1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
-- This is a big module, but, if you pay attention to
-- (a) the sectioning, and (b) the type signatures,
-- the structure should not be too overwhelming.
module GHC.CmmToAsm.PPC.CodeGen (
cmmTopCodeGen,
generateJumpTableForInstr,
InstrBlock
)
where
#include "HsVersions.h"
-- NCG stuff:
import GHC.Prelude
import GHC.Platform.Regs
import GHC.CmmToAsm.PPC.Instr
import GHC.CmmToAsm.PPC.Cond
import GHC.CmmToAsm.PPC.Regs
import GHC.CmmToAsm.CPrim
import GHC.CmmToAsm.Types
import GHC.Cmm.DebugBlock
( DebugBlock(..) )
import GHC.CmmToAsm.Monad
( NatM, getNewRegNat, getNewLabelNat
, getBlockIdNat, getPicBaseNat, getNewRegPairNat
, getPicBaseMaybeNat, getPlatform, getConfig
, getDebugBlock, getFileId
)
import GHC.CmmToAsm.PIC
import GHC.CmmToAsm.Format
import GHC.CmmToAsm.Config
import GHC.Platform.Reg.Class
import GHC.Platform.Reg
import GHC.CmmToAsm.Reg.Target
import GHC.Platform
-- Our intermediate code:
import GHC.Cmm.BlockId
import GHC.Cmm.Ppr ( pprExpr )
import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Cmm.Switch
import GHC.Cmm.CLabel
import GHC.Cmm.Dataflow.Block
import GHC.Cmm.Dataflow.Graph
import GHC.Types.Tickish ( GenTickish(..) )
import GHC.Types.SrcLoc ( srcSpanFile, srcSpanStartLine, srcSpanStartCol )
-- The rest:
import GHC.Data.OrdList
import GHC.Utils.Outputable
import GHC.Utils.Panic
import Control.Monad ( mapAndUnzipM, when )
import Data.Bits
import Data.Word
import GHC.Types.Basic
import GHC.Data.FastString
import GHC.Utils.Misc
-- -----------------------------------------------------------------------------
-- Top-level of the instruction selector
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal (pre-order?) yields the insns in the correct
-- order.
cmmTopCodeGen
:: RawCmmDecl
-> NatM [NatCmmDecl RawCmmStatics Instr]
cmmTopCodeGen (CmmProc info lab live graph) = do
let blocks = toBlockListEntryFirst graph
(nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
platform <- getPlatform
let proc = CmmProc info lab live (ListGraph $ concat nat_blocks)
tops = proc : concat statics
os = platformOS platform
arch = platformArch platform
case arch of
ArchPPC | os == OSAIX -> return tops
| otherwise -> do
picBaseMb <- getPicBaseMaybeNat
case picBaseMb of
Just picBase -> initializePicBase_ppc arch os picBase tops
Nothing -> return tops
ArchPPC_64 ELF_V1 -> fixup_entry tops
-- generating function descriptor is handled in
-- pretty printer
ArchPPC_64 ELF_V2 -> fixup_entry tops
-- generating function prologue is handled in
-- pretty printer
_ -> panic "PPC.cmmTopCodeGen: unknown arch"
where
fixup_entry (CmmProc info lab live (ListGraph (entry:blocks)) : statics)
= do
let BasicBlock bID insns = entry
bID' <- if lab == (blockLbl bID)
then newBlockId
else return bID
let b' = BasicBlock bID' insns
return (CmmProc info lab live (ListGraph (b':blocks)) : statics)
fixup_entry _ = panic "cmmTopCodegen: Broken CmmProc"
cmmTopCodeGen (CmmData sec dat) =
return [CmmData sec dat] -- no translation, we just use CmmStatic
basicBlockCodeGen
:: Block CmmNode C C
-> NatM ( [NatBasicBlock Instr]
, [NatCmmDecl RawCmmStatics Instr])
basicBlockCodeGen block = do
let (_, nodes, tail) = blockSplit block
id = entryLabel block
stmts = blockToList nodes
-- Generate location directive
dbg <- getDebugBlock (entryLabel block)
loc_instrs <- case dblSourceTick =<< dbg of
Just (SourceNote span name)
-> do fileid <- getFileId (srcSpanFile span)
let line = srcSpanStartLine span; col =srcSpanStartCol span
return $ unitOL $ LOCATION fileid line col name
_ -> return nilOL
mid_instrs <- stmtsToInstrs stmts
tail_instrs <- stmtToInstrs tail
let instrs = loc_instrs `appOL` mid_instrs `appOL` tail_instrs
-- code generation may introduce new basic block boundaries, which
-- are indicated by the NEWBLOCK instruction. We must split up the
-- instruction stream into basic blocks again. Also, we extract
-- LDATAs here too.
let
(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs
mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
= ([], BasicBlock id instrs : blocks, statics)
mkBlocks (LDATA sec dat) (instrs,blocks,statics)
= (instrs, blocks, CmmData sec dat:statics)
mkBlocks instr (instrs,blocks,statics)
= (instr:instrs, blocks, statics)
return (BasicBlock id top : other_blocks, statics)
stmtsToInstrs :: [CmmNode e x] -> NatM InstrBlock
stmtsToInstrs stmts
= do instrss <- mapM stmtToInstrs stmts
return (concatOL instrss)
stmtToInstrs :: CmmNode e x -> NatM InstrBlock
stmtToInstrs stmt = do
config <- getConfig
platform <- getPlatform
case stmt of
CmmComment s -> return (unitOL (COMMENT s))
CmmTick {} -> return nilOL
CmmUnwind {} -> return nilOL
CmmAssign reg src
| isFloatType ty -> assignReg_FltCode format reg src
| target32Bit platform &&
isWord64 ty -> assignReg_I64Code reg src
| otherwise -> assignReg_IntCode format reg src
where ty = cmmRegType platform reg
format = cmmTypeFormat ty
CmmStore addr src
| isFloatType ty -> assignMem_FltCode format addr src
| target32Bit platform &&
isWord64 ty -> assignMem_I64Code addr src
| otherwise -> assignMem_IntCode format addr src
where ty = cmmExprType platform src
format = cmmTypeFormat ty
CmmUnsafeForeignCall target result_regs args
-> genCCall target result_regs args
CmmBranch id -> genBranch id
CmmCondBranch arg true false prediction -> do
b1 <- genCondJump true arg prediction
b2 <- genBranch false
return (b1 `appOL` b2)
CmmSwitch arg ids -> genSwitch config arg ids
CmmCall { cml_target = arg
, cml_args_regs = gregs } -> genJump arg (jumpRegs platform gregs)
_ ->
panic "stmtToInstrs: statement should have been cps'd away"
jumpRegs :: Platform -> [GlobalReg] -> [Reg]
jumpRegs platform gregs = [ RegReal r | Just r <- map (globalRegMaybe platform) gregs ]
--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal yields the insns in the correct order.
--
type InstrBlock
= OrdList Instr
-- | Register's passed up the tree. If the stix code forces the register
-- to live in a pre-decided machine register, it comes out as @Fixed@;
-- otherwise, it comes out as @Any@, and the parent can decide which
-- register to put it in.
--
data Register
= Fixed Format Reg InstrBlock
| Any Format (Reg -> InstrBlock)
swizzleRegisterRep :: Register -> Format -> Register
swizzleRegisterRep (Fixed _ reg code) format = Fixed format reg code
swizzleRegisterRep (Any _ codefn) format = Any format codefn
-- | Grab the Reg for a CmmReg
getRegisterReg :: Platform -> CmmReg -> Reg
getRegisterReg _ (CmmLocal (LocalReg u pk))
= RegVirtual $ mkVirtualReg u (cmmTypeFormat pk)
getRegisterReg platform (CmmGlobal mid)
= case globalRegMaybe platform mid of
Just reg -> RegReal reg
Nothing -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
-- By this stage, the only MagicIds remaining should be the
-- ones which map to a real machine register on this
-- platform. Hence ...
-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: NCGConfig -> Maybe BlockId -> CmmStatic
jumpTableEntry config Nothing = CmmStaticLit (CmmInt 0 (ncgWordWidth config))
jumpTableEntry _ (Just blockid) = CmmStaticLit (CmmLabel blockLabel)
where blockLabel = blockLbl blockid
-- -----------------------------------------------------------------------------
-- General things for putting together code sequences
-- Expand CmmRegOff. ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: Platform -> CmmExpr -> CmmExpr
mangleIndexTree platform (CmmRegOff reg off)
= CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
where width = typeWidth (cmmRegType platform reg)
mangleIndexTree _ _
= panic "PPC.CodeGen.mangleIndexTree: no match"
-- -----------------------------------------------------------------------------
-- Code gen for 64-bit arithmetic on 32-bit platforms
{-
Simple support for generating 64-bit code (ie, 64 bit values and 64
bit assignments) on 32-bit platforms. Unlike the main code generator
we merely shoot for generating working code as simply as possible, and
pay little attention to code quality. Specifically, there is no
attempt to deal cleverly with the fixed-vs-floating register
distinction; all values are generated into (pairs of) floating
registers, even if this would mean some redundant reg-reg moves as a
result. Only one of the VRegUniques is returned, since it will be
of the VRegUniqueLo form, and the upper-half VReg can be determined
by applying getHiVRegFromLo to it.
