summaryrefslogtreecommitdiff
path: root/compiler/GHC/CmmToAsm/AArch64/CodeGen.hs
blob: b0984070fcdec000de1f9e7b6f80af466db81c74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
{-# language GADTs #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE BinaryLiterals #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE NumericUnderscores #-}
module GHC.CmmToAsm.AArch64.CodeGen (
      cmmTopCodeGen
    , generateJumpTableForInstr
)

where

-- NCG stuff:
import GHC.Prelude hiding (EQ)

import GHC.Platform.Regs
import GHC.CmmToAsm.AArch64.Instr
import GHC.CmmToAsm.AArch64.Regs
import GHC.CmmToAsm.AArch64.Cond

import GHC.CmmToAsm.CPrim
import GHC.Cmm.DebugBlock
import GHC.CmmToAsm.Monad
   ( NatM, getNewRegNat
   , getPicBaseMaybeNat, getPlatform, getConfig
   , getDebugBlock, getFileId
   )
-- import GHC.CmmToAsm.Instr
import GHC.CmmToAsm.PIC
import GHC.CmmToAsm.Format
import GHC.CmmToAsm.Config
import GHC.CmmToAsm.Types
import GHC.Platform.Reg
import GHC.Platform

-- Our intermediate code:
import GHC.Cmm.BlockId
import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Cmm.Switch
import GHC.Cmm.CLabel
import GHC.Cmm.Dataflow.Block
import GHC.Cmm.Dataflow.Graph
import GHC.Types.Tickish ( GenTickish(..) )
import GHC.Types.SrcLoc  ( srcSpanFile, srcSpanStartLine, srcSpanStartCol )

-- The rest:
import GHC.Data.OrdList
import GHC.Utils.Outputable

import Control.Monad    ( mapAndUnzipM, when, foldM )
import Data.Word
import Data.Maybe
import GHC.Float

import GHC.Types.Basic
import GHC.Types.ForeignCall
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Utils.Panic

-- Note [General layout of an NCG]
-- @cmmTopCodeGen@ will be our main entry point to code gen.  Here we'll get
-- @RawCmmDecl@; see GHC.Cmm
--
--   RawCmmDecl = GenCmmDecl RawCmmStatics (LabelMap RawCmmStatics) CmmGraph
--
--   GenCmmDecl d h g = CmmProc h CLabel [GlobalReg] g
--                    | CmmData Section d
--
-- As a result we want to transform this to a list of @NatCmmDecl@, which is
-- defined @GHC.CmmToAsm.Instr@ as
--
--   type NatCmmDecl statics instr
--        = GenCmmDecl statics (LabelMap RawCmmStatics) (ListGraph instr)
--
-- Thus well' turn
--   GenCmmDecl RawCmmStatics (LabelMap RawCmmStatics) CmmGraph
-- into
--   [GenCmmDecl RawCmmStatics (LabelMap RawCmmStatics) (ListGraph Instr)]
--
-- where @CmmGraph@ is
--
--   type CmmGraph = GenCmmGraph CmmNode
--   data GenCmmGraph n = CmmGraph { g_entry :: BlockId, g_graph :: Graph n C C }
--   type CmmBlock = Block CmmNode C C
--
-- and @ListGraph Instr@ is
--
--   newtype ListGraph i = ListGraph [GenBasicBlock i]
--   data GenBasicBlock i = BasicBlock BlockId [i]

cmmTopCodeGen
    :: RawCmmDecl
    -> NatM [NatCmmDecl RawCmmStatics Instr]

-- Thus we'll have to deal with either CmmProc ...
cmmTopCodeGen _cmm@(CmmProc info lab live graph) = do
  -- do
  --   traceM $ "-- -------------------------- cmmTopGen (CmmProc) -------------------------- --\n"
  --         ++ showSDocUnsafe (ppr cmm)

  let blocks = toBlockListEntryFirst graph
  (nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
  picBaseMb <- getPicBaseMaybeNat

  let proc = CmmProc info lab live (ListGraph $ concat nat_blocks)
      tops = proc : concat statics

  case picBaseMb of
      Just _picBase -> panic "AArch64.cmmTopCodeGen: picBase not implemented"
      Nothing -> return tops

-- ... or CmmData.
cmmTopCodeGen _cmm@(CmmData sec dat) = do
  -- do
  --   traceM $ "-- -------------------------- cmmTopGen (CmmData) -------------------------- --\n"
  --         ++ showSDocUnsafe (ppr cmm)
  return [CmmData sec dat] -- no translation, we just use CmmStatic

basicBlockCodeGen
        :: Block CmmNode C C
        -> NatM ( [NatBasicBlock Instr]
                , [NatCmmDecl RawCmmStatics Instr])

basicBlockCodeGen block = do
  config <- getConfig
  -- do
  --   traceM $ "-- --------------------------- basicBlockCodeGen --------------------------- --\n"
  --         ++ showSDocUnsafe (ppr block)
  let (_, nodes, tail)  = blockSplit block
      id = entryLabel block
      stmts = blockToList nodes

      header_comment_instr = unitOL $ MULTILINE_COMMENT (
          text "-- --------------------------- basicBlockCodeGen --------------------------- --\n"
          $+$ pdoc (ncgPlatform config) block
          )
  -- Generate location directive
  dbg <- getDebugBlock (entryLabel block)
  loc_instrs <- case dblSourceTick =<< dbg of
    Just (SourceNote span name)
      -> do fileId <- getFileId (srcSpanFile span)
            let line = srcSpanStartLine span; col = srcSpanStartCol span
            return $ unitOL $ LOCATION fileId line col name
    _ -> return nilOL
  (mid_instrs,mid_bid) <- stmtsToInstrs id stmts
  (!tail_instrs,_) <- stmtToInstrs mid_bid tail
  let instrs = header_comment_instr `appOL` loc_instrs `appOL` mid_instrs `appOL` tail_instrs
  -- TODO: Then x86 backend run @verifyBasicBlock@ here and inserts
  --      unwinding info. See Ticket 19913
  -- code generation may introduce new basic block boundaries, which
  -- are indicated by the NEWBLOCK instruction.  We must split up the
  -- instruction stream into basic blocks again.  Also, we extract
  -- LDATAs here too.
  let
        (top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs

        mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
          = ([], BasicBlock id instrs : blocks, statics)
        mkBlocks (LDATA sec dat) (instrs,blocks,statics)
          = (instrs, blocks, CmmData sec dat:statics)
        mkBlocks instr (instrs,blocks,statics)
          = (instr:instrs, blocks, statics)
  return (BasicBlock id top : other_blocks, statics)


-- -----------------------------------------------------------------------------
-- | Utilities
ann :: SDoc -> Instr -> Instr
ann doc instr {- | debugIsOn -} = ANN doc instr
-- ann _ instr = instr
{-# INLINE ann #-}

-- Using pprExpr will hide the AST, @ANN@ will end up in the assembly with
-- -dppr-debug.  The idea is that we can trivially see how a cmm expression
-- ended up producing the assmebly we see.  By having the verbatim AST printed
-- we can simply check the patterns that were matched to arrive at the assmebly
-- we generated.
--
-- pprExpr will hide a lot of noise of the underlying data structure and print
-- the expression into something that can be easily read by a human. However
-- going back to the exact CmmExpr representation can be labourous and adds
-- indirections to find the matches that lead to the assembly.
--
-- An improvement oculd be to have
--
--    (pprExpr genericPlatform e) <> parens (text. show e)
--
-- to have the best of both worlds.
--
-- Note: debugIsOn is too restrictive, it only works for debug compilers.
-- However, we do not only want to inspect this for debug compilers. Ideally
-- we'd have a check for -dppr-debug here already, such that we don't even
-- generate the ANN expressions. However, as they are lazy, they shouldn't be
-- forced until we actually force them, and without -dppr-debug they should
-- never end up being forced.
annExpr :: CmmExpr -> Instr -> Instr
annExpr e instr {- | debugIsOn -} = ANN (text . show $ e) instr
-- annExpr e instr {- | debugIsOn -} = ANN (pprExpr genericPlatform e) instr
-- annExpr _ instr = instr
{-# INLINE annExpr #-}

-- -----------------------------------------------------------------------------
-- Generating a table-branch

-- TODO jump tables would be a lot faster, but we'll use bare bones for now.
-- this is usually done by sticking the jump table ids into an instruction
-- and then have the @generateJumpTableForInstr@ callback produce the jump
-- table as a static.
--
-- See Ticket 19912
--
-- data SwitchTargets =
--    SwitchTargets
--        Bool                       -- Signed values
--        (Integer, Integer)         -- Range
--        (Maybe Label)              -- Default value
--        (M.Map Integer Label)      -- The branches
--
-- Non Jumptable plan:
-- xE <- expr
--
genSwitch :: CmmExpr -> SwitchTargets -> NatM InstrBlock
genSwitch expr targets = do -- pprPanic "genSwitch" (ppr expr)
  (reg, format, code) <- getSomeReg expr
  let w = formatToWidth format
  let mkbranch acc (key, bid) = do
        (keyReg, _format, code) <- getSomeReg (CmmLit (CmmInt key w))
        return $ code `appOL`
                 toOL [ CMP (OpReg w reg) (OpReg w keyReg)
                      , BCOND EQ (TBlock bid)
                      ] `appOL` acc
      def_code = case switchTargetsDefault targets of
        Just bid -> unitOL (B (TBlock bid))
        Nothing  -> nilOL

  switch_code <- foldM mkbranch nilOL (switchTargetsCases targets)
  return $ code `appOL` switch_code `appOL` def_code

