platform reg
(CmmStackSlot _ _) -> bWord platform -- an address
-- Careful though: what is stored at the stack slot may be bigger than
-- an address
cmmLitType :: Platform -> CmmLit -> CmmType
cmmLitType platform = \case
(CmmInt _ width) -> cmmBits width
(CmmFloat _ width) -> cmmFloat width
(CmmVec []) -> panic "cmmLitType: CmmVec []"
(CmmVec (l:ls)) -> let ty = cmmLitType platform l
in if all (`cmmEqType` ty) (map (cmmLitType platform) ls)
then cmmVec (1+length ls) ty
else panic "cmmLitType: CmmVec"
(CmmLabel lbl) -> cmmLabelType platform lbl
(CmmLabelOff lbl _) -> cmmLabelType platform lbl
(CmmLabelDiffOff _ _ _ width) -> cmmBits width
(CmmBlock _) -> bWord platform
(CmmHighStackMark) -> bWord platform
cmmLabelType :: Platform -> CLabel -> CmmType
cmmLabelType platform lbl
| isGcPtrLabel lbl = gcWord platform
| otherwise = bWord platform
cmmExprWidth :: Platform -> CmmExpr -> Width
cmmExprWidth platform e = typeWidth (cmmExprType platform e)
-- | Returns an alignment in bytes of a CmmExpr when it's a statically
-- known integer constant, otherwise returns an alignment of 1 byte.
-- The caller is responsible for using with a sensible CmmExpr
-- argument.
cmmExprAlignment :: CmmExpr -> Alignment
cmmExprAlignment (CmmLit (CmmInt intOff _)) = alignmentOf (fromInteger intOff)
cmmExprAlignment _ = mkAlignment 1
--------
--- Negation for conditional branches
maybeInvertCmmExpr :: CmmExpr -> Maybe CmmExpr
maybeInvertCmmExpr (CmmMachOp op args) = do op' <- maybeInvertComparison op
return (CmmMachOp op' args)
maybeInvertCmmExpr _ = Nothing
-----------------------------------------------------------------------------
-- Local registers
-----------------------------------------------------------------------------
data LocalReg
= LocalReg {-# UNPACK #-} !Unique CmmType
-- ^ Parameters:
-- 1. Identifier
-- 2. Type
instance Eq LocalReg where
(LocalReg u1 _) == (LocalReg u2 _) = u1 == u2
-- This is non-deterministic but we do not currently support deterministic
-- code-generation. See Note [Unique Determinism and code generation]
-- See Note [No Ord for Unique]
instance Ord LocalReg where
compare (LocalReg u1 _) (LocalReg u2 _) = nonDetCmpUnique u1 u2
instance Uniquable LocalReg where
getUnique (LocalReg uniq _) = uniq
cmmRegType :: Platform -> CmmReg -> CmmType
cmmRegType _ (CmmLocal reg) = localRegType reg
cmmRegType platform (CmmGlobal reg) = globalRegType platform reg
cmmRegWidth :: Platform -> CmmReg -> Width
cmmRegWidth platform = typeWidth . cmmRegType platform
localRegType :: LocalReg -> CmmType
localRegType (LocalReg _ rep) = rep
-----------------------------------------------------------------------------
-- Register-use information for expressions and other types
-----------------------------------------------------------------------------
-- | Sets of registers
-- These are used for dataflow facts, and a common operation is taking
-- the union of two RegSets and then asking whether the union is the
-- same as one of the inputs. UniqSet isn't good here, because
-- sizeUniqSet is O(n) whereas Set.size is O(1), so we use ordinary
-- Sets.