-}
data ChildCode64 -- a.k.a "Register64"
= ChildCode64
InstrBlock -- code
Reg -- the lower 32-bit temporary which contains the
-- result; use getHiVRegFromLo to find the other
-- VRegUnique. Rules of this simplified insn
-- selection game are therefore that the returned
-- Reg may be modified
-- | Compute an expression into a register, but
-- we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed _ reg code ->
return (reg, code)
getI64Amodes :: CmmExpr -> NatM (AddrMode, AddrMode, InstrBlock)
getI64Amodes addrTree = do
Amode hi_addr addr_code <- getAmode D addrTree
case addrOffset hi_addr 4 of
Just lo_addr -> return (hi_addr, lo_addr, addr_code)
Nothing -> do (hi_ptr, code) <- getSomeReg addrTree
return (AddrRegImm hi_ptr (ImmInt 0),
AddrRegImm hi_ptr (ImmInt 4),
code)
assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
(hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Big-endian store
mov_hi = ST II32 rhi hi_addr
mov_lo = ST II32 rlo lo_addr
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code :: CmmReg -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MR r_dst_lo r_src_lo
mov_hi = MR r_dst_hi r_src_hi
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code _ _
= panic "assignReg_I64Code(powerpc): invalid lvalue"
iselExpr64 :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
(hi_addr, lo_addr, addr_code) <- getI64Amodes addrTree
(rlo, rhi) <- getNewRegPairNat II32
let mov_hi = LD II32 rhi hi_addr
mov_lo = LD II32 rlo lo_addr
return $ ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
= return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat II32
let
half0 = fromIntegral (fromIntegral i :: Word16)
half1 = fromIntegral (fromIntegral (i `shiftR` 16) :: Word16)
half2 = fromIntegral (fromIntegral (i `shiftR` 32) :: Word16)
half3 = fromIntegral (fromIntegral (i `shiftR` 48) :: Word16)
code = toOL [
LIS rlo (ImmInt half1),
OR rlo rlo (RIImm $ ImmInt half0),
LIS rhi (ImmInt half3),
OR rhi rhi (RIImm $ ImmInt half2)
]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ ADDC rlo r1lo r2lo,
ADDE rhi r1hi r2hi ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Sub _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ SUBFC rlo r2lo (RIReg r1lo),
SUBFE rhi r2hi r1hi ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_UU_Conv W32 W64) [expr]) = do
(expr_reg,expr_code) <- getSomeReg expr
(rlo, rhi) <- getNewRegPairNat II32
let mov_hi = LI rhi (ImmInt 0)
mov_lo = MR rlo expr_reg
return $ ChildCode64 (expr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
iselExpr64 (CmmMachOp (MO_SS_Conv W32 W64) [expr]) = do
(expr_reg,expr_code) <- getSomeReg expr
(rlo, rhi) <- getNewRegPairNat II32
let mov_hi = SRA II32 rhi expr_reg (RIImm (ImmInt 31))
mov_lo = MR rlo expr_reg
return $ ChildCode64 (expr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
iselExpr64 expr
= do
platform <- getPlatform
pprPanic "iselExpr64(powerpc)" (pprExpr platform expr)
getRegister :: CmmExpr -> NatM Register
getRegister e = do config <- getConfig
getRegister' config (ncgPlatform config) e
getRegister' :: NCGConfig -> Platform -> CmmExpr -> NatM Register
getRegister' _ platform (CmmReg (CmmGlobal PicBaseReg))
| OSAIX <- platformOS platform = do
let code dst = toOL [ LD II32 dst tocAddr ]
tocAddr = AddrRegImm toc (ImmLit (text "ghc_toc_table[TC]"))
return (Any II32 code)
| target32Bit platform = do
reg <- getPicBaseNat $ archWordFormat (target32Bit platform)
return (Fixed (archWordFormat (target32Bit platform))
reg nilOL)
| otherwise = return (Fixed II64 toc nilOL)
getRegister' _ platform (CmmReg reg)
= return (Fixed (cmmTypeFormat (cmmRegType platform reg))
(getRegisterReg platform reg) nilOL)
getRegister' config platform tree@(CmmRegOff _ _)
= getRegister' config platform (mangleIndexTree platform tree)
-- for 32-bit architectures, support some 64 -> 32 bit conversions:
-- TO_W_(x), TO_W_(x >> 32)
getRegister' _ platform (CmmMachOp (MO_UU_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| target32Bit platform = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ platform (CmmMachOp (MO_SS_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| target32Bit platform = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ platform (CmmMachOp (MO_UU_Conv W64 W32) [x])
| target32Bit platform = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ platform (CmmMachOp (MO_SS_Conv W64 W32) [x])
| target32Bit platform = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ platform (CmmLoad mem pk)
| not (isWord64 pk) = do
Amode addr addr_code <- getAmode D mem
let code dst = ASSERT((targetClassOfReg platform dst == RcDouble) == isFloatType pk)
addr_code `snocOL` LD format dst addr
return (Any format code)
| not (target32Bit platform) = do
Amode addr addr_code <- getAmode DS mem
let code dst = addr_code `snocOL` LD II64 dst addr
return (Any II64 code)
where format = cmmTypeFormat pk
-- catch simple cases of zero- or sign-extended load
getRegister' _ _ (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II32 (\dst -> addr_code `snocOL` LD II8 dst addr))
getRegister' _ _ (CmmMachOp (MO_XX_Conv W8 W32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II32 (\dst -> addr_code `snocOL` LD II8 dst addr))
getRegister' _ _ (CmmMachOp (MO_UU_Conv W8 W64) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II64 (\dst -> addr_code `snocOL` LD II8 dst addr))
getRegister' _ _ (CmmMachOp (MO_XX_Conv W8 W64) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II64 (\dst -> addr_code `snocOL` LD II8 dst addr))
-- Note: there is no Load Byte Arithmetic instruction, so no signed case here
getRegister' _ _ (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II32 (\dst -> addr_code `snocOL` LD II16 dst addr))
getRegister' _ _ (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II32 (\dst -> addr_code `snocOL` LA II16 dst addr))
getRegister' _ _ (CmmMachOp (MO_UU_Conv W16 W64) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II64 (\dst -> addr_code `snocOL` LD II16 dst addr))
getRegister' _ _ (CmmMachOp (MO_SS_Conv W16 W64) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II64 (\dst -> addr_code `snocOL` LA II16 dst addr))
getRegister' _ _ (CmmMachOp (MO_UU_Conv W32 W64) [CmmLoad mem _]) = do
Amode addr addr_code <- getAmode D mem
return (Any II64 (\dst -> addr_code `snocOL` LD II32 dst addr))
getRegister' _ _ (CmmMachOp (MO_SS_Conv W32 W64) [CmmLoad mem _]) = do
-- lwa is DS-form. See Note [Power instruction format]
Amode addr addr_code <- getAmode DS mem
return (Any II64 (\dst -> addr_code `snocOL` LA II32 dst addr))
getRegister' config platform (CmmMachOp mop [x]) -- unary MachOps
= case mop of
MO_Not rep -> triv_ucode_int rep NOT
MO_F_Neg w -> triv_ucode_float w FNEG
MO_S_Neg w -> triv_ucode_int w NEG
MO_FF_Conv W64 W32 -> trivialUCode FF32 FRSP x
MO_FF_Conv W32 W64 -> conversionNop FF64 x
MO_FS_Conv from to -> coerceFP2Int from to x
MO_SF_Conv from to -> coerceInt2FP from to x
MO_SS_Conv from to
| from >= to -> conversionNop (intFormat to) x
| otherwise -> triv_ucode_int to (EXTS (intFormat from))
MO_UU_Conv from to
| from >= to -> conversionNop (intFormat to) x
| otherwise -> clearLeft from to
MO_XX_Conv _ to -> conversionNop (intFormat to) x
_ -> panic "PPC.CodeGen.getRegister: no match"
where
triv_ucode_int width instr = trivialUCode (intFormat width) instr x
triv_ucode_float width instr = trivialUCode (floatFormat width) instr x
conversionNop new_format expr
= do e_code <- getRegister' config platform expr
return (swizzleRegisterRep e_code new_format)
clearLeft from to
= do (src1, code1) <- getSomeReg x
let arch_fmt = intFormat (wordWidth platform)
arch_bits = widthInBits (wordWidth platform)
size = widthInBits from
code dst = code1 `snocOL`
CLRLI arch_fmt dst src1 (arch_bits - size)
return (Any (intFormat to) code)
getRegister' _ _ (CmmMachOp mop [x, y]) -- dyadic PrimOps
= case mop of
MO_F_Eq _ -> condFltReg EQQ x y
MO_F_Ne _ -> condFltReg NE x y
MO_F_Gt _ -> condFltReg GTT x y
MO_F_Ge _ -> condFltReg GE x y
MO_F_Lt _ -> condFltReg LTT x y
MO_F_Le _ -> condFltReg LE x y
MO_Eq rep -> condIntReg EQQ rep x y
MO_Ne rep -> condIntReg NE rep x y
MO_S_Gt rep -> condIntReg GTT rep x y
MO_S_Ge rep -> condIntReg GE rep x y