-- We don't do jump tables for now, see Ticket 19912
generateJumpTableForInstr :: NCGConfig -> Instr
  -> Maybe (NatCmmDecl RawCmmStatics Instr)
generateJumpTableForInstr _ _ = Nothing

-- -----------------------------------------------------------------------------
-- Top-level of the instruction selector

-- See Note [Keeping track of the current block] for why
-- we pass the BlockId.
stmtsToInstrs :: BlockId -- ^ Basic block these statement will start to be placed in.
              -> [CmmNode O O] -- ^ Cmm Statement
              -> NatM (InstrBlock, BlockId) -- ^ Resulting instruction
stmtsToInstrs bid stmts =
    go bid stmts nilOL
  where
    go bid  []        instrs = return (instrs,bid)
    go bid (s:stmts)  instrs = do
      (instrs',bid') <- stmtToInstrs bid s
      -- If the statement introduced a new block, we use that one
      let !newBid = fromMaybe bid bid'
      go newBid stmts (instrs `appOL` instrs')

-- | `bid` refers to the current block and is used to update the CFG
--   if new blocks are inserted in the control flow.
-- See Note [Keeping track of the current block] for more details.
stmtToInstrs :: BlockId -- ^ Basic block this statement will start to be placed in.
             -> CmmNode e x
             -> NatM (InstrBlock, Maybe BlockId)
             -- ^ Instructions, and bid of new block if successive
             -- statements are placed in a different basic block.
stmtToInstrs bid stmt = do
  -- traceM $ "-- -------------------------- stmtToInstrs -------------------------- --\n"
  --     ++ showSDocUnsafe (ppr stmt)
  platform <- getPlatform
  case stmt of
    CmmUnsafeForeignCall target result_regs args
       -> genCCall target result_regs args bid

    _ -> (,Nothing) <$> case stmt of
      CmmComment s   -> return (unitOL (COMMENT (ftext s)))
      CmmTick {}     -> return nilOL

      CmmAssign reg src
        | isFloatType ty         -> assignReg_FltCode format reg src
        | otherwise              -> assignReg_IntCode format reg src
          where ty = cmmRegType platform reg
                format = cmmTypeFormat ty

      CmmStore addr src
        | isFloatType ty         -> assignMem_FltCode format addr src
        | otherwise              -> assignMem_IntCode format addr src
          where ty = cmmExprType platform src
                format = cmmTypeFormat ty

      CmmBranch id          -> genBranch id

      --We try to arrange blocks such that the likely branch is the fallthrough
      --in GHC.Cmm.ContFlowOpt. So we can assume the condition is likely false here.
      CmmCondBranch arg true false _prediction ->
          genCondBranch bid true false arg

      CmmSwitch arg ids -> genSwitch arg ids

      CmmCall { cml_target = arg } -> genJump arg

      CmmUnwind _regs -> return nilOL

      _ -> pprPanic "stmtToInstrs: statement should have been cps'd away" (pdoc platform stmt)

--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
--      They are really trees of insns to facilitate fast appending, where a
--      left-to-right traversal yields the insns in the correct order.
--
type InstrBlock
        = OrdList Instr

-- | Register's passed up the tree.  If the stix code forces the register
--      to live in a pre-decided machine register, it comes out as @Fixed@;
--      otherwise, it comes out as @Any@, and the parent can decide which
--      register to put it in.
--
data Register
        = Fixed Format Reg InstrBlock
        | Any   Format (Reg -> InstrBlock)

-- | Sometimes we need to change the Format of a register. Primarily during
-- conversion.
swizzleRegisterRep :: Format -> Register -> Register
swizzleRegisterRep format (Fixed _ reg code) = Fixed format reg code
swizzleRegisterRep format (Any _ codefn)     = Any   format codefn

-- | Grab the Reg for a CmmReg
getRegisterReg :: Platform -> CmmReg -> Reg

getRegisterReg _ (CmmLocal (LocalReg u pk))
  = RegVirtual $ mkVirtualReg u (cmmTypeFormat pk)

getRegisterReg platform (CmmGlobal mid)
  = case globalRegMaybe platform mid of
        Just reg -> RegReal reg
        Nothing  -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
        -- By this stage, the only MagicIds remaining should be the
        -- ones which map to a real machine register on this
        -- platform.  Hence if it's not mapped to a registers something
        -- went wrong earlier in the pipeline.
-- | Convert a BlockId to some CmmStatic data
-- TODO: Add JumpTable Logic, see Ticket 19912
-- jumpTableEntry :: NCGConfig -> Maybe BlockId -> CmmStatic
-- jumpTableEntry config Nothing   = CmmStaticLit (CmmInt 0 (ncgWordWidth config))
-- jumpTableEntry _ (Just blockid) = CmmStaticLit (CmmLabel blockLabel)
--     where blockLabel = blockLbl blockid

-- -----------------------------------------------------------------------------
-- General things for putting together code sequences

-- | The dual to getAnyReg: compute an expression into a register, but
--      we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, Format, InstrBlock)
getSomeReg expr = do
  r <- getRegister expr
  case r of
    Any rep code -> do
        tmp <- getNewRegNat rep
        return (tmp, rep, code tmp)
    Fixed rep reg code ->
        return (reg, rep, code)

-- TODO OPT: we might be able give getRegister
--          a hint, what kind of register we want.
getFloatReg :: HasCallStack => CmmExpr -> NatM (Reg, Format, InstrBlock)
getFloatReg expr = do
  r <- getRegister expr
  case r of
    Any rep code | isFloatFormat rep -> do
      tmp <- getNewRegNat rep
      return (tmp, rep, code tmp)
    Any II32 code -> do
      tmp <- getNewRegNat FF32
      return (tmp, FF32, code tmp)
    Any II64 code -> do
      tmp <- getNewRegNat FF64
      return (tmp, FF64, code tmp)
    Any _w _code -> do
      config <- getConfig
      pprPanic "can't do getFloatReg on" (pdoc (ncgPlatform config) expr)
    -- can't do much for fixed.
    Fixed rep reg code ->
      return (reg, rep, code)

-- TODO: TODO, bounds. We can't put any immediate
-- value in. They are constrained.
-- See Ticket 19911
litToImm' :: CmmLit -> NatM (Operand, InstrBlock)
litToImm' lit = return (OpImm (litToImm lit), nilOL)


getRegister :: CmmExpr -> NatM Register
getRegister e = do
  config <- getConfig
  getRegister' config (ncgPlatform config) e

-- Note [Handling PIC on AArch64]
-- AArch64 does not have a special PIC register, the general approach is to
-- simply go through the GOT, and there is assembly support for this:
--
--   // Load the address of 'sym' from the GOT using ADRP and LDR (used for
--   // position-independent code on AArch64):
--   adrp x0, #:got:sym
--   ldr x0, [x0, #:got_lo12:sym]
--
-- See also: https://developer.arm.com/documentation/dui0774/i/armclang-integrated-assembler-directives/assembly-expressions
--
-- CmmGlobal @PicBaseReg@'s are generated in @GHC.CmmToAsm.PIC@ in the
-- @cmmMakePicReference@.  This is in turn called from @cmmMakeDynamicReference@
-- also in @Cmm.CmmToAsm.PIC@ from where it is also exported.  There are two
-- callsites for this. One is in this module to produce the @target@ in @genCCall@
-- the other is in @GHC.CmmToAsm@ in @cmmExprNative@.
--
-- Conceptually we do not want any special PicBaseReg to be used on AArch64. If
-- we want to distinguish between symbol loading, we need to address this through
-- the way we load it, not through a register.
--

getRegister' :: NCGConfig -> Platform -> CmmExpr -> NatM Register
-- OPTIMIZATION WARNING: CmmExpr rewrites
-- 1. Rewrite: Reg + (-n) => Reg - n
--    TODO: this expression souldn't even be generated to begin with.
getRegister' config plat (CmmMachOp (MO_Add w0) [x, CmmLit (CmmInt i w1)]) | i < 0
  = getRegister' config plat (CmmMachOp (MO_Sub w0) [x, CmmLit (CmmInt (-i) w1)])

getRegister' config plat (CmmMachOp (MO_Sub w0) [x, CmmLit (CmmInt i w1)]) | i < 0
  = getRegister' config plat (CmmMachOp (MO_Add w0) [x, CmmLit (CmmInt (-i) w1)])


-- Generic case.
getRegister' config plat expr
  = case expr of
    CmmReg (CmmGlobal PicBaseReg)
      -> pprPanic "getRegisterReg-memory" (ppr $ PicBaseReg)
    CmmLit lit
      -> case lit of

        -- TODO handle CmmInt 0 specially, use wzr or xzr.