type RegSet r = Set r
type LocalRegSet = RegSet LocalReg
type GlobalRegSet = RegSet GlobalReg
emptyRegSet :: RegSet r
nullRegSet :: RegSet r -> Bool
elemRegSet :: Ord r => r -> RegSet r -> Bool
extendRegSet :: Ord r => RegSet r -> r -> RegSet r
deleteFromRegSet :: Ord r => RegSet r -> r -> RegSet r
mkRegSet :: Ord r => [r] -> RegSet r
minusRegSet, plusRegSet, timesRegSet :: Ord r => RegSet r -> RegSet r -> RegSet r
sizeRegSet :: RegSet r -> Int
regSetToList :: RegSet r -> [r]
emptyRegSet = Set.empty
nullRegSet = Set.null
elemRegSet = Set.member
extendRegSet = flip Set.insert
deleteFromRegSet = flip Set.delete
mkRegSet = Set.fromList
minusRegSet = Set.difference
plusRegSet = Set.union
timesRegSet = Set.intersection
sizeRegSet = Set.size
regSetToList = Set.toList
class Ord r => UserOfRegs r a where
foldRegsUsed :: DynFlags -> (b -> r -> b) -> b -> a -> b
foldLocalRegsUsed :: UserOfRegs LocalReg a
=> DynFlags -> (b -> LocalReg -> b) -> b -> a -> b
foldLocalRegsUsed = foldRegsUsed
class Ord r => DefinerOfRegs r a where
foldRegsDefd :: DynFlags -> (b -> r -> b) -> b -> a -> b
foldLocalRegsDefd :: DefinerOfRegs LocalReg a
=> DynFlags -> (b -> LocalReg -> b) -> b -> a -> b
foldLocalRegsDefd = foldRegsDefd
instance UserOfRegs LocalReg CmmReg where
foldRegsUsed _ f z (CmmLocal reg) = f z reg
foldRegsUsed _ _ z (CmmGlobal _) = z
instance DefinerOfRegs LocalReg CmmReg where
foldRegsDefd _ f z (CmmLocal reg) = f z reg
foldRegsDefd _ _ z (CmmGlobal _) = z
instance UserOfRegs GlobalReg CmmReg where
foldRegsUsed _ _ z (CmmLocal _) = z
foldRegsUsed _ f z (CmmGlobal reg) = f z reg
instance DefinerOfRegs GlobalReg CmmReg where
foldRegsDefd _ _ z (CmmLocal _) = z
foldRegsDefd _ f z (CmmGlobal reg) = f z reg
instance Ord r => UserOfRegs r r where
foldRegsUsed _ f z r = f z r
instance Ord r => DefinerOfRegs r r where
foldRegsDefd _ f z r = f z r
instance (Ord r, UserOfRegs r CmmReg) => UserOfRegs r CmmExpr where
-- The (Ord r) in the context is necessary here
-- See Note [Recursive superclasses] in TcInstDcls
foldRegsUsed dflags f !z e = expr z e
where expr z (CmmLit _) = z
expr z (CmmLoad addr _) = foldRegsUsed dflags f z addr
expr z (CmmReg r) = foldRegsUsed dflags f z r
expr z (CmmMachOp _ exprs) = foldRegsUsed dflags f z exprs
expr z (CmmRegOff r _) = foldRegsUsed dflags f z r
expr z (CmmStackSlot _ _) = z
instance UserOfRegs r a => UserOfRegs r [a] where
foldRegsUsed dflags f set as = foldl' (foldRegsUsed dflags f) set as
{-# INLINABLE foldRegsUsed #-}
instance DefinerOfRegs r a => DefinerOfRegs r [a] where
foldRegsDefd dflags f set as = foldl' (foldRegsDefd dflags f) set as
{-# INLINABLE foldRegsDefd #-}
-----------------------------------------------------------------------------
-- Global STG registers
-----------------------------------------------------------------------------
data VGcPtr = VGcPtr | VNonGcPtr deriving( Eq, Show )
-----------------------------------------------------------------------------
-- Global STG registers
-----------------------------------------------------------------------------
{-
Note [Overlapping global registers]
The backend might not faithfully implement the abstraction of the STG
machine with independent registers for different values of type
GlobalReg. Specifically, certain pairs of registers (r1, r2) may
overlap in the sense that a store to r1 invalidates the value in r2,
and vice versa.
Currently this occurs only on the x86_64 architecture where FloatReg n
and DoubleReg n are assigned the same microarchitectural register, in
order to allow functions to receive more Float# or Double# arguments
in registers (as opposed to on the stack).
There are no specific rules about which registers might overlap with
which other registers, but presumably it's safe to assume that nothing
will overlap with special registers like Sp or BaseReg.