MO_S_Lt rep -> condIntReg LTT rep x y
MO_S_Le rep -> condIntReg LE rep x y
MO_U_Gt rep -> condIntReg GU rep x y
MO_U_Ge rep -> condIntReg GEU rep x y
MO_U_Lt rep -> condIntReg LU rep x y
MO_U_Le rep -> condIntReg LEU rep x y
MO_F_Add w -> triv_float w FADD
MO_F_Sub w -> triv_float w FSUB
MO_F_Mul w -> triv_float w FMUL
MO_F_Quot w -> triv_float w FDIV
-- optimize addition with 32-bit immediate
-- (needed for PIC)
MO_Add W32 ->
case y of
CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate W32 True imm
-> trivialCode W32 True ADD x (CmmLit $ CmmInt imm immrep)
CmmLit lit
-> do
(src, srcCode) <- getSomeReg x
let imm = litToImm lit
code dst = srcCode `appOL` toOL [
ADDIS dst src (HA imm),
ADD dst dst (RIImm (LO imm))
]
return (Any II32 code)
_ -> trivialCode W32 True ADD x y
MO_Add rep -> trivialCode rep True ADD x y
MO_Sub rep ->
case y of
CmmLit (CmmInt imm immrep) | Just _ <- makeImmediate rep True (-imm)
-> trivialCode rep True ADD x (CmmLit $ CmmInt (-imm) immrep)
_ -> case x of
CmmLit (CmmInt imm _)
| Just _ <- makeImmediate rep True imm
-- subfi ('subtract from' with immediate) doesn't exist
-> trivialCode rep True SUBFC y x
_ -> trivialCodeNoImm' (intFormat rep) SUBF y x
MO_Mul rep -> shiftMulCode rep True MULL x y
MO_S_MulMayOflo rep -> do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let
format = intFormat rep
code dst = code1 `appOL` code2
`appOL` toOL [ MULLO format dst src1 src2
, MFOV format dst
]
return (Any format code)
MO_S_Quot rep -> divCode rep True x y
MO_U_Quot rep -> divCode rep False x y
MO_S_Rem rep -> remainder rep True x y
MO_U_Rem rep -> remainder rep False x y
MO_And rep -> case y of
(CmmLit (CmmInt imm _)) | imm == -8 || imm == -4
-> do
(src, srcCode) <- getSomeReg x
let clear_mask = if imm == -4 then 2 else 3
fmt = intFormat rep
code dst = srcCode
`appOL` unitOL (CLRRI fmt dst src clear_mask)
return (Any fmt code)
_ -> trivialCode rep False AND x y
MO_Or rep -> trivialCode rep False OR x y
MO_Xor rep -> trivialCode rep False XOR x y
MO_Shl rep -> shiftMulCode rep False SL x y
MO_S_Shr rep -> srCode rep True SRA x y
MO_U_Shr rep -> srCode rep False SR x y
_ -> panic "PPC.CodeGen.getRegister: no match"
where
triv_float :: Width -> (Format -> Reg -> Reg -> Reg -> Instr) -> NatM Register
triv_float width instr = trivialCodeNoImm (floatFormat width) instr x y
remainder :: Width -> Bool -> CmmExpr -> CmmExpr -> NatM Register
remainder rep sgn x y = do
let fmt = intFormat rep
tmp <- getNewRegNat fmt
code <- remainderCode rep sgn tmp x y
return (Any fmt code)
getRegister' _ _ (CmmLit (CmmInt i rep))
| Just imm <- makeImmediate rep True i
= let
code dst = unitOL (LI dst imm)
in
return (Any (intFormat rep) code)
getRegister' config _ (CmmLit (CmmFloat f frep)) = do
lbl <- getNewLabelNat
dynRef <- cmmMakeDynamicReference config DataReference lbl
Amode addr addr_code <- getAmode D dynRef
let format = floatFormat frep
code dst =
LDATA (Section ReadOnlyData lbl)
(CmmStaticsRaw lbl [CmmStaticLit (CmmFloat f frep)])
`consOL` (addr_code `snocOL` LD format dst addr)
return (Any format code)
getRegister' config platform (CmmLit lit)
| target32Bit platform
= let rep = cmmLitType platform lit
imm = litToImm lit
code dst = toOL [
LIS dst (HA imm),
ADD dst dst (RIImm (LO imm))
]
in return (Any (cmmTypeFormat rep) code)
| otherwise
= do lbl <- getNewLabelNat
dynRef <- cmmMakeDynamicReference config DataReference lbl
Amode addr addr_code <- getAmode D dynRef
let rep = cmmLitType platform lit
format = cmmTypeFormat rep
code dst =
LDATA (Section ReadOnlyData lbl) (CmmStaticsRaw lbl [CmmStaticLit lit])
`consOL` (addr_code `snocOL` LD format dst addr)
return (Any format code)
getRegister' _ platform other = pprPanic "getRegister(ppc)" (pprExpr platform other)
-- extend?Rep: wrap integer expression of type `from`
-- in a conversion to `to`
extendSExpr :: Width -> Width -> CmmExpr -> CmmExpr
extendSExpr from to x = CmmMachOp (MO_SS_Conv from to) [x]
extendUExpr :: Width -> Width -> CmmExpr -> CmmExpr
extendUExpr from to x = CmmMachOp (MO_UU_Conv from to) [x]
-- -----------------------------------------------------------------------------
-- The 'Amode' type: Memory addressing modes passed up the tree.
data Amode
= Amode AddrMode InstrBlock
{-
Now, given a tree (the argument to a CmmLoad) that references memory,
produce a suitable addressing mode.
A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to. So you can't put
anything in between, lest it overwrite some of those registers. If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:
code
LEA amode, tmp
... other computation ...
... (tmp) ...
-}
{- Note [Power instruction format]
In some instructions the 16 bit offset must be a multiple of 4, i.e.
the two least significant bits must be zero. The "Power ISA" specification
calls these instruction formats "DS-FORM" and the instructions with
arbitrary 16 bit offsets are "D-FORM".
The Power ISA specification document can be obtained from www.power.org.
-}
data InstrForm = D | DS
getAmode :: InstrForm -> CmmExpr -> NatM Amode
getAmode inf tree@(CmmRegOff _ _)
= do platform <- getPlatform
getAmode inf (mangleIndexTree platform tree)
getAmode _ (CmmMachOp (MO_Sub W32) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W32 True (-i)
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
getAmode _ (CmmMachOp (MO_Add W32) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W32 True i
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
getAmode D (CmmMachOp (MO_Sub W64) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W64 True (-i)
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
getAmode D (CmmMachOp (MO_Add W64) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W64 True i
= do
(reg, code) <- getSomeReg x
return (Amode (AddrRegImm reg off) code)
getAmode DS (CmmMachOp (MO_Sub W64) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W64 True (-i)
= do
(reg, code) <- getSomeReg x
(reg', off', code') <-
if i `mod` 4 == 0
then return (reg, off, code)
else do
tmp <- getNewRegNat II64
return (tmp, ImmInt 0,
code `snocOL` ADD tmp reg (RIImm off))
return (Amode (AddrRegImm reg' off') code')
getAmode DS (CmmMachOp (MO_Add W64) [x, CmmLit (CmmInt i _)])
| Just off <- makeImmediate W64 True i
= do
(reg, code) <- getSomeReg x
(reg', off', code') <-
if i `mod` 4 == 0
then return (reg, off, code)
else do
tmp <- getNewRegNat II64
return (tmp, ImmInt 0,
code `snocOL` ADD tmp reg (RIImm off))
return (Amode (AddrRegImm reg' off') code')
-- optimize addition with 32-bit immediate
-- (needed for PIC)
getAmode _ (CmmMachOp (MO_Add W32) [x, CmmLit lit])
= do
platform <- getPlatform
(src, srcCode) <- getSomeReg x
let imm = litToImm lit
case () of
_ | OSAIX <- platformOS platform
, isCmmLabelType lit ->
-- HA16/LO16 relocations on labels not supported on AIX
return (Amode (AddrRegImm src imm) srcCode)
| otherwise -> do
tmp <- getNewRegNat II32
let code = srcCode `snocOL` ADDIS tmp src (HA imm)
return (Amode (AddrRegImm tmp (LO imm)) code)
where
isCmmLabelType (CmmLabel {}) = True
isCmmLabelType (CmmLabelOff {}) = True
isCmmLabelType (CmmLabelDiffOff {}) = True
isCmmLabelType _ = False
getAmode _ (CmmLit lit)
= do
platform <- getPlatform
case platformArch platform of
ArchPPC -> do
tmp <- getNewRegNat II32
let imm = litToImm lit
code = unitOL (LIS tmp (HA imm))
return (Amode (AddrRegImm tmp (LO imm)) code)
_ -> do -- TODO: Load from TOC,
-- see getRegister' _ (CmmLit lit)
tmp <- getNewRegNat II64
let imm = litToImm lit
code = toOL [
LIS tmp (HIGHESTA imm),
OR tmp tmp (RIImm (HIGHERA imm)),
SL II64 tmp tmp (RIImm (ImmInt 32)),
ORIS tmp tmp (HA imm)
]
return (Amode (AddrRegImm tmp (LO imm)) code)
getAmode _ (CmmMachOp (MO_Add W32) [x, y])
= do
(regX, codeX) <- getSomeReg x
(regY, codeY) <- getSomeReg y
return (Amode (AddrRegReg regX regY) (codeX `appOL` codeY))
getAmode _ (CmmMachOp (MO_Add W64) [x, y])
= do
(regX, codeX) <- getSomeReg x
(regY, codeY) <- getSomeReg y
return (Amode (AddrRegReg regX regY) (codeX `appOL` codeY))
getAmode _ other
= do
(reg, code) <- getSomeReg other
let
off = ImmInt 0
return (Amode (AddrRegImm reg off) code)
-- The 'CondCode' type: Condition codes passed up the tree.