        CmmInt i W8  -> do
          return (Any (intFormat W8) (\dst -> unitOL $ annExpr expr (MOV (OpReg W8 dst) (OpImm (ImmInteger (narrowS W8 i))))))
        CmmInt i W16 -> do
          return (Any (intFormat W16) (\dst -> unitOL $ annExpr expr (MOV (OpReg W16 dst) (OpImm (ImmInteger (narrowS W16 i))))))

        -- We need to be careful to not shorten this for negative literals.
        -- Those need the upper bits set. We'd either have to explicitly sign
        -- or figure out something smarter. Lowered to
        -- `MOV dst XZR`
        CmmInt i w | isNbitEncodeable 16 i, i >= 0 -> do
          return (Any (intFormat w) (\dst -> unitOL $ annExpr expr (MOV (OpReg W16 dst) (OpImm (ImmInteger i)))))
        CmmInt i w | isNbitEncodeable 32 i, i >= 0 -> do
          let  half0 = fromIntegral (fromIntegral i :: Word16)
               half1 = fromIntegral (fromIntegral (i `shiftR` 16) :: Word16)
          return (Any (intFormat w) (\dst -> toOL [ annExpr expr
                                                  $ MOV (OpReg W32 dst) (OpImm (ImmInt half0))
                                                  , MOVK (OpReg W32 dst) (OpImmShift (ImmInt half1) SLSL 16)
                                                  ]))
        -- fallback for W32
        CmmInt i W32 -> do
          let  half0 = fromIntegral (fromIntegral i :: Word16)
               half1 = fromIntegral (fromIntegral (i `shiftR` 16) :: Word16)
          return (Any (intFormat W32) (\dst -> toOL [ annExpr expr
                                                    $ MOV (OpReg W32 dst) (OpImm (ImmInt half0))
                                                    , MOVK (OpReg W32 dst) (OpImmShift (ImmInt half1) SLSL 16)
                                                    ]))
        -- anything else
        CmmInt i W64 -> do
          let  half0 = fromIntegral (fromIntegral i :: Word16)
               half1 = fromIntegral (fromIntegral (i `shiftR` 16) :: Word16)
               half2 = fromIntegral (fromIntegral (i `shiftR` 32) :: Word16)
               half3 = fromIntegral (fromIntegral (i `shiftR` 48) :: Word16)
          return (Any (intFormat W64) (\dst -> toOL [ annExpr expr
                                                    $ MOV (OpReg W64 dst) (OpImm (ImmInt half0))
                                                    , MOVK (OpReg W64 dst) (OpImmShift (ImmInt half1) SLSL 16)
                                                    , MOVK (OpReg W64 dst) (OpImmShift (ImmInt half2) SLSL 32)
                                                    , MOVK (OpReg W64 dst) (OpImmShift (ImmInt half3) SLSL 48)
                                                    ]))
        CmmInt _i rep -> do
          (op, imm_code) <- litToImm' lit
          return (Any (intFormat rep) (\dst -> imm_code `snocOL` annExpr expr (MOV (OpReg rep dst) op)))

        -- floatToBytes (fromRational f)
        CmmFloat 0 w   -> do
          (op, imm_code) <- litToImm' lit
          return (Any (floatFormat w) (\dst -> imm_code `snocOL` annExpr expr (MOV (OpReg w dst) op)))

        CmmFloat _f W8  -> pprPanic "getRegister' (CmmLit:CmmFloat), no support for bytes" (pdoc plat expr)
        CmmFloat _f W16 -> pprPanic "getRegister' (CmmLit:CmmFloat), no support for halfs" (pdoc plat expr)
        CmmFloat f W32 -> do
          let word = castFloatToWord32 (fromRational f) :: Word32
              half0 = fromIntegral (fromIntegral word :: Word16)
              half1 = fromIntegral (fromIntegral (word `shiftR` 16) :: Word16)
          tmp <- getNewRegNat (intFormat W32)
          return (Any (floatFormat W32) (\dst -> toOL [ annExpr expr
                                                      $ MOV (OpReg W32 tmp) (OpImm (ImmInt half0))
                                                      , MOVK (OpReg W32 tmp) (OpImmShift (ImmInt half1) SLSL 16)
                                                      , MOV (OpReg W32 dst) (OpReg W32 tmp)
                                                      ]))
        CmmFloat f W64 -> do
          let word = castDoubleToWord64 (fromRational f) :: Word64
              half0 = fromIntegral (fromIntegral word :: Word16)
              half1 = fromIntegral (fromIntegral (word `shiftR` 16) :: Word16)
              half2 = fromIntegral (fromIntegral (word `shiftR` 32) :: Word16)
              half3 = fromIntegral (fromIntegral (word `shiftR` 48) :: Word16)
          tmp <- getNewRegNat (intFormat W64)
          return (Any (floatFormat W64) (\dst -> toOL [ annExpr expr
                                                      $ MOV (OpReg W64 tmp) (OpImm (ImmInt half0))
                                                      , MOVK (OpReg W64 tmp) (OpImmShift (ImmInt half1) SLSL 16)
                                                      , MOVK (OpReg W64 tmp) (OpImmShift (ImmInt half2) SLSL 32)
                                                      , MOVK (OpReg W64 tmp) (OpImmShift (ImmInt half3) SLSL 48)
                                                      , MOV (OpReg W64 dst) (OpReg W64 tmp)
                                                      ]))
        CmmFloat _f _w -> pprPanic "getRegister' (CmmLit:CmmFloat), unsupported float lit" (pdoc plat expr)
        CmmVec _ -> pprPanic "getRegister' (CmmLit:CmmVec): " (pdoc plat expr)
        CmmLabel _lbl -> do
          (op, imm_code) <- litToImm' lit
          let rep = cmmLitType plat lit
              format = cmmTypeFormat rep
          return (Any format (\dst -> imm_code `snocOL` (annExpr expr $ LDR format (OpReg (formatToWidth format) dst) op)))

        CmmLabelOff _lbl off | isNbitEncodeable 12 (fromIntegral off) -> do
          (op, imm_code) <- litToImm' lit
          let rep = cmmLitType plat lit
              format = cmmTypeFormat rep
              -- width = typeWidth rep
          return (Any format (\dst -> imm_code `snocOL` LDR format (OpReg (formatToWidth format) dst) op))

        CmmLabelOff lbl off -> do
          (op, imm_code) <- litToImm' (CmmLabel lbl)
          let rep = cmmLitType plat lit
              format = cmmTypeFormat rep
              width = typeWidth rep
          (off_r, _off_format, off_code) <- getSomeReg $ CmmLit (CmmInt (fromIntegral off) width)
          return (Any format (\dst -> imm_code `appOL` off_code `snocOL` LDR format (OpReg (formatToWidth format) dst) op `snocOL` ADD (OpReg width dst) (OpReg width dst) (OpReg width off_r)))

        CmmLabelDiffOff _ _ _ _ -> pprPanic "getRegister' (CmmLit:CmmLabelOff): " (pdoc plat expr)
        CmmBlock _ -> pprPanic "getRegister' (CmmLit:CmmLabelOff): " (pdoc plat expr)
        CmmHighStackMark -> pprPanic "getRegister' (CmmLit:CmmLabelOff): " (pdoc plat expr)
    CmmLoad mem rep -> do
      Amode addr addr_code <- getAmode plat mem
      let format = cmmTypeFormat rep
      return (Any format (\dst -> addr_code `snocOL` LDR format (OpReg (formatToWidth format) dst) (OpAddr addr)))
    CmmStackSlot _ _
      -> pprPanic "getRegister' (CmmStackSlot): " (pdoc plat expr)
    CmmReg reg
      -> return (Fixed (cmmTypeFormat (cmmRegType plat reg))
                       (getRegisterReg plat reg)
                       nilOL)
    CmmRegOff reg off | isNbitEncodeable 12 (fromIntegral off) -> do
      getRegister' config plat $
            CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
          where width = typeWidth (cmmRegType plat reg)

    CmmRegOff reg off -> do
      (off_r, _off_format, off_code) <- getSomeReg $ CmmLit (CmmInt (fromIntegral off) width)
      (reg, _format, code) <- getSomeReg $ CmmReg reg
      return $ Any (intFormat width) (\dst -> off_code `appOL` code `snocOL` ADD (OpReg width dst) (OpReg width reg) (OpReg width off_r))
          where width = typeWidth (cmmRegType plat reg)



    -- for MachOps, see GHC.Cmm.MachOp
    -- For CmmMachOp, see GHC.Cmm.Expr
    CmmMachOp op [e] -> do
      (reg, _format, code) <- getSomeReg e
      case op of
        MO_Not w -> return $ Any (intFormat w) (\dst -> code `snocOL` MVN (OpReg w dst) (OpReg w reg))

        MO_S_Neg w -> return $ Any (intFormat w) (\dst -> code `snocOL` NEG (OpReg w dst) (OpReg w reg))
        MO_F_Neg w -> return $ Any (floatFormat w) (\dst -> code `snocOL` NEG (OpReg w dst) (OpReg w reg))