Use GHC.Cmm.Utils.regsOverlap to determine whether two GlobalRegs overlap
on a particular platform. The instance Eq GlobalReg is syntactic
equality of STG registers and does not take overlap into
account. However it is still used in UserOfRegs/DefinerOfRegs and
there are likely still bugs there, beware!
-}
data GlobalReg
-- Argument and return registers
= VanillaReg -- pointers, unboxed ints and chars
{-# UNPACK #-} !Int -- its number
VGcPtr
| FloatReg -- single-precision floating-point registers
{-# UNPACK #-} !Int -- its number
| DoubleReg -- double-precision floating-point registers
{-# UNPACK #-} !Int -- its number
| LongReg -- long int registers (64-bit, really)
{-# UNPACK #-} !Int -- its number
| XmmReg -- 128-bit SIMD vector register
{-# UNPACK #-} !Int -- its number
| YmmReg -- 256-bit SIMD vector register
{-# UNPACK #-} !Int -- its number
| ZmmReg -- 512-bit SIMD vector register
{-# UNPACK #-} !Int -- its number
-- STG registers
| Sp -- Stack ptr; points to last occupied stack location.
| SpLim -- Stack limit
| Hp -- Heap ptr; points to last occupied heap location.
| HpLim -- Heap limit register
| CCCS -- Current cost-centre stack
| CurrentTSO -- pointer to current thread's TSO
| CurrentNursery -- pointer to allocation area
| HpAlloc -- allocation count for heap check failure
-- We keep the address of some commonly-called
-- functions in the register table, to keep code
-- size down:
| EagerBlackholeInfo -- stg_EAGER_BLACKHOLE_info
| GCEnter1 -- stg_gc_enter_1
| GCFun -- stg_gc_fun
-- Base offset for the register table, used for accessing registers
-- which do not have real registers assigned to them. This register
-- will only appear after we have expanded GlobalReg into memory accesses
-- (where necessary) in the native code generator.
| BaseReg
-- The register used by the platform for the C stack pointer. This is
-- a break in the STG abstraction used exclusively to setup stack unwinding
-- information.
| MachSp
-- The is a dummy register used to indicate to the stack unwinder where
-- a routine would return to.
| UnwindReturnReg
-- Base Register for PIC (position-independent code) calculations
-- Only used inside the native code generator. It's exact meaning differs
-- from platform to platform (see module PositionIndependentCode).
| PicBaseReg
deriving( Show )
instance Eq GlobalReg where
VanillaReg i _ == VanillaReg j _ = i==j -- Ignore type when seeking clashes
FloatReg i == FloatReg j = i==j
DoubleReg i == DoubleReg j = i==j
LongReg i == LongReg j = i==j
-- NOTE: XMM, YMM, ZMM registers actually are the same registers
-- at least with respect to store at YMM i and then read from XMM i
-- and similarly for ZMM etc.
XmmReg i == XmmReg j = i==j
YmmReg i == YmmReg j = i==j
ZmmReg i == ZmmReg j = i==j
Sp == Sp = True
SpLim == SpLim = True
Hp == Hp = True
HpLim == HpLim = True
CCCS == CCCS = True
CurrentTSO == CurrentTSO = True
CurrentNursery == CurrentNursery = True
HpAlloc == HpAlloc = True
EagerBlackholeInfo == EagerBlackholeInfo = True
GCEnter1 == GCEnter1 = True
GCFun == GCFun = True
BaseReg == BaseReg = True
MachSp == MachSp = True
UnwindReturnReg == UnwindReturnReg = True
PicBaseReg == PicBaseReg = True
_r1 == _r2 = False
instance Ord GlobalReg where
compare (VanillaReg i _) (VanillaReg j _) = compare i j