data CondCode
= CondCode Bool Cond InstrBlock
-- Set up a condition code for a conditional branch.
getCondCode :: CmmExpr -> NatM CondCode
-- almost the same as everywhere else - but we need to
-- extend small integers to 32 bit or 64 bit first
getCondCode (CmmMachOp mop [x, y])
= case mop of
MO_F_Eq W32 -> condFltCode EQQ x y
MO_F_Ne W32 -> condFltCode NE x y
MO_F_Gt W32 -> condFltCode GTT x y
MO_F_Ge W32 -> condFltCode GE x y
MO_F_Lt W32 -> condFltCode LTT x y
MO_F_Le W32 -> condFltCode LE x y
MO_F_Eq W64 -> condFltCode EQQ x y
MO_F_Ne W64 -> condFltCode NE x y
MO_F_Gt W64 -> condFltCode GTT x y
MO_F_Ge W64 -> condFltCode GE x y
MO_F_Lt W64 -> condFltCode LTT x y
MO_F_Le W64 -> condFltCode LE x y
MO_Eq rep -> condIntCode EQQ rep x y
MO_Ne rep -> condIntCode NE rep x y
MO_S_Gt rep -> condIntCode GTT rep x y
MO_S_Ge rep -> condIntCode GE rep x y
MO_S_Lt rep -> condIntCode LTT rep x y
MO_S_Le rep -> condIntCode LE rep x y
MO_U_Gt rep -> condIntCode GU rep x y
MO_U_Ge rep -> condIntCode GEU rep x y
MO_U_Lt rep -> condIntCode LU rep x y
MO_U_Le rep -> condIntCode LEU rep x y
_ -> pprPanic "getCondCode(powerpc)" (pprMachOp mop)
getCondCode _ = panic "getCondCode(2)(powerpc)"
-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.
condIntCode :: Cond -> Width -> CmmExpr -> CmmExpr -> NatM CondCode
condIntCode cond width x y = do
platform <- getPlatform
condIntCode' (target32Bit platform) cond width x y
condIntCode' :: Bool -> Cond -> Width -> CmmExpr -> CmmExpr -> NatM CondCode
-- simple code for 64-bit on 32-bit platforms
condIntCode' True cond W64 x y
| condUnsigned cond
= do
ChildCode64 code_x x_lo <- iselExpr64 x
ChildCode64 code_y y_lo <- iselExpr64 y
let x_hi = getHiVRegFromLo x_lo
y_hi = getHiVRegFromLo y_lo
end_lbl <- getBlockIdNat
let code = code_x `appOL` code_y `appOL` toOL
[ CMPL II32 x_hi (RIReg y_hi)
, BCC NE end_lbl Nothing
, CMPL II32 x_lo (RIReg y_lo)
, BCC ALWAYS end_lbl Nothing
, NEWBLOCK end_lbl
]
return (CondCode False cond code)
| otherwise
= do
ChildCode64 code_x x_lo <- iselExpr64 x
ChildCode64 code_y y_lo <- iselExpr64 y
let x_hi = getHiVRegFromLo x_lo
y_hi = getHiVRegFromLo y_lo
end_lbl <- getBlockIdNat
cmp_lo <- getBlockIdNat
let code = code_x `appOL` code_y `appOL` toOL
[ CMP II32 x_hi (RIReg y_hi)
, BCC NE end_lbl Nothing
, CMP II32 x_hi (RIImm (ImmInt 0))
, BCC LE cmp_lo Nothing
, CMPL II32 x_lo (RIReg y_lo)
, BCC ALWAYS end_lbl Nothing
, NEWBLOCK cmp_lo
, CMPL II32 y_lo (RIReg x_lo)
, BCC ALWAYS end_lbl Nothing
, NEWBLOCK end_lbl
]
return (CondCode False cond code)
-- optimize pointer tag checks. Operation andi. sets condition register
-- so cmpi ..., 0 is redundant.
condIntCode' _ cond _ (CmmMachOp (MO_And _) [x, CmmLit (CmmInt imm rep)])
(CmmLit (CmmInt 0 _))
| not $ condUnsigned cond,
Just src2 <- makeImmediate rep False imm
= do
(src1, code) <- getSomeReg x
let code' = code `snocOL` AND r0 src1 (RIImm src2)
return (CondCode False cond code')
condIntCode' _ cond width x (CmmLit (CmmInt y rep))
| Just src2 <- makeImmediate rep (not $ condUnsigned cond) y
= do
let op_len = max W32 width
let extend = extendSExpr width op_len
(src1, code) <- getSomeReg (extend x)
let format = intFormat op_len
code' = code `snocOL`
(if condUnsigned cond then CMPL else CMP) format src1 (RIImm src2)
return (CondCode False cond code')
condIntCode' _ cond width x y = do
let op_len = max W32 width
let extend = if condUnsigned cond then extendUExpr width op_len
else extendSExpr width op_len
(src1, code1) <- getSomeReg (extend x)
(src2, code2) <- getSomeReg (extend y)
let format = intFormat op_len
code' = code1 `appOL` code2 `snocOL`
(if condUnsigned cond then CMPL else CMP) format src1 (RIReg src2)
return (CondCode False cond code')
condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condFltCode cond x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let
code' = code1 `appOL` code2 `snocOL` FCMP src1 src2
code'' = case cond of -- twiddle CR to handle unordered case
GE -> code' `snocOL` CRNOR ltbit eqbit gtbit
LE -> code' `snocOL` CRNOR gtbit eqbit ltbit
_ -> code'
where
ltbit = 0 ; eqbit = 2 ; gtbit = 1
return (CondCode True cond code'')
-- -----------------------------------------------------------------------------
-- Generating assignments
-- Assignments are really at the heart of the whole code generation
-- business. Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers. If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side. This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).
assignMem_IntCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_FltCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_IntCode pk addr src = do
(srcReg, code) <- getSomeReg src
Amode dstAddr addr_code <- case pk of
II64 -> getAmode DS addr
_ -> getAmode D addr
return $ code `appOL` addr_code `snocOL` ST pk srcReg dstAddr
-- dst is a reg, but src could be anything
assignReg_IntCode _ reg src
= do
platform <- getPlatform
let dst = getRegisterReg platform reg
r <- getRegister src
return $ case r of
Any _ code -> code dst
Fixed _ freg fcode -> fcode `snocOL` MR dst freg
-- Easy, isn't it?
assignMem_FltCode = assignMem_IntCode
assignReg_FltCode = assignReg_IntCode
genJump :: CmmExpr{-the branch target-} -> [Reg] -> NatM InstrBlock
genJump (CmmLit (CmmLabel lbl)) regs
= return (unitOL $ JMP lbl regs)
genJump tree gregs
= do
platform <- getPlatform
genJump' tree (platformToGCP platform) gregs
genJump' :: CmmExpr -> GenCCallPlatform -> [Reg] -> NatM InstrBlock
genJump' tree (GCP64ELF 1) regs
= do
(target,code) <- getSomeReg tree
return (code
`snocOL` LD II64 r11 (AddrRegImm target (ImmInt 0))
`snocOL` LD II64 toc (AddrRegImm target (ImmInt 8))
`snocOL` MTCTR r11
`snocOL` LD II64 r11 (AddrRegImm target (ImmInt 16))
`snocOL` BCTR [] Nothing regs)
genJump' tree (GCP64ELF 2) regs
= do
(target,code) <- getSomeReg tree
return (code
`snocOL` MR r12 target
`snocOL` MTCTR r12
`snocOL` BCTR [] Nothing regs)
genJump' tree _ regs
= do
(target,code) <- getSomeReg tree
return (code `snocOL` MTCTR target `snocOL` BCTR [] Nothing regs)
-- -----------------------------------------------------------------------------
-- Unconditional branches
genBranch :: BlockId -> NatM InstrBlock
genBranch = return . toOL . mkJumpInstr
-- -----------------------------------------------------------------------------
-- Conditional jumps
{-
Conditional jumps are always to local labels, so we can use branch
instructions. We peek at the arguments to decide what kind of
comparison to do.