        MO_SF_Conv from to -> return $ Any (floatFormat to) (\dst -> code `snocOL` SCVTF (OpReg to dst) (OpReg from reg))  -- (Signed ConVerT Float)
        MO_FS_Conv from to -> return $ Any (intFormat to) (\dst -> code `snocOL` FCVTZS (OpReg to dst) (OpReg from reg)) -- (float convert (-> zero) signed)

        -- TODO this is very hacky
        -- Note, UBFM and SBFM expect source and target register to be of the same size, so we'll use @max from to@
        -- UBFM will set the high bits to 0. SBFM will copy the sign (sign extend).
        MO_UU_Conv from to -> return $ Any (intFormat to) (\dst -> code `snocOL` UBFM (OpReg (max from to) dst) (OpReg (max from to) reg) (OpImm (ImmInt 0)) (toImm (min from to)))
        MO_SS_Conv from to -> return $ Any (intFormat to) (\dst -> code `snocOL` SBFM (OpReg (max from to) dst) (OpReg (max from to) reg) (OpImm (ImmInt 0)) (toImm (min from to)))
        MO_FF_Conv from to -> return $ Any (floatFormat to) (\dst -> code `snocOL` FCVT (OpReg to dst) (OpReg from reg))

        -- Conversions
        MO_XX_Conv _from to -> swizzleRegisterRep (intFormat to) <$> getRegister e

        _ -> pprPanic "getRegister' (monadic CmmMachOp):" (pdoc plat expr)
      where toImm W8 =  (OpImm (ImmInt 7))
            toImm W16 = (OpImm (ImmInt 15))
            toImm W32 = (OpImm (ImmInt 31))
            toImm W64 = (OpImm (ImmInt 63))
            toImm W128 = (OpImm (ImmInt 127))
            toImm W256 = (OpImm (ImmInt 255))
            toImm W512 = (OpImm (ImmInt 511))
    -- Dyadic machops:
    --
    -- The general idea is:
    -- compute x<i> <- x
    -- compute x<j> <- y
    -- OP x<r>, x<i>, x<j>
    --
    -- TODO: for now we'll only implement the 64bit versions. And rely on the
    --      fallthrough to alert us if things go wrong!
    -- OPTIMIZATION WARNING: Dyadic CmmMachOp destructuring
    -- 0. TODO This should not exist! Rewrite: Reg +- 0 -> Reg
    CmmMachOp (MO_Add _) [expr'@(CmmReg (CmmGlobal _r)), CmmLit (CmmInt 0 _)] -> getRegister' config plat expr'
    CmmMachOp (MO_Sub _) [expr'@(CmmReg (CmmGlobal _r)), CmmLit (CmmInt 0 _)] -> getRegister' config plat expr'
    -- 1. Compute Reg +/- n directly.
    --    For Add/Sub we can directly encode 12bits, or 12bits lsl #12.
    CmmMachOp (MO_Add w) [(CmmReg reg), CmmLit (CmmInt n _)]
      | n > 0 && n < 4096 -> return $ Any (intFormat w) (\d -> unitOL $ annExpr expr (ADD (OpReg w d) (OpReg w' r') (OpImm (ImmInteger n))))
      -- TODO: 12bits lsl #12; e.g. lower 12 bits of n are 0; shift n >> 12, and set lsl to #12.
      where w' = formatToWidth (cmmTypeFormat (cmmRegType plat reg))
            r' = getRegisterReg plat reg
    CmmMachOp (MO_Sub w) [(CmmReg reg), CmmLit (CmmInt n _)]
      | n > 0 && n < 4096 -> return $ Any (intFormat w) (\d -> unitOL $ annExpr expr (SUB (OpReg w d) (OpReg w' r') (OpImm (ImmInteger n))))
      -- TODO: 12bits lsl #12; e.g. lower 12 bits of n are 0; shift n >> 12, and set lsl to #12.
      where w' = formatToWidth (cmmTypeFormat (cmmRegType plat reg))
            r' = getRegisterReg plat reg

    -- 2. Shifts. x << n, x >> n.
    CmmMachOp (MO_Shl w) [x, (CmmLit (CmmInt n _))] | w == W32, 0 <= n, n < 32 -> do
      (reg_x, _format_x, code_x) <- getSomeReg x
      return $ Any (intFormat w) (\dst -> code_x `snocOL` annExpr expr (LSL (OpReg w dst) (OpReg w reg_x) (OpImm (ImmInteger n))))
    CmmMachOp (MO_Shl w) [x, (CmmLit (CmmInt n _))] | w == W64, 0 <= n, n < 64 -> do
      (reg_x, _format_x, code_x) <- getSomeReg x
      return $ Any (intFormat w) (\dst -> code_x `snocOL` annExpr expr (LSL (OpReg w dst) (OpReg w reg_x) (OpImm (ImmInteger n))))

    CmmMachOp (MO_U_Shr w) [x, (CmmLit (CmmInt n _))] | w == W32, 0 <= n, n < 32 -> do
      (reg_x, _format_x, code_x) <- getSomeReg x
      return $ Any (intFormat w) (\dst -> code_x `snocOL` annExpr expr (LSR (OpReg w dst) (OpReg w reg_x) (OpImm (ImmInteger n))))
    CmmMachOp (MO_U_Shr w) [x, (CmmLit (CmmInt n _))] | w == W64, 0 <= n, n < 64 -> do
      (reg_x, _format_x, code_x) <- getSomeReg x
      return $ Any (intFormat w) (\dst -> code_x `snocOL` annExpr expr (LSR (OpReg w dst) (OpReg w reg_x) (OpImm (ImmInteger n))))

    -- 3. Logic &&, ||
    CmmMachOp (MO_And w) [(CmmReg reg), CmmLit (CmmInt n _)] | isBitMaskImmediate (fromIntegral n) ->
      return $ Any (intFormat w) (\d -> unitOL $ annExpr expr (AND (OpReg w d) (OpReg w' r') (OpImm (ImmInteger n))))
      where w' = formatToWidth (cmmTypeFormat (cmmRegType plat reg))
            r' = getRegisterReg plat reg

    CmmMachOp (MO_Or w) [(CmmReg reg), CmmLit (CmmInt n _)] | isBitMaskImmediate (fromIntegral n) ->
      return $ Any (intFormat w) (\d -> unitOL $ annExpr expr (ORR (OpReg w d) (OpReg w' r') (OpImm (ImmInteger n))))
      where w' = formatToWidth (cmmTypeFormat (cmmRegType plat reg))
            r' = getRegisterReg plat reg

    -- Generic case.
    CmmMachOp op [x, y] -> do
      -- alright, so we have an operation, and two expressions. And we want to essentially do
      -- ensure we get float regs
      let genOp w op = do
            (reg_x, format_x, code_x) <- getSomeReg x
            (reg_y, format_y, code_y) <- getSomeReg y
            when ((isFloatFormat format_x && isIntFormat format_y) || (isIntFormat format_x && isFloatFormat format_y)) $ pprPanic "getRegister:genOp" (text "formats don't match:" <+> text (show format_x) <+> text "/=" <+> text (show format_y))
            return $ Any format_x (\dst -> code_x `appOL` code_y `appOL` op (OpReg w dst) (OpReg w reg_x) (OpReg w reg_y))

          withTempIntReg w op = OpReg w <$> getNewRegNat (intFormat w) >>= op
          -- withTempFloatReg w op = OpReg w <$> getNewRegNat (floatFormat w) >>= op

          intOp w op = do
            -- compute x<m> <- x
            -- compute x<o> <- y
            -- <OP> x<n>, x<m>, x<o>
            (reg_x, _format_x, code_x) <- getSomeReg x
            (reg_y, _format_y, code_y) <- getSomeReg y
            return $ Any (intFormat w) (\dst -> code_x `appOL` code_y `appOL` op (OpReg w dst) (OpReg w reg_x) (OpReg w reg_y))
          floatOp w op = do
            (reg_fx, _format_x, code_fx) <- getFloatReg x
            (reg_fy, _format_y, code_fy) <- getFloatReg y
            return $ Any (floatFormat w) (\dst -> code_fx `appOL` code_fy `appOL` op (OpReg w dst) (OpReg w reg_fx) (OpReg w reg_fy))
          -- need a special one for conditionals, as they return ints
          floatCond w op = do
            (reg_fx, _format_x, code_fx) <- getFloatReg x
            (reg_fy, _format_y, code_fy) <- getFloatReg y
            return $ Any (intFormat w) (\dst -> code_fx `appOL` code_fy `appOL` op (OpReg w dst) (OpReg w reg_fx) (OpReg w reg_fy))