-- Ignore type when seeking clashes
compare (FloatReg i) (FloatReg j) = compare i j
compare (DoubleReg i) (DoubleReg j) = compare i j
compare (LongReg i) (LongReg j) = compare i j
compare (XmmReg i) (XmmReg j) = compare i j
compare (YmmReg i) (YmmReg j) = compare i j
compare (ZmmReg i) (ZmmReg j) = compare i j
compare Sp Sp = EQ
compare SpLim SpLim = EQ
compare Hp Hp = EQ
compare HpLim HpLim = EQ
compare CCCS CCCS = EQ
compare CurrentTSO CurrentTSO = EQ
compare CurrentNursery CurrentNursery = EQ
compare HpAlloc HpAlloc = EQ
compare EagerBlackholeInfo EagerBlackholeInfo = EQ
compare GCEnter1 GCEnter1 = EQ
compare GCFun GCFun = EQ
compare BaseReg BaseReg = EQ
compare MachSp MachSp = EQ
compare UnwindReturnReg UnwindReturnReg = EQ
compare PicBaseReg PicBaseReg = EQ
compare (VanillaReg _ _) _ = LT
compare _ (VanillaReg _ _) = GT
compare (FloatReg _) _ = LT
compare _ (FloatReg _) = GT
compare (DoubleReg _) _ = LT
compare _ (DoubleReg _) = GT
compare (LongReg _) _ = LT
compare _ (LongReg _) = GT
compare (XmmReg _) _ = LT
compare _ (XmmReg _) = GT
compare (YmmReg _) _ = LT
compare _ (YmmReg _) = GT
compare (ZmmReg _) _ = LT
compare _ (ZmmReg _) = GT
compare Sp _ = LT
compare _ Sp = GT
compare SpLim _ = LT
compare _ SpLim = GT
compare Hp _ = LT
compare _ Hp = GT
compare HpLim _ = LT
compare _ HpLim = GT
compare CCCS _ = LT
compare _ CCCS = GT
compare CurrentTSO _ = LT
compare _ CurrentTSO = GT
compare CurrentNursery _ = LT
compare _ CurrentNursery = GT
compare HpAlloc _ = LT
compare _ HpAlloc = GT
compare GCEnter1 _ = LT
compare _ GCEnter1 = GT
compare GCFun _ = LT
compare _ GCFun = GT
compare BaseReg _ = LT
compare _ BaseReg = GT
compare MachSp _ = LT
compare _ MachSp = GT
compare UnwindReturnReg _ = LT
compare _ UnwindReturnReg = GT
compare EagerBlackholeInfo _ = LT
compare _ EagerBlackholeInfo = GT
-- convenient aliases
baseReg, spReg, hpReg, spLimReg, hpLimReg, nodeReg,
currentTSOReg, currentNurseryReg, hpAllocReg, cccsReg :: CmmReg
baseReg = CmmGlobal BaseReg
spReg = CmmGlobal Sp
hpReg = CmmGlobal Hp
hpLimReg = CmmGlobal HpLim
spLimReg = CmmGlobal SpLim
nodeReg = CmmGlobal node
currentTSOReg = CmmGlobal CurrentTSO
currentNurseryReg = CmmGlobal CurrentNursery
hpAllocReg = CmmGlobal HpAlloc
cccsReg = CmmGlobal CCCS
node :: GlobalReg
node = VanillaReg 1 VGcPtr
globalRegType :: Platform -> GlobalReg -> CmmType
globalRegType platform = \case
(VanillaReg _ VGcPtr) -> gcWord platform
(VanillaReg _ VNonGcPtr) -> bWord platform
(FloatReg _) -> cmmFloat W32
(DoubleReg _) -> cmmFloat W64
(LongReg _) -> cmmBits W64
-- TODO: improve the internal model of SIMD/vectorized registers
-- the right design SHOULd improve handling of float and double code too.
-- see remarks in "NOTE [SIMD Design for the future]"" in GHC.StgToCmm.Prim
(XmmReg _) -> cmmVec 4 (cmmBits W32)
(YmmReg _) -> cmmVec 8 (cmmBits W32)
(ZmmReg _) -> cmmVec 16 (cmmBits W32)
Hp -> gcWord platform -- The initialiser for all
-- dynamically allocated closures
_ -> bWord platform
isArgReg :: GlobalReg -> Bool
isArgReg (VanillaReg {}) = True
isArgReg (FloatReg {}) = True
isArgReg (DoubleReg {}) = True
isArgReg (LongReg {}) = True
isArgReg (XmmReg {}) = True
isArgReg (YmmReg {}) = True
isArgReg (ZmmReg {}) = True
isArgReg _ = False
|