-}
genCondJump
:: BlockId -- the branch target
-> CmmExpr -- the condition on which to branch
-> Maybe Bool
-> NatM InstrBlock
genCondJump id bool prediction = do
CondCode _ cond code <- getCondCode bool
return (code `snocOL` BCC cond id prediction)
-- -----------------------------------------------------------------------------
-- Generating C calls
-- Now the biggest nightmare---calls. Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations. Apart from that, the code is easy.
genCCall :: ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall (PrimTarget MO_ReadBarrier) _ _
= return $ unitOL LWSYNC
genCCall (PrimTarget MO_WriteBarrier) _ _
= return $ unitOL LWSYNC
genCCall (PrimTarget MO_Touch) _ _
= return $ nilOL
genCCall (PrimTarget (MO_Prefetch_Data _)) _ _
= return $ nilOL
genCCall (PrimTarget (MO_AtomicRMW width amop)) [dst] [addr, n]
= do platform <- getPlatform
let fmt = intFormat width
reg_dst = getRegisterReg platform (CmmLocal dst)
(instr, n_code) <- case amop of
AMO_Add -> getSomeRegOrImm ADD True reg_dst
AMO_Sub -> case n of
CmmLit (CmmInt i _)
| Just imm <- makeImmediate width True (-i)
-> return (ADD reg_dst reg_dst (RIImm imm), nilOL)
_
-> do
(n_reg, n_code) <- getSomeReg n
return (SUBF reg_dst n_reg reg_dst, n_code)
AMO_And -> getSomeRegOrImm AND False reg_dst
AMO_Nand -> do (n_reg, n_code) <- getSomeReg n
return (NAND reg_dst reg_dst n_reg, n_code)
AMO_Or -> getSomeRegOrImm OR False reg_dst
AMO_Xor -> getSomeRegOrImm XOR False reg_dst
Amode addr_reg addr_code <- getAmodeIndex addr
lbl_retry <- getBlockIdNat
return $ n_code `appOL` addr_code
`appOL` toOL [ HWSYNC
, BCC ALWAYS lbl_retry Nothing
, NEWBLOCK lbl_retry
, LDR fmt reg_dst addr_reg
, instr
, STC fmt reg_dst addr_reg
, BCC NE lbl_retry (Just False)
, ISYNC
]
where
getAmodeIndex (CmmMachOp (MO_Add _) [x, y])
= do
(regX, codeX) <- getSomeReg x
(regY, codeY) <- getSomeReg y
return (Amode (AddrRegReg regX regY) (codeX `appOL` codeY))
getAmodeIndex other
= do
(reg, code) <- getSomeReg other
return (Amode (AddrRegReg r0 reg) code) -- NB: r0 is 0 here!
getSomeRegOrImm op sign dst
= case n of
CmmLit (CmmInt i _) | Just imm <- makeImmediate width sign i
-> return (op dst dst (RIImm imm), nilOL)
_
-> do
(n_reg, n_code) <- getSomeReg n
return (op dst dst (RIReg n_reg), n_code)
genCCall (PrimTarget (MO_AtomicRead width)) [dst] [addr]
= do platform <- getPlatform
let fmt = intFormat width
reg_dst = getRegisterReg platform (CmmLocal dst)
form = if widthInBits width == 64 then DS else D
Amode addr_reg addr_code <- getAmode form addr
lbl_end <- getBlockIdNat
return $ addr_code `appOL` toOL [ HWSYNC
, LD fmt reg_dst addr_reg
, CMP fmt reg_dst (RIReg reg_dst)
, BCC NE lbl_end (Just False)
, BCC ALWAYS lbl_end Nothing
-- See Note [Seemingly useless cmp and bne]
, NEWBLOCK lbl_end
, ISYNC
]
-- Note [Seemingly useless cmp and bne]
-- In Power ISA, Book II, Section 4.4.1, Instruction Synchronize Instruction
-- the second paragraph says that isync may complete before storage accesses
-- "associated" with a preceding instruction have been performed. The cmp
-- operation and the following bne introduce a data and control dependency
-- on the load instruction (See also Power ISA, Book II, Appendix B.2.3, Safe
-- Fetch).
-- This is also what gcc does.
genCCall (PrimTarget (MO_AtomicWrite width)) [] [addr, val] = do
code <- assignMem_IntCode (intFormat width) addr val
return $ unitOL(HWSYNC) `appOL` code
genCCall (PrimTarget (MO_Clz width)) [dst] [src]
= do platform <- getPlatform
let reg_dst = getRegisterReg platform (CmmLocal dst)
if target32Bit platform && width == W64
then do
ChildCode64 code vr_lo <- iselExpr64 src
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
lbl3 <- getBlockIdNat
let vr_hi = getHiVRegFromLo vr_lo
cntlz = toOL [ CMPL II32 vr_hi (RIImm (ImmInt 0))
, BCC NE lbl2 Nothing
, BCC ALWAYS lbl1 Nothing
, NEWBLOCK lbl1
, CNTLZ II32 reg_dst vr_lo
, ADD reg_dst reg_dst (RIImm (ImmInt 32))
, BCC ALWAYS lbl3 Nothing
, NEWBLOCK lbl2
, CNTLZ II32 reg_dst vr_hi
, BCC ALWAYS lbl3 Nothing
, NEWBLOCK lbl3
]
return $ code `appOL` cntlz
else do
let format = if width == W64 then II64 else II32
(s_reg, s_code) <- getSomeReg src
(pre, reg , post) <-
case width of
W64 -> return (nilOL, s_reg, nilOL)
W32 -> return (nilOL, s_reg, nilOL)
W16 -> do
reg_tmp <- getNewRegNat format
return
( unitOL $ AND reg_tmp s_reg (RIImm (ImmInt 65535))
, reg_tmp
, unitOL $ ADD reg_dst reg_dst (RIImm (ImmInt (-16)))
)
W8 -> do
reg_tmp <- getNewRegNat format
return
( unitOL $ AND reg_tmp s_reg (RIImm (ImmInt 255))
, reg_tmp
, unitOL $ ADD reg_dst reg_dst (RIImm (ImmInt (-24)))
)
_ -> panic "genCall: Clz wrong format"
let cntlz = unitOL (CNTLZ format reg_dst reg)
return $ s_code `appOL` pre `appOL` cntlz `appOL` post
genCCall (PrimTarget (MO_Ctz width)) [dst] [src]
= do platform <- getPlatform
let reg_dst = getRegisterReg platform (CmmLocal dst)
if target32Bit platform && width == W64
then do
let format = II32
ChildCode64 code vr_lo <- iselExpr64 src
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
lbl3 <- getBlockIdNat
x' <- getNewRegNat format
x'' <- getNewRegNat format
r' <- getNewRegNat format
cnttzlo <- cnttz format reg_dst vr_lo
let vr_hi = getHiVRegFromLo vr_lo
cnttz64 = toOL [ CMPL format vr_lo (RIImm (ImmInt 0))
, BCC NE lbl2 Nothing
, BCC ALWAYS lbl1 Nothing
, NEWBLOCK lbl1
, ADD x' vr_hi (RIImm (ImmInt (-1)))
, ANDC x'' x' vr_hi
, CNTLZ format r' x''
-- 32 + (32 - clz(x''))
, SUBFC reg_dst r' (RIImm (ImmInt 64))
, BCC ALWAYS lbl3 Nothing
, NEWBLOCK lbl2
]
`appOL` cnttzlo `appOL`
toOL [ BCC ALWAYS lbl3 Nothing
, NEWBLOCK lbl3
]
return $ code `appOL` cnttz64
else do
let format = if width == W64 then II64 else II32
(s_reg, s_code) <- getSomeReg src
(reg_ctz, pre_code) <-
case width of
W64 -> return (s_reg, nilOL)
W32 -> return (s_reg, nilOL)
W16 -> do
reg_tmp <- getNewRegNat format
return (reg_tmp, unitOL $ ORIS reg_tmp s_reg (ImmInt 1))
W8 -> do
reg_tmp <- getNewRegNat format
return (reg_tmp, unitOL $ OR reg_tmp s_reg (RIImm (ImmInt 256)))
_ -> panic "genCall: Ctz wrong format"
ctz_code <- cnttz format reg_dst reg_ctz
return $ s_code `appOL` pre_code `appOL` ctz_code
where
-- cnttz(x) = sizeof(x) - cntlz(~x & (x - 1))
-- see Henry S. Warren, Hacker's Delight, p 107
cnttz format dst src = do
let format_bits = 8 * formatInBytes format
x' <- getNewRegNat format
x'' <- getNewRegNat format
r' <- getNewRegNat format
return $ toOL [ ADD x' src (RIImm (ImmInt (-1)))
, ANDC x'' x' src
, CNTLZ format r' x''
, SUBFC dst r' (RIImm (ImmInt (format_bits)))
]
genCCall target dest_regs argsAndHints
= do platform <- getPlatform
case target of
PrimTarget (MO_S_QuotRem width) -> divOp1 platform True width
dest_regs argsAndHints