      case op of
        -- Integer operations
        -- Add/Sub should only be Interger Options.
        -- But our Cmm parser doesn't care about types
        -- and thus we end up with <float> + <float> => MO_Add <float> <float>
        MO_Add w -> genOp w (\d x y -> unitOL $ annExpr expr (ADD d x y))
        MO_Sub w -> genOp w (\d x y -> unitOL $ annExpr expr (SUB d x y))
        --    31  30  29  28
        --  .---+---+---+---+-- - -
        --  | N | Z | C | V |
        --  '---+---+---+---+-- - -
        --  Negative
        --  Zero
        --  Carry
        --  oVerflow
        --
        --  .------+-------------------------------------+-----------------+----------.
        --  | Code | Meaning                             | Flags           | Encoding |
        --  |------+-------------------------------------+-----------------+----------|
        --  |  EQ  | Equal                               | Z = 1           | 0000     |
        --  |  NE  | Not Equal                           | Z = 0           | 0001     |
        --  |  HI  | Unsigned Higher                     | C = 1 && Z = 0  | 1000     |
        --  |  HS  | Unsigned Higher or Same             | C = 1           | 0010     |
        --  |  LS  | Unsigned Lower or Same              | C = 0 || Z = 1  | 1001     |
        --  |  LO  | Unsigned Lower                      | C = 0           | 0011     |
        --  |  GT  | Signed Greater Than                 | Z = 0 && N = V  | 1100     |
        --  |  GE  | Signed Greater Than or Equal        | N = V           | 1010     |
        --  |  LE  | Signed Less Than or Equal           | Z = 1 || N /= V | 1101     |
        --  |  LT  | Signed Less Than                    | N /= V          | 1011     |
        --  |  CS  | Carry Set (Unsigned Overflow)       | C = 1           | 0010     |
        --  |  CC  | Carry Clear (No Unsigned Overflow)  | C = 0           | 0011     |
        --  |  VS  | Signed Overflow                     | V = 1           | 0110     |
        --  |  VC  | No Signed Overflow                  | V = 0           | 0111     |
        --  |  MI  | Minus, Negative                     | N = 1           | 0100     |
        --  |  PL  | Plus, Positive or Zero (!)          | N = 0           | 0101     |
        --  |  AL  | Always                              | Any             | 1110     |
        --  |  NV  | Never                               | Any             | 1111     |
        --- '-------------------------------------------------------------------------'

        MO_Eq w -> intOp w (\d x y -> toOL [ CMP x y, CSET d EQ ])
        MO_Ne w -> intOp w (\d x y -> toOL [ CMP x y, CSET d NE ])
        MO_Mul w -> intOp w (\d x y -> unitOL $ MUL d x y)

        -- Signed multiply/divide
        MO_S_MulMayOflo w -> intOp w (\d x y -> toOL [ MUL d x y, CSET d VS ])
        MO_S_Quot w -> intOp w (\d x y -> unitOL $ SDIV d x y)

        -- No native rem instruction. So we'll compute the following
        -- Rd  <- Rx / Ry             | 2 <- 7 / 3      -- SDIV Rd Rx Ry
        -- Rd' <- Rx - Rd * Ry        | 1 <- 7 - 2 * 3  -- MSUB Rd' Rd Ry Rx
        --        |     '---|----------------|---'   |
        --        |         '----------------|-------'
        --        '--------------------------'
        -- Note the swap in Rx and Ry.
        MO_S_Rem w -> withTempIntReg w $ \t ->
          intOp w (\d x y -> toOL [ SDIV t x y, MSUB d t y x ])

        -- Unsigned multiply/divide
        MO_U_MulMayOflo _w -> unsupportedP plat expr
        MO_U_Quot w -> intOp w (\d x y -> unitOL $ UDIV d x y)
        MO_U_Rem w  -> withTempIntReg w $ \t ->
          intOp w (\d x y -> toOL [ UDIV t x y, MSUB d t y x ])

        -- Signed comparisons -- see above for the CSET discussion
        MO_S_Ge w -> intOp w (\d x y -> toOL [ CMP x y, CSET d SGE ])
        MO_S_Le w -> intOp w (\d x y -> toOL [ CMP x y, CSET d SLE ])
        MO_S_Gt w -> intOp w (\d x y -> toOL [ CMP x y, CSET d SGT ])
        MO_S_Lt w -> intOp w (\d x y -> toOL [ CMP x y, CSET d SLT ])

        -- Unsigned comparisons
        MO_U_Ge w -> intOp w (\d x y -> toOL [ CMP x y, CSET d UGE ])
        MO_U_Le w -> intOp w (\d x y -> toOL [ CMP x y, CSET d ULE ])
        MO_U_Gt w -> intOp w (\d x y -> toOL [ CMP x y, CSET d UGT ])
        MO_U_Lt w -> intOp w (\d x y -> toOL [ CMP x y, CSET d ULT ])

        -- Floating point arithmetic
        MO_F_Add w   -> floatOp w (\d x y -> unitOL $ ADD d x y)
        MO_F_Sub w   -> floatOp w (\d x y -> unitOL $ SUB d x y)
        MO_F_Mul w   -> floatOp w (\d x y -> unitOL $ MUL d x y)
        MO_F_Quot w  -> floatOp w (\d x y -> unitOL $ SDIV d x y)

        -- Floating point comparison
        MO_F_Eq w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d EQ ])
        MO_F_Ne w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d NE ])

        -- careful with the floating point operations.
        -- SLE is effectively LE or unordered (NaN)
        -- SLT is the same. ULE, and ULT will not return true for NaN.
        -- This is a bit counter intutive. Don't let yourself be fooled by
        -- the S/U prefix for floats, it's only meaningful for integers.
        MO_F_Ge w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d OGE ])
        MO_F_Le w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d OLE ]) -- x <= y <=> y > x
        MO_F_Gt w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d OGT ])
        MO_F_Lt w    -> floatCond w (\d x y -> toOL [ CMP x y, CSET d OLT ]) -- x < y <=> y >= x

        -- Bitwise operations
        MO_And   w -> intOp w (\d x y -> unitOL $ AND d x y)
        MO_Or    w -> intOp w (\d x y -> unitOL $ ORR d x y)
        MO_Xor   w -> intOp w (\d x y -> unitOL $ EOR d x y)
        -- MO_Not   W64 ->
        MO_Shl   w -> intOp w (\d x y -> unitOL $ LSL d x y)
        MO_U_Shr w -> intOp w (\d x y -> unitOL $ LSR d x y)
        MO_S_Shr w -> intOp w (\d x y -> unitOL $ ASR d x y)

        -- TODO

        op -> pprPanic "getRegister' (unhandled dyadic CmmMachOp): " $ (pprMachOp op) <+> text "in" <+> (pdoc plat expr)
    CmmMachOp _op _xs
      -> pprPanic "getRegister' (variadic CmmMachOp): " (pdoc plat expr)

  where
    unsupportedP :: OutputableP env a => env -> a -> b
    unsupportedP platform op = pprPanic "Unsupported op:" (pdoc platform op)

    isNbitEncodeable :: Int -> Integer -> Bool
    isNbitEncodeable n i = let shift = n - 1 in (-1 `shiftL` shift) <= i && i < (1 `shiftL` shift)
    -- This needs to check if n can be encoded as a bitmask immediate:
    --
    -- See https://stackoverflow.com/questions/30904718/range-of-immediate-values-in-armv8-a64-assembly
    --
    isBitMaskImmediate :: Integer -> Bool
    isBitMaskImmediate i = i `elem` [0b0000_0001, 0b0000_0010, 0b0000_0100, 0b0000_1000, 0b0001_0000, 0b0010_0000, 0b0100_0000, 0b1000_0000
                                    ,0b0000_0011, 0b0000_0110, 0b0000_1100, 0b0001_1000, 0b0011_0000, 0b0110_0000, 0b1100_0000
                                    ,0b0000_0111, 0b0000_1110, 0b0001_1100, 0b0011_1000, 0b0111_0000, 0b1110_0000
                                    ,0b0000_1111, 0b0001_1110, 0b0011_1100, 0b0111_1000, 0b1111_0000
                                    ,0b0001_1111, 0b0011_1110, 0b0111_1100, 0b1111_1000
                                    ,0b0011_1111, 0b0111_1110, 0b1111_1100
                                    ,0b0111_1111, 0b1111_1110
                                    ,0b1111_1111]


-- -----------------------------------------------------------------------------
--  The 'Amode' type: Memory addressing modes passed up the tree.
data Amode = Amode AddrMode InstrBlock

getAmode :: Platform -> CmmExpr -> NatM Amode
-- TODO: Specialize stuff we can destructure here.

-- OPTIMIZATION WARNING: Addressing modes.
-- Addressing options:
-- LDUR/STUR: imm9: -256 - 255
getAmode platform (CmmRegOff reg off) | -256 <= off, off <= 255
  = return $ Amode (AddrRegImm reg' off') nilOL
    where reg' = getRegisterReg platform reg
          off' = ImmInt off
-- LDR/STR: imm12: if reg is 32bit: 0 -- 16380 in multiples of 4
getAmode platform (CmmRegOff reg off)
  | typeWidth (cmmRegType platform reg) == W32, 0 <= off, off <= 16380, off `mod` 4 == 0
  = return $ Amode (AddrRegImm reg' off') nilOL
    where reg' = getRegisterReg platform reg
          off' = ImmInt off
-- LDR/STR: imm12: if reg is 64bit: 0 -- 32760 in multiples of 8
getAmode platform (CmmRegOff reg off)
  | typeWidth (cmmRegType platform reg) == W64, 0 <= off, off <= 32760, off `mod` 8 == 0
  = return $ Amode (AddrRegImm reg' off') nilOL
    where reg' = getRegisterReg platform reg
          off' = ImmInt off

-- For Stores we often see something like this:
-- CmmStore (CmmMachOp (MO_Add w) [CmmLoad expr, CmmLit (CmmInt n w')]) (expr2)
-- E.g. a CmmStoreOff really. This can be translated to `str $expr2, [$expr, #n ]
-- for `n` in range.
getAmode _platform (CmmMachOp (MO_Add _w) [expr, CmmLit (CmmInt off _w')])
  | -256 <= off, off <= 255
  = do (reg, _format, code) <- getSomeReg expr
       return $ Amode (AddrRegImm reg (ImmInteger off)) code

getAmode _platform (CmmMachOp (MO_Sub _w) [expr, CmmLit (CmmInt off _w')])
  | -256 <= -off, -off <= 255
  = do (reg, _format, code) <- getSomeReg expr
       return $ Amode (AddrRegImm reg (ImmInteger (-off))) code

-- Generic case
getAmode _platform expr
  = do (reg, _format, code) <- getSomeReg expr
       return $ Amode (AddrReg reg) code

-- -----------------------------------------------------------------------------
-- Generating assignments

-- Assignments are really at the heart of the whole code generation
-- business.  Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers.  If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side.  This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).

assignMem_IntCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Format -> CmmReg  -> CmmExpr -> NatM InstrBlock

assignMem_FltCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Format -> CmmReg  -> CmmExpr -> NatM InstrBlock

assignMem_IntCode rep addrE srcE
  = do
    (src_reg, _format, code) <- getSomeReg srcE
    platform <- getPlatform
    Amode addr addr_code <- getAmode platform addrE
    return $ COMMENT (text "CmmStore" <+> parens (text (show addrE)) <+> parens (text (show srcE)))
            `consOL` (code
            `appOL` addr_code
            `snocOL` STR rep (OpReg (formatToWidth rep) src_reg) (OpAddr addr))

assignReg_IntCode _ reg src
  = do
    platform <- getPlatform
    let dst = getRegisterReg platform reg
    r <- getRegister src
    return $ case r of
      Any _ code              -> COMMENT (text "CmmAssign" <+> parens (text (show reg)) <+> parens (text (show src))) `consOL` code dst
      Fixed format freg fcode -> COMMENT (text "CmmAssign" <+> parens (text (show reg)) <+> parens (text (show src))) `consOL` (fcode `snocOL` MOV (OpReg (formatToWidth format) dst) (OpReg (formatToWidth format) freg))

-- Let's treat Floating point stuff
-- as integer code for now. Opaque.
assignMem_FltCode = assignMem_IntCode
assignReg_FltCode = assignReg_IntCode

-- -----------------------------------------------------------------------------
-- Jumps
genJump :: CmmExpr{-the branch target-} -> NatM InstrBlock
genJump expr@(CmmLit (CmmLabel lbl))
  = return $ unitOL (annExpr expr (J (TLabel lbl)))

genJump expr = do
    (target, _format, code) <- getSomeReg expr
    return (code `appOL` unitOL (annExpr expr (J (TReg target))))

-- -----------------------------------------------------------------------------
--  Unconditional branches
genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkJumpInstr

-- -----------------------------------------------------------------------------
-- Conditional branches
genCondJump
    :: BlockId
    -> CmmExpr
    -> NatM InstrBlock
genCondJump bid expr = do
    case expr of
      -- Optimized == 0 case.
      CmmMachOp (MO_Eq w) [x, CmmLit (CmmInt 0 _)] -> do
        (reg_x, _format_x, code_x) <- getSomeReg x
        return $ code_x `snocOL` (annExpr expr (CBZ (OpReg w reg_x) (TBlock bid)))

      -- Optimized /= 0 case.
      CmmMachOp (MO_Ne w) [x, CmmLit (CmmInt 0 _)] -> do
        (reg_x, _format_x, code_x) <- getSomeReg x
        return $ code_x `snocOL`  (annExpr expr (CBNZ (OpReg w reg_x) (TBlock bid)))

      -- Generic case.
      CmmMachOp mop [x, y] -> do

        let bcond w cmp = do
              -- compute both sides.
              (reg_x, _format_x, code_x) <- getSomeReg x
              (reg_y, _format_y, code_y) <- getSomeReg y
              return $ code_x `appOL` code_y `snocOL` CMP (OpReg w reg_x) (OpReg w reg_y) `snocOL` (annExpr expr (BCOND cmp (TBlock bid)))
            fbcond w cmp = do
              -- ensure we get float regs
              (reg_fx, _format_fx, code_fx) <- getFloatReg x
              (reg_fy, _format_fy, code_fy) <- getFloatReg y
              return $ code_fx `appOL` code_fy `snocOL` CMP (OpReg w reg_fx) (OpReg w reg_fy) `snocOL` (annExpr expr (BCOND cmp (TBlock bid)))

        case mop of
          MO_F_Eq w -> fbcond w EQ
          MO_F_Ne w -> fbcond w NE

          MO_F_Gt w -> fbcond w OGT
          MO_F_Ge w -> fbcond w OGE
          MO_F_Lt w -> fbcond w OLT
          MO_F_Le w -> fbcond w OLE

          MO_Eq w   -> bcond w EQ
          MO_Ne w   -> bcond w NE

          MO_S_Gt w -> bcond w SGT
          MO_S_Ge w -> bcond w SGE
          MO_S_Lt w -> bcond w SLT
          MO_S_Le w -> bcond w SLE
          MO_U_Gt w -> bcond w UGT
          MO_U_Ge w -> bcond w UGE
          MO_U_Lt w -> bcond w ULT
          MO_U_Le w -> bcond w ULE
          _ -> pprPanic "AArch64.genCondJump:case mop: " (text $ show expr)
      _ -> pprPanic "AArch64.genCondJump: " (text $ show expr)


genCondBranch
    :: BlockId      -- the source of the jump
    -> BlockId      -- the true branch target
    -> BlockId      -- the false branch target
    -> CmmExpr      -- the condition on which to branch
    -> NatM InstrBlock -- Instructions

genCondBranch _ true false expr = do
  b1 <- genCondJump true expr
  b2 <- genBranch false
  return (b1 `appOL` b2)

-- -----------------------------------------------------------------------------
--  Generating C calls

-- Now the biggest nightmare---calls.  Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations.  Apart from that, the code is easy.
--
-- As per *convention*:
-- x0-x7:   (volatile) argument registers
-- x8:      (volatile) indirect result register / Linux syscall no
-- x9-x15:  (volatile) caller saved regs
-- x16,x17: (volatile) intra-procedure-call registers
-- x18:     (volatile) platform register. don't use for portability
-- x19-x28: (non-volatile) callee save regs
-- x29:     (non-volatile) frame pointer
-- x30:                    link register
-- x31:                    stack pointer / zero reg
--
-- Thus, this is what a c function will expect. Find the arguments in x0-x7,
-- anything above that on the stack.  We'll ignore c functions with more than
-- 8 arguments for now.  Sorry.
--
-- We need to make sure we preserve x9-x15, don't want to touch x16, x17.

-- Note [PLT vs GOT relocations]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- When linking objects together, we may need to lookup foreign references. That
-- is symbolic references to functions or values in other objects. When
-- compiling the object, we can not know where those elements will end up in
-- memory (relative to the current location). Thus the use of symbols. There
-- are two types of items we are interested, code segments we want to jump to
-- and continue execution there (functions, ...), and data items we want to look
-- up (strings, numbers, ...). For functions we can use the fact that we can use
-- an intermediate jump without visibility to the programs execution.  If we
-- want to jump to a function that is simply too far away to reach for the B/BL
-- instruction, we can create a small piece of code that loads the full target
-- address and jumps to that on demand. Say f wants to call g, however g is out
-- of range for a direct jump, we can create a function h in range for f, that
-- will load the address of g, and jump there. The area where we construct h
-- is called the Procedure Linking Table (PLT), we have essentially replaced
-- f -> g with f -> h -> g.  This is fine for function calls.  However if we
-- want to lookup values, this trick doesn't work, so we need something else.
-- We will instead reserve a slot in memory, and have a symbol pointing to that
-- slot. Now what we essentially do is, we reference that slot, and expect that
-- slot to hold the final resting address of the data we are interested in.
-- Thus what that symbol really points to is the location of the final data.
-- The block of memory where we hold all those slots is the Global Offset Table
-- (GOT).  Instead of x <- $foo, we now do y <- $fooPtr, and x <- [$y].
--
-- For JUMP/CALLs we have 26bits (+/- 128MB), for conditional branches we only
-- have 19bits (+/- 1MB).  Symbol lookups are also within +/- 1MB, thus for most
-- of the LOAD/STOREs we'd want to use adrp, and add to compute a value within
-- 4GB of the PC, and load that.  For anything outside of that range, we'd have
-- to go through the GOT.
--
--  adrp x0, <symbol>
--  add x0, :lo:<symbol>
--
-- will compute the address of <symbol> int x0 if <symbol> is within 4GB of the
-- PC.
--
-- If we want to get the slot in the global offset table (GOT), we can do this:
--
--   adrp x0, #:got:<symbol>
--   ldr x0, [x0, #:got_lo12:<symbol>]
--
-- this will compute the address anywhere in the addressable 64bit space into
-- x0, by loading the address from the GOT slot.
--
-- To actually get the value of <symbol>, we'd need to ldr x0, x0 still, which
-- for the first case can be optimized to use ldr x0, [x0, #:lo12:<symbol>]
-- instaed of the add instruction.
--
-- As the memory model for AArch64 for PIC is considered to be +/- 4GB, we do
-- not need to go through the GOT, unless we want to address the full address
-- range within 64bit.