PrimTarget (MO_U_QuotRem width) -> divOp1 platform False width
dest_regs argsAndHints
PrimTarget (MO_U_QuotRem2 width) -> divOp2 platform width dest_regs
argsAndHints
PrimTarget (MO_U_Mul2 width) -> multOp2 platform width dest_regs
argsAndHints
PrimTarget (MO_Add2 _) -> add2Op platform dest_regs argsAndHints
PrimTarget (MO_AddWordC _) -> addcOp platform dest_regs argsAndHints
PrimTarget (MO_SubWordC _) -> subcOp platform dest_regs argsAndHints
PrimTarget (MO_AddIntC width) -> addSubCOp ADDO platform width
dest_regs argsAndHints
PrimTarget (MO_SubIntC width) -> addSubCOp SUBFO platform width
dest_regs argsAndHints
PrimTarget MO_F64_Fabs -> fabs platform dest_regs argsAndHints
PrimTarget MO_F32_Fabs -> fabs platform dest_regs argsAndHints
_ -> do config <- getConfig
genCCall' config (platformToGCP platform)
target dest_regs argsAndHints
where divOp1 platform signed width [res_q, res_r] [arg_x, arg_y]
= do let reg_q = getRegisterReg platform (CmmLocal res_q)
reg_r = getRegisterReg platform (CmmLocal res_r)
remainderCode width signed reg_q arg_x arg_y
<*> pure reg_r
divOp1 _ _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp1"
divOp2 platform width [res_q, res_r]
[arg_x_high, arg_x_low, arg_y]
= do let reg_q = getRegisterReg platform (CmmLocal res_q)
reg_r = getRegisterReg platform (CmmLocal res_r)
fmt = intFormat width
half = 4 * (formatInBytes fmt)
(xh_reg, xh_code) <- getSomeReg arg_x_high
(xl_reg, xl_code) <- getSomeReg arg_x_low
(y_reg, y_code) <- getSomeReg arg_y
s <- getNewRegNat fmt
b <- getNewRegNat fmt
v <- getNewRegNat fmt
vn1 <- getNewRegNat fmt
vn0 <- getNewRegNat fmt
un32 <- getNewRegNat fmt
tmp <- getNewRegNat fmt
un10 <- getNewRegNat fmt
un1 <- getNewRegNat fmt
un0 <- getNewRegNat fmt
q1 <- getNewRegNat fmt
rhat <- getNewRegNat fmt
tmp1 <- getNewRegNat fmt
q0 <- getNewRegNat fmt
un21 <- getNewRegNat fmt
again1 <- getBlockIdNat
no1 <- getBlockIdNat
then1 <- getBlockIdNat
endif1 <- getBlockIdNat
again2 <- getBlockIdNat
no2 <- getBlockIdNat
then2 <- getBlockIdNat
endif2 <- getBlockIdNat
return $ y_code `appOL` xl_code `appOL` xh_code `appOL`
-- see Hacker's Delight p 196 Figure 9-3
toOL [ -- b = 2 ^ (bits_in_word / 2)
LI b (ImmInt 1)
, SL fmt b b (RIImm (ImmInt half))
-- s = clz(y)
, CNTLZ fmt s y_reg
-- v = y << s
, SL fmt v y_reg (RIReg s)
-- vn1 = upper half of v
, SR fmt vn1 v (RIImm (ImmInt half))
-- vn0 = lower half of v
, CLRLI fmt vn0 v half
-- un32 = (u1 << s)
-- | (u0 >> (bits_in_word - s))
, SL fmt un32 xh_reg (RIReg s)
, SUBFC tmp s
(RIImm (ImmInt (8 * formatInBytes fmt)))
, SR fmt tmp xl_reg (RIReg tmp)
, OR un32 un32 (RIReg tmp)
-- un10 = u0 << s
, SL fmt un10 xl_reg (RIReg s)
-- un1 = upper half of un10
, SR fmt un1 un10 (RIImm (ImmInt half))
-- un0 = lower half of un10
, CLRLI fmt un0 un10 half
-- q1 = un32/vn1
, DIV fmt False q1 un32 vn1
-- rhat = un32 - q1*vn1
, MULL fmt tmp q1 (RIReg vn1)
, SUBF rhat tmp un32
, BCC ALWAYS again1 Nothing
, NEWBLOCK again1
-- if (q1 >= b || q1*vn0 > b*rhat + un1)
, CMPL fmt q1 (RIReg b)
, BCC GEU then1 Nothing
, BCC ALWAYS no1 Nothing
, NEWBLOCK no1
, MULL fmt tmp q1 (RIReg vn0)
, SL fmt tmp1 rhat (RIImm (ImmInt half))
, ADD tmp1 tmp1 (RIReg un1)
, CMPL fmt tmp (RIReg tmp1)
, BCC LEU endif1 Nothing
, BCC ALWAYS then1 Nothing
, NEWBLOCK then1
-- q1 = q1 - 1
, ADD q1 q1 (RIImm (ImmInt (-1)))
-- rhat = rhat + vn1
, ADD rhat rhat (RIReg vn1)
-- if (rhat < b) goto again1
, CMPL fmt rhat (RIReg b)
, BCC LTT again1 Nothing
, BCC ALWAYS endif1 Nothing
, NEWBLOCK endif1
-- un21 = un32*b + un1 - q1*v
, SL fmt un21 un32 (RIImm (ImmInt half))
, ADD un21 un21 (RIReg un1)
, MULL fmt tmp q1 (RIReg v)
, SUBF un21 tmp un21
-- compute second quotient digit
-- q0 = un21/vn1
, DIV fmt False q0 un21 vn1
-- rhat = un21- q0*vn1
, MULL fmt tmp q0 (RIReg vn1)
, SUBF rhat tmp un21
, BCC ALWAYS again2 Nothing
, NEWBLOCK again2
-- if (q0>b || q0*vn0 > b*rhat + un0)
, CMPL fmt q0 (RIReg b)
, BCC GEU then2 Nothing
, BCC ALWAYS no2 Nothing
, NEWBLOCK no2
, MULL fmt tmp q0 (RIReg vn0)
, SL fmt tmp1 rhat (RIImm (ImmInt half))
, ADD tmp1 tmp1 (RIReg un0)
, CMPL fmt tmp (RIReg tmp1)
, BCC LEU endif2 Nothing
, BCC ALWAYS then2 Nothing
, NEWBLOCK then2
-- q0 = q0 - 1
, ADD q0 q0 (RIImm (ImmInt (-1)))
-- rhat = rhat + vn1
, ADD rhat rhat (RIReg vn1)
-- if (rhat<b) goto again2
, CMPL fmt rhat (RIReg b)
, BCC LTT again2 Nothing
, BCC ALWAYS endif2 Nothing
, NEWBLOCK endif2
-- compute remainder
-- r = (un21*b + un0 - q0*v) >> s
, SL fmt reg_r un21 (RIImm (ImmInt half))
, ADD reg_r reg_r (RIReg un0)
, MULL fmt tmp q0 (RIReg v)
, SUBF reg_r tmp reg_r
, SR fmt reg_r reg_r (RIReg s)
-- compute quotient
-- q = q1*b + q0
, SL fmt reg_q q1 (RIImm (ImmInt half))
, ADD reg_q reg_q (RIReg q0)
]
divOp2 _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp2"
multOp2 platform width [res_h, res_l] [arg_x, arg_y]
= do let reg_h = getRegisterReg platform (CmmLocal res_h)
reg_l = getRegisterReg platform (CmmLocal res_l)
fmt = intFormat width
(x_reg, x_code) <- getSomeReg arg_x
(y_reg, y_code) <- getSomeReg arg_y
return $ y_code `appOL` x_code
`appOL` toOL [ MULL fmt reg_l x_reg (RIReg y_reg)
, MULHU fmt reg_h x_reg y_reg
]
multOp2 _ _ _ _
= panic "genCall: Wrong number of arguments for multOp2"
add2Op platform [res_h, res_l] [arg_x, arg_y]
= do let reg_h = getRegisterReg platform (CmmLocal res_h)
reg_l = getRegisterReg platform (CmmLocal res_l)
(x_reg, x_code) <- getSomeReg arg_x
(y_reg, y_code) <- getSomeReg arg_y
return $ y_code `appOL` x_code
`appOL` toOL [ LI reg_h (ImmInt 0)
, ADDC reg_l x_reg y_reg
, ADDZE reg_h reg_h
]
add2Op _ _ _
= panic "genCCall: Wrong number of arguments/results for add2"
addcOp platform [res_r, res_c] [arg_x, arg_y]
= add2Op platform [res_c {-hi-}, res_r {-lo-}] [arg_x, arg_y]
addcOp _ _ _
= panic "genCCall: Wrong number of arguments/results for addc"
-- PowerPC subfc sets the carry for rT = ~(rA) + rB + 1,
-- which is 0 for borrow and 1 otherwise. We need 1 and 0
-- so xor with 1.
subcOp platform [res_r, res_c] [arg_x, arg_y]
= do let reg_r = getRegisterReg platform (CmmLocal res_r)
reg_c = getRegisterReg platform (CmmLocal res_c)
(x_reg, x_code) <- getSomeReg arg_x
(y_reg, y_code) <- getSomeReg arg_y
return $ y_code `appOL` x_code
`appOL` toOL [ LI reg_c (ImmInt 0)
, SUBFC reg_r y_reg (RIReg x_reg)
, ADDZE reg_c reg_c
, XOR reg_c reg_c (RIImm (ImmInt 1))
]
subcOp _ _ _
= panic "genCCall: Wrong number of arguments/results for subc"
addSubCOp instr platform width [res_r, res_c] [arg_x, arg_y]
= do let reg_r = getRegisterReg platform (CmmLocal res_r)
reg_c = getRegisterReg platform (CmmLocal res_c)
(x_reg, x_code) <- getSomeReg arg_x
(y_reg, y_code) <- getSomeReg arg_y
return $ y_code `appOL` x_code
`appOL` toOL [ instr reg_r y_reg x_reg,
-- SUBFO argument order reversed!