genCCall
    :: ForeignTarget      -- function to call
    -> [CmmFormal]        -- where to put the result
    -> [CmmActual]        -- arguments (of mixed type)
    -> BlockId            -- The block we are in
    -> NatM (InstrBlock, Maybe BlockId)
-- TODO: Specialize where we can.
-- Generic impl
genCCall target dest_regs arg_regs bid = do
  -- we want to pass arg_regs into allArgRegs
  -- pprTraceM "genCCall target" (ppr target)
  -- pprTraceM "genCCall formal" (ppr dest_regs)
  -- pprTraceM "genCCall actual" (ppr arg_regs)

  case target of
    -- The target :: ForeignTarget call can either
    -- be a foreign procedure with an address expr
    -- and a calling convention.
    ForeignTarget expr _cconv -> do
      (call_target, call_target_code) <- case expr of
        -- if this is a label, let's just directly to it.  This will produce the
        -- correct CALL relocation for BL...
        (CmmLit (CmmLabel lbl)) -> pure (TLabel lbl, nilOL)
        -- ... if it's not a label--well--let's compute the expression into a
        -- register and jump to that. See Note [PLT vs GOT relocations]
        _ -> do (reg, _format, reg_code) <- getSomeReg expr
                pure (TReg reg, reg_code)
      -- compute the code and register logic for all arg_regs.
      -- this will give us the format information to match on.
      arg_regs' <- mapM getSomeReg arg_regs

      -- Now this is stupid.  Our Cmm expressions doesn't carry the proper sizes
      -- so while in Cmm we might get W64 incorrectly for an int, that is W32 in
      -- STG; this thenn breaks packing of stack arguments, if we need to pack
      -- for the pcs, e.g. darwinpcs.  Option one would be to fix the Int type
      -- in Cmm proper. Option two, which we choose here is to use extended Hint
      -- information to contain the size information and use that when packing
      -- arguments, spilled onto the stack.
      let (_res_hints, arg_hints) = foreignTargetHints target
          arg_regs'' = zipWith (\(r, f, c) h -> (r,f,h,c)) arg_regs' arg_hints

      platform <- getPlatform
      let packStack = platformOS platform == OSDarwin

      (stackSpace', passRegs, passArgumentsCode) <- passArguments packStack allGpArgRegs allFpArgRegs arg_regs'' 0 [] nilOL

      -- if we pack the stack, we may need to adjust to multiple of 8byte.
      -- if we don't pack the stack, it will always be multiple of 8.
      let stackSpace = if stackSpace' `mod` 8 /= 0
                       then 8 * (stackSpace' `div` 8 + 1)
                       else stackSpace'

      (returnRegs, readResultsCode)   <- readResults allGpArgRegs allFpArgRegs dest_regs [] nilOL

      let moveStackDown 0 = toOL [ PUSH_STACK_FRAME
                                 , DELTA (-16) ]
          moveStackDown i | odd i = moveStackDown (i + 1)
          moveStackDown i = toOL [ PUSH_STACK_FRAME
                                 , SUB (OpReg W64 (regSingle 31)) (OpReg W64 (regSingle 31)) (OpImm (ImmInt (8 * i)))
                                 , DELTA (-8 * i - 16) ]
          moveStackUp 0 = toOL [ POP_STACK_FRAME
                               , DELTA 0 ]
          moveStackUp i | odd i = moveStackUp (i + 1)
          moveStackUp i = toOL [ ADD (OpReg W64 (regSingle 31)) (OpReg W64 (regSingle 31)) (OpImm (ImmInt (8 * i)))
                               , POP_STACK_FRAME
                               , DELTA 0 ]

      let code =    call_target_code          -- compute the label (possibly into a register)
            `appOL` moveStackDown (stackSpace `div` 8)
            `appOL` passArgumentsCode         -- put the arguments into x0, ...
            `appOL` (unitOL $ BL call_target passRegs returnRegs) -- branch and link.
            `appOL` readResultsCode           -- parse the results into registers
            `appOL` moveStackUp (stackSpace `div` 8)
      return (code, Nothing)

    -- or a possibly side-effecting machine operation
    -- mop :: CallishMachOp (see GHC.Cmm.MachOp)
    PrimTarget mop -> do
      -- We'll need config to construct forien targets
      case mop of
        -- 64 bit float ops
        MO_F64_Pwr   -> mkCCall "pow"

        MO_F64_Sin   -> mkCCall "sin"
        MO_F64_Cos   -> mkCCall "cos"
        MO_F64_Tan   -> mkCCall "tan"

        MO_F64_Sinh  -> mkCCall "sinh"
        MO_F64_Cosh  -> mkCCall "cosh"
        MO_F64_Tanh  -> mkCCall "tanh"

        MO_F64_Asin  -> mkCCall "asin"
        MO_F64_Acos  -> mkCCall "acos"
        MO_F64_Atan  -> mkCCall "atan"

        MO_F64_Asinh -> mkCCall "asinh"
        MO_F64_Acosh -> mkCCall "acosh"
        MO_F64_Atanh -> mkCCall "atanh"

        MO_F64_Log   -> mkCCall "log"
        MO_F64_Log1P -> mkCCall "log1p"
        MO_F64_Exp   -> mkCCall "exp"
        MO_F64_ExpM1 -> mkCCall "expm1"
        MO_F64_Fabs  -> mkCCall "fabs"
        MO_F64_Sqrt  -> mkCCall "sqrt"

        -- 32 bit float ops
        MO_F32_Pwr   -> mkCCall "powf"

        MO_F32_Sin   -> mkCCall "sinf"
        MO_F32_Cos   -> mkCCall "cosf"
        MO_F32_Tan   -> mkCCall "tanf"
        MO_F32_Sinh  -> mkCCall "sinhf"
        MO_F32_Cosh  -> mkCCall "coshf"
        MO_F32_Tanh  -> mkCCall "tanhf"
        MO_F32_Asin  -> mkCCall "asinf"
        MO_F32_Acos  -> mkCCall "acosf"
        MO_F32_Atan  -> mkCCall "atanf"
        MO_F32_Asinh -> mkCCall "asinhf"
        MO_F32_Acosh -> mkCCall "acoshf"
        MO_F32_Atanh -> mkCCall "atanhf"
        MO_F32_Log   -> mkCCall "logf"
        MO_F32_Log1P -> mkCCall "log1pf"
        MO_F32_Exp   -> mkCCall "expf"
        MO_F32_ExpM1 -> mkCCall "expm1f"
        MO_F32_Fabs  -> mkCCall "fasbf"
        MO_F32_Sqrt  -> mkCCall "sqrtf"

        -- Conversion
        MO_UF_Conv w        -> mkCCall (word2FloatLabel w)

        -- Arithmatic
        -- These are not supported on X86, so I doubt they are used much.
        MO_S_Mul2     _w -> unsupported mop
        MO_S_QuotRem  _w -> unsupported mop
        MO_U_QuotRem  _w -> unsupported mop
        MO_U_QuotRem2 _w -> unsupported mop
        MO_Add2       _w -> unsupported mop
        MO_AddWordC   _w -> unsupported mop
        MO_SubWordC   _w -> unsupported mop
        MO_AddIntC    _w -> unsupported mop
        MO_SubIntC    _w -> unsupported mop
        MO_U_Mul2     _w -> unsupported mop

        -- Memory Ordering
        -- TODO DMBSY is probably *way* too much!
        MO_ReadBarrier      ->  return (unitOL DMBSY, Nothing)
        MO_WriteBarrier     ->  return (unitOL DMBSY, Nothing)
        MO_Touch            ->  return (nilOL, Nothing) -- Keep variables live (when using interior pointers)
        -- Prefetch
        MO_Prefetch_Data _n -> return (nilOL, Nothing) -- Prefetch hint.

        -- Memory copy/set/move/cmp, with alignment for optimization

        -- TODO Optimize and use e.g. quad registers to move memory around instead
        -- of offloading this to memcpy. For small memcpys we can utilize
        -- the 128bit quad registers in NEON to move block of bytes around.
        -- Might also make sense of small memsets? Use xzr? What's the function
        -- call overhead?
        MO_Memcpy  _align   -> mkCCall "memcpy"
        MO_Memset  _align   -> mkCCall "memset"
        MO_Memmove _align   -> mkCCall "memmove"
        MO_Memcmp  _align   -> mkCCall "memcmp"

        MO_SuspendThread    -> mkCCall "suspendThread"
        MO_ResumeThread     -> mkCCall "resumeThread"

        MO_PopCnt w         -> mkCCall (popCntLabel w)
        MO_Pdep w           -> mkCCall (pdepLabel w)
        MO_Pext w           -> mkCCall (pextLabel w)
        MO_Clz w            -> mkCCall (clzLabel w)
        MO_Ctz w            -> mkCCall (ctzLabel w)
        MO_BSwap w          -> mkCCall (bSwapLabel w)
        MO_BRev w           -> mkCCall (bRevLabel w)

        -- -- Atomic read-modify-write.
        MO_AtomicRMW w amop -> mkCCall (atomicRMWLabel w amop)
        MO_AtomicRead w     -> mkCCall (atomicReadLabel w)
        MO_AtomicWrite w    -> mkCCall (atomicWriteLabel w)
        MO_Cmpxchg w        -> mkCCall (cmpxchgLabel w)
        -- -- Should be an AtomicRMW variant eventually.
        -- -- Sequential consistent.
        -- TODO: this should be implemented properly!
        MO_Xchg w           -> mkCCall (xchgLabel w)

  where
    unsupported :: Show a => a -> b
    unsupported mop = panic ("outOfLineCmmOp: " ++ show mop
                          ++ " not supported here")
    mkCCall :: FastString -> NatM (InstrBlock, Maybe BlockId)
    mkCCall name = do
      config <- getConfig
      target <- cmmMakeDynamicReference config CallReference $
          mkForeignLabel name Nothing ForeignLabelInThisPackage IsFunction
      let cconv = ForeignConvention CCallConv [NoHint] [NoHint] CmmMayReturn
      genCCall (ForeignTarget target cconv) dest_regs arg_regs bid

    -- TODO: Optimize using paired stores and loads (STP, LDP). It is
    -- automomatically done by the allocator for us. However it's not optimal,
    -- as we'd rather want to have control over
    --     all spill/load registers, so we can optimize with instructions like
    --       STP xA, xB, [sp, #-16]!
    --     and
    --       LDP xA, xB, sp, #16
    --
    passArguments :: Bool -> [Reg] -> [Reg] -> [(Reg, Format, ForeignHint, InstrBlock)] -> Int -> [Reg] -> InstrBlock -> NatM (Int, [Reg], InstrBlock)
    passArguments _packStack _ _ [] stackSpace accumRegs accumCode = return (stackSpace, accumRegs, accumCode)
    -- passArguments _ _ [] accumCode stackSpace | isEven stackSpace = return $ SUM (OpReg W64 x31) (OpReg W64 x31) OpImm (ImmInt (-8 * stackSpace))
    -- passArguments _ _ [] accumCode stackSpace = return $ SUM (OpReg W64 x31) (OpReg W64 x31) OpImm (ImmInt (-8 * (stackSpace + 1)))
    -- passArguments [] fpRegs (arg0:arg1:args) stack accumCode = do
    --   -- allocate this on the stack
    --   (r0, format0, code_r0) <- getSomeReg arg0
    --   (r1, format1, code_r1) <- getSomeReg arg1
    --   let w0 = formatToWidth format0
    --       w1 = formatToWidth format1
    --       stackCode = unitOL $ STP (OpReg w0 r0) (OpReg w1 R1), (OpAddr (AddrRegImm x31 (ImmInt (stackSpace * 8)))
    --   passArguments gpRegs (fpReg:fpRegs) args (stackCode `appOL` accumCode)

      -- float promotion.
      -- According to
      --  ISO/IEC 9899:2018
      --  Information technology — Programming languages — C
      --
      -- e.g.
      -- http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
      -- http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
      --
      -- GHC would need to know the prototype.
      --
      -- > If the expression that denotes the called function has a type that does not include a
      -- > prototype, the integer promotions are performed on each argument, and arguments that
      -- > have type float are promoted to double.
      --
      -- As we have no way to get prototypes for C yet, we'll *not* promote this
      -- which is in line with the x86_64 backend :(
      --
      -- See the encode_values.cmm test.
      --
      -- We would essentially need to insert an FCVT (OpReg W64 fpReg) (OpReg W32 fpReg)
      -- if w == W32.  But *only* if we don't have a prototype m(
      --
      -- For AArch64 specificies see: https://developer.arm.com/docs/ihi0055/latest/procedure-call-standard-for-the-arm-64-bit-architecture
      --
    -- Still have GP regs, and we want to pass an GP argument.
    passArguments pack (gpReg:gpRegs) fpRegs ((r, format, _hint, code_r):args) stackSpace accumRegs accumCode | isIntFormat format = do
      let w = formatToWidth format
      passArguments pack gpRegs fpRegs args stackSpace (gpReg:accumRegs) (accumCode `appOL` code_r `snocOL` (ann (text "Pass gp argument: " <> ppr r) $ MOV (OpReg w gpReg) (OpReg w r)))

    -- Still have FP regs, and we want to pass an FP argument.
    passArguments pack gpRegs (fpReg:fpRegs) ((r, format, _hint, code_r):args) stackSpace accumRegs accumCode | isFloatFormat format = do
      let w = formatToWidth format
      passArguments pack gpRegs fpRegs args stackSpace (fpReg:accumRegs) (accumCode `appOL` code_r `snocOL` (ann (text "Pass fp argument: " <> ppr r) $ MOV (OpReg w fpReg) (OpReg w r)))

    -- No mor regs left to pass. Must pass on stack.
    passArguments pack [] [] ((r, format, _hint, code_r):args) stackSpace accumRegs accumCode = do
      let w = formatToWidth format
          bytes = widthInBits w `div` 8
          space = if pack then bytes else 8
          stackCode = code_r `snocOL` (ann (text "Pass argument (size " <> ppr w <> text ") on the stack: " <> ppr r) $ STR format (OpReg w r) (OpAddr (AddrRegImm (regSingle 31) (ImmInt stackSpace))))
      passArguments pack [] [] args (stackSpace+space) accumRegs (stackCode `appOL` accumCode)

    -- Still have fpRegs left, but want to pass a GP argument. Must be passed on the stack then.
    passArguments pack [] fpRegs ((r, format, _hint, code_r):args) stackSpace accumRegs accumCode | isIntFormat format = do
      let w = formatToWidth format
          bytes = widthInBits w `div` 8
          space = if pack then bytes else 8
          stackCode = code_r `snocOL` (ann (text "Pass argument (size " <> ppr w <> text ") on the stack: " <> ppr r) $ STR format (OpReg w r) (OpAddr (AddrRegImm (regSingle 31) (ImmInt stackSpace))))
      passArguments pack [] fpRegs args (stackSpace+space) accumRegs (stackCode `appOL` accumCode)

    -- Still have gpRegs left, but want to pass a FP argument. Must be passed on the stack then.
    passArguments pack gpRegs [] ((r, format, _hint, code_r):args) stackSpace accumRegs accumCode | isFloatFormat format = do
      let w = formatToWidth format
          bytes = widthInBits w `div` 8
          space = if pack then bytes else 8
          stackCode = code_r `snocOL` (ann (text "Pass argument (size " <> ppr w <> text ") on the stack: " <> ppr r) $ STR format (OpReg w r) (OpAddr (AddrRegImm (regSingle 31) (ImmInt stackSpace))))
      passArguments pack gpRegs [] args (stackSpace+space) accumRegs (stackCode `appOL` accumCode)

    passArguments _ _ _ _ _ _ _ = pprPanic "passArguments" (text "invalid state")

    readResults :: [Reg] -> [Reg] -> [LocalReg] -> [Reg]-> InstrBlock -> NatM ([Reg], InstrBlock)
    readResults _ _ [] accumRegs accumCode = return (accumRegs, accumCode)
    readResults [] _ _ _ _ = do
      platform <- getPlatform
      pprPanic "genCCall, out of gp registers when reading results" (pdoc platform target)
    readResults _ [] _ _ _ = do
      platform <- getPlatform
      pprPanic "genCCall, out of fp registers when reading results" (pdoc platform target)
    readResults (gpReg:gpRegs) (fpReg:fpRegs) (dst:dsts) accumRegs accumCode = do
      -- gp/fp reg -> dst
      platform <- getPlatform
      let rep = cmmRegType platform (CmmLocal dst)
          format = cmmTypeFormat rep
          w   = cmmRegWidth platform (CmmLocal dst)
          r_dst = getRegisterReg platform (CmmLocal dst)
      if isFloatFormat format
        then readResults (gpReg:gpRegs) fpRegs dsts (fpReg:accumRegs) (accumCode `snocOL` MOV (OpReg w r_dst) (OpReg w fpReg))
        else readResults gpRegs (fpReg:fpRegs) dsts (gpReg:accumRegs) (accumCode `snocOL` MOV (OpReg w r_dst) (OpReg w gpReg))