MFOV (intFormat width) reg_c
]
addSubCOp _ _ _ _ _
= panic "genCall: Wrong number of arguments/results for addC"
fabs platform [res] [arg]
= do let res_r = getRegisterReg platform (CmmLocal res)
(arg_reg, arg_code) <- getSomeReg arg
return $ arg_code `snocOL` FABS res_r arg_reg
fabs _ _ _
= panic "genCall: Wrong number of arguments/results for fabs"
-- TODO: replace 'Int' by an enum such as 'PPC_64ABI'
data GenCCallPlatform = GCP32ELF | GCP64ELF !Int | GCPAIX
platformToGCP :: Platform -> GenCCallPlatform
platformToGCP platform
= case platformOS platform of
OSAIX -> GCPAIX
_ -> case platformArch platform of
ArchPPC -> GCP32ELF
ArchPPC_64 ELF_V1 -> GCP64ELF 1
ArchPPC_64 ELF_V2 -> GCP64ELF 2
_ -> panic "platformToGCP: Not PowerPC"
genCCall'
:: NCGConfig
-> GenCCallPlatform
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
{-
PowerPC Linux uses the System V Release 4 Calling Convention
for PowerPC. It is described in the
"System V Application Binary Interface PowerPC Processor Supplement".
PowerPC 64 Linux uses the System V Release 4 Calling Convention for
64-bit PowerPC. It is specified in
"64-bit PowerPC ELF Application Binary Interface Supplement 1.9"
(PPC64 ELF v1.9).
PowerPC 64 Linux in little endian mode uses the "Power Architecture 64-Bit
ELF V2 ABI Specification -- OpenPOWER ABI for Linux Supplement"
(PPC64 ELF v2).
AIX follows the "PowerOpen ABI: Application Binary Interface Big-Endian
32-Bit Hardware Implementation"
All four conventions are similar:
Parameters may be passed in general-purpose registers starting at r3, in
floating point registers starting at f1, or on the stack.
But there are substantial differences:
* The number of registers used for parameter passing and the exact set of
nonvolatile registers differs (see MachRegs.hs).
* On AIX and 64-bit ELF, stack space is always reserved for parameters,
even if they are passed in registers. The called routine may choose to
save parameters from registers to the corresponding space on the stack.
* On AIX and 64-bit ELF, a corresponding amount of GPRs is skipped when
a floating point parameter is passed in an FPR.
* SysV insists on either passing I64 arguments on the stack, or in two GPRs,
starting with an odd-numbered GPR. It may skip a GPR to achieve this.
AIX just treats an I64 likt two separate I32s (high word first).
* I64 and FF64 arguments are 8-byte aligned on the stack for SysV, but only
4-byte aligned like everything else on AIX.
* The SysV spec claims that FF32 is represented as FF64 on the stack. GCC on
PowerPC Linux does not agree, so neither do we.
According to all conventions, the parameter area should be part of the
caller's stack frame, allocated in the caller's prologue code (large enough
to hold the parameter lists for all called routines). The NCG already
uses the stack for register spilling, leaving 64 bytes free at the top.
If we need a larger parameter area than that, we increase the size
of the stack frame just before ccalling.
-}
genCCall' config gcp target dest_regs args
= do
(finalStack,passArgumentsCode,usedRegs) <- passArguments
(zip3 args argReps argHints)
allArgRegs
(allFPArgRegs platform)
initialStackOffset
nilOL []
(labelOrExpr, reduceToFF32) <- case target of
ForeignTarget (CmmLit (CmmLabel lbl)) _ -> do
uses_pic_base_implicitly
return (Left lbl, False)
ForeignTarget expr _ -> do
uses_pic_base_implicitly
return (Right expr, False)
PrimTarget mop -> outOfLineMachOp mop
let codeBefore = move_sp_down finalStack `appOL` passArgumentsCode
codeAfter = move_sp_up finalStack `appOL` moveResult reduceToFF32
case labelOrExpr of
Left lbl -> -- the linker does all the work for us
return ( codeBefore
`snocOL` BL lbl usedRegs
`appOL` maybeNOP -- some ABI require a NOP after BL
`appOL` codeAfter)
Right dyn -> do -- implement call through function pointer
(dynReg, dynCode) <- getSomeReg dyn
case gcp of
GCP64ELF 1 -> return ( dynCode
`appOL` codeBefore
`snocOL` ST spFormat toc (AddrRegImm sp (ImmInt 40))
`snocOL` LD II64 r11 (AddrRegImm dynReg (ImmInt 0))
`snocOL` LD II64 toc (AddrRegImm dynReg (ImmInt 8))
`snocOL` MTCTR r11
`snocOL` LD II64 r11 (AddrRegImm dynReg (ImmInt 16))
`snocOL` BCTRL usedRegs
`snocOL` LD spFormat toc (AddrRegImm sp (ImmInt 40))
`appOL` codeAfter)
GCP64ELF 2 -> return ( dynCode
`appOL` codeBefore
`snocOL` ST spFormat toc (AddrRegImm sp (ImmInt 24))
`snocOL` MR r12 dynReg
`snocOL` MTCTR r12
`snocOL` BCTRL usedRegs
`snocOL` LD spFormat toc (AddrRegImm sp (ImmInt 24))
`appOL` codeAfter)
GCPAIX -> return ( dynCode
-- AIX/XCOFF follows the PowerOPEN ABI
-- which is quite similar to LinuxPPC64/ELFv1
`appOL` codeBefore
`snocOL` ST spFormat toc (AddrRegImm sp (ImmInt 20))
`snocOL` LD II32 r11 (AddrRegImm dynReg (ImmInt 0))
`snocOL` LD II32 toc (AddrRegImm dynReg (ImmInt 4))
`snocOL` MTCTR r11
`snocOL` LD II32 r11 (AddrRegImm dynReg (ImmInt 8))
`snocOL` BCTRL usedRegs
`snocOL` LD spFormat toc (AddrRegImm sp (ImmInt 20))
`appOL` codeAfter)
_ -> return ( dynCode
`snocOL` MTCTR dynReg
`appOL` codeBefore
`snocOL` BCTRL usedRegs
`appOL` codeAfter)
where
platform = ncgPlatform config
uses_pic_base_implicitly =
-- See Note [implicit register in PPC PIC code]
-- on why we claim to use PIC register here
when (ncgPIC config && target32Bit platform) $ do
_ <- getPicBaseNat $ archWordFormat True
return ()
initialStackOffset = case gcp of
GCPAIX -> 24
GCP32ELF -> 8
GCP64ELF 1 -> 48
GCP64ELF 2 -> 32
_ -> panic "genCall': unknown calling convention"
-- size of linkage area + size of arguments, in bytes
stackDelta finalStack = case gcp of
GCPAIX ->
roundTo 16 $ (24 +) $ max 32 $ sum $
map (widthInBytes . typeWidth) argReps
GCP32ELF -> roundTo 16 finalStack
GCP64ELF 1 ->
roundTo 16 $ (48 +) $ max 64 $ sum $
map (roundTo 8 . widthInBytes . typeWidth)
argReps
GCP64ELF 2 ->
roundTo 16 $ (32 +) $ max 64 $ sum $
map (roundTo 8 . widthInBytes . typeWidth)
argReps
_ -> panic "genCall': unknown calling conv."
argReps = map (cmmExprType platform) args
(argHints, _) = foreignTargetHints target
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
spFormat = if target32Bit platform then II32 else II64
-- TODO: Do not create a new stack frame if delta is too large.
move_sp_down finalStack
| delta > stackFrameHeaderSize platform =
toOL [STU spFormat sp (AddrRegImm sp (ImmInt (-delta))),
DELTA (-delta)]
| otherwise = nilOL
where delta = stackDelta finalStack
move_sp_up finalStack
| delta > stackFrameHeaderSize platform =
toOL [ADD sp sp (RIImm (ImmInt delta)),
DELTA 0]
| otherwise = nilOL
where delta = stackDelta finalStack
-- A NOP instruction is required after a call (bl instruction)
-- on AIX and 64-Bit Linux.
-- If the call is to a function with a different TOC (r2) the
-- link editor replaces the NOP instruction with a load of the TOC
-- from the stack to restore the TOC.
maybeNOP = case gcp of
GCP32ELF -> nilOL
-- See Section 3.9.4 of OpenPower ABI
GCPAIX -> unitOL NOP
-- See Section 3.5.11 of PPC64 ELF v1.9
GCP64ELF 1 -> unitOL NOP
-- See Section 2.3.6 of PPC64 ELF v2
GCP64ELF 2 -> unitOL NOP
_ -> panic "maybeNOP: Unknown PowerPC 64-bit ABI"
passArguments [] _ _ stackOffset accumCode accumUsed = return (stackOffset, accumCode, accumUsed)
passArguments ((arg,arg_ty,_):args) gprs fprs stackOffset
accumCode accumUsed | isWord64 arg_ty
&& target32Bit (ncgPlatform config) =
do
ChildCode64 code vr_lo <- iselExpr64 arg
let vr_hi = getHiVRegFromLo vr_lo
case gcp of
GCPAIX ->
do let storeWord vr (gpr:_) _ = MR gpr vr
storeWord vr [] offset
= ST II32 vr (AddrRegImm sp (ImmInt offset))
passArguments args
(drop 2 gprs)
fprs
(stackOffset+8)
(accumCode `appOL` code
`snocOL` storeWord vr_hi gprs stackOffset
`snocOL` storeWord vr_lo (drop 1 gprs) (stackOffset+4))
((take 2 gprs) ++ accumUsed)
GCP32ELF ->
do let stackOffset' = roundTo 8 stackOffset
stackCode = accumCode `appOL` code
`snocOL` ST II32 vr_hi (AddrRegImm sp (ImmInt stackOffset'))
`snocOL` ST II32 vr_lo (AddrRegImm sp (ImmInt (stackOffset'+4)))
regCode hireg loreg =
accumCode `appOL` code
`snocOL` MR hireg vr_hi
`snocOL` MR loreg vr_lo
case gprs of
hireg : loreg : regs | even (length gprs) ->
passArguments args regs fprs stackOffset
(regCode hireg loreg) (hireg : loreg : accumUsed)
_skipped : hireg : loreg : regs ->
passArguments args regs fprs stackOffset
(regCode hireg loreg) (hireg : loreg : accumUsed)
_ -> -- only one or no regs left
passArguments args [] fprs (stackOffset'+8)
stackCode accumUsed
GCP64ELF _ -> panic "passArguments: 32 bit code"
passArguments ((arg,rep,hint):args) gprs fprs stackOffset accumCode accumUsed
| reg : _ <- regs = do
register <- getRegister arg_pro
let code = case register of
Fixed _ freg fcode -> fcode `snocOL` MR reg freg
Any _ acode -> acode reg
stackOffsetRes = case gcp of
-- The PowerOpen ABI requires that we
-- reserve stack slots for register
-- parameters
GCPAIX -> stackOffset + stackBytes
-- ... the SysV ABI 32-bit doesn't.
GCP32ELF -> stackOffset
-- ... but SysV ABI 64-bit does.
GCP64ELF _ -> stackOffset + stackBytes
passArguments args
(drop nGprs gprs)
(drop nFprs fprs)
stackOffsetRes
(accumCode `appOL` code)
(reg : accumUsed)
| otherwise = do
(vr, code) <- getSomeReg arg_pro
passArguments args
(drop nGprs gprs)
(drop nFprs fprs)
(stackOffset' + stackBytes)
(accumCode `appOL` code
`snocOL` ST format_pro vr stackSlot)
accumUsed
where
arg_pro
| isBitsType rep = CmmMachOp (conv_op (typeWidth rep) (wordWidth platform)) [arg]
| otherwise = arg
format_pro
| isBitsType rep = intFormat (wordWidth platform)
| otherwise = cmmTypeFormat rep
conv_op = case hint of
SignedHint -> MO_SS_Conv
_ -> MO_UU_Conv
stackOffset' = case gcp of
GCPAIX ->
-- The 32bit PowerOPEN ABI is happy with
-- 32bit-alignment ...
stackOffset
GCP32ELF
-- ... the SysV ABI requires 8-byte
-- alignment for doubles.
| isFloatType rep && typeWidth rep == W64 ->
roundTo 8 stackOffset
| otherwise ->
stackOffset
GCP64ELF _ ->
-- Everything on the stack is mapped to
-- 8-byte aligned doublewords
stackOffset
stackOffset''
| isFloatType rep && typeWidth rep == W32 =
case gcp of
-- The ELF v1 ABI Section 3.2.3 requires:
-- "Single precision floating point values
-- are mapped to the second word in a single
-- doubleword"
GCP64ELF 1 -> stackOffset' + 4
_ -> stackOffset'
| otherwise = stackOffset'
stackSlot = AddrRegImm sp (ImmInt stackOffset'')
(nGprs, nFprs, stackBytes, regs)
= case gcp of
GCPAIX ->
case cmmTypeFormat rep of
II8 -> (1, 0, 4, gprs)
II16 -> (1, 0, 4, gprs)
II32 -> (1, 0, 4, gprs)
-- The PowerOpen ABI requires that we skip a
-- corresponding number of GPRs when we use
-- the FPRs.
--
-- E.g. for a `double` two GPRs are skipped,
-- whereas for a `float` one GPR is skipped
-- when parameters are assigned to
-- registers.
--
-- The PowerOpen ABI specification can be found at
-- ftp://www.sourceware.org/pub/binutils/ppc-docs/ppc-poweropen/
FF32 -> (1, 1, 4, fprs)
FF64 -> (2, 1, 8, fprs)
II64 -> panic "genCCall' passArguments II64"
GCP32ELF ->
case cmmTypeFormat rep of
II8 -> (1, 0, 4, gprs)
II16 -> (1, 0, 4, gprs)
II32 -> (1, 0, 4, gprs)
-- ... the SysV ABI doesn't.
FF32 -> (0, 1, 4, fprs)
FF64 -> (0, 1, 8, fprs)
II64 -> panic "genCCall' passArguments II64"
GCP64ELF _ ->
case cmmTypeFormat rep of
II8 -> (1, 0, 8, gprs)
II16 -> (1, 0, 8, gprs)
II32 -> (1, 0, 8, gprs)
II64 -> (1, 0, 8, gprs)
-- The ELFv1 ABI requires that we skip a
-- corresponding number of GPRs when we use
-- the FPRs.
FF32 -> (1, 1, 8, fprs)
FF64 -> (1, 1, 8, fprs)
moveResult reduceToFF32 =
case dest_regs of
[] -> nilOL
[dest]
| reduceToFF32 && isFloat32 rep -> unitOL (FRSP r_dest f1)
| isFloat32 rep || isFloat64 rep -> unitOL (MR r_dest f1)
| isWord64 rep && target32Bit platform
-> toOL [MR (getHiVRegFromLo r_dest) r3,
MR r_dest r4]
| otherwise -> unitOL (MR r_dest r3)
where rep = cmmRegType platform (CmmLocal dest)
r_dest = getRegisterReg platform (CmmLocal dest)
_ -> panic "genCCall' moveResult: Bad dest_regs"
outOfLineMachOp mop =
do
mopExpr <- cmmMakeDynamicReference config CallReference $
mkForeignLabel functionName Nothing ForeignLabelInThisPackage IsFunction
let mopLabelOrExpr = case mopExpr of
CmmLit (CmmLabel lbl) -> Left lbl
_ -> Right mopExpr
return (mopLabelOrExpr, reduce)
where
(functionName, reduce) = case mop of
MO_F32_Exp -> (fsLit "exp", True)
MO_F32_ExpM1 -> (fsLit "expm1", True)
MO_F32_Log -> (fsLit "log", True)
MO_F32_Log1P -> (fsLit "log1p", True)
MO_F32_Sqrt -> (fsLit "sqrt", True)
MO_F32_Fabs -> unsupported
MO_F32_Sin -> (fsLit "sin", True)
MO_F32_Cos -> (fsLit "cos", True)
MO_F32_Tan -> (fsLit "tan", True)
MO_F32_Asin -> (fsLit "asin", True)
MO_F32_Acos -> (fsLit "acos", True)
MO_F32_Atan -> (fsLit "atan", True)
MO_F32_Sinh -> (fsLit "sinh", True)
MO_F32_Cosh -> (fsLit "cosh", True)
MO_F32_Tanh -> (fsLit "tanh", True)
MO_F32_Pwr -> (fsLit "pow", True)
MO_F32_Asinh -> (fsLit "asinh", True)
MO_F32_Acosh -> (fsLit "acosh", True)
MO_F32_Atanh -> (fsLit "atanh", True)
MO_F64_Exp -> (fsLit "exp", False)
MO_F64_ExpM1 -> (fsLit "expm1", False)
MO_F64_Log -> (fsLit "log", False)
MO_F64_Log1P -> (fsLit "log1p", False)
MO_F64_Sqrt -> (fsLit "sqrt", False)
MO_F64_Fabs -> unsupported
MO_F64_Sin -> (fsLit "sin", False)
MO_F64_Cos -> (fsLit "cos", False)
MO_F64_Tan -> (fsLit "tan", False)
MO_F64_Asin -> (fsLit "asin", False)
MO_F64_Acos -> (fsLit "acos", False)
MO_F64_Atan -> (fsLit "atan", False)
MO_F64_Sinh -> (fsLit "sinh", False)
MO_F64_Cosh -> (fsLit "cosh", False)
MO_F64_Tanh -> (fsLit "tanh", False)
MO_F64_Pwr -> (fsLit "pow", False)
MO_F64_Asinh -> (fsLit "asinh", False)
MO_F64_Acosh -> (fsLit "acosh", False)
MO_F64_Atanh -> (fsLit "atanh", False)
MO_UF_Conv w -> (fsLit $ word2FloatLabel w, False)
MO_Memcpy _ -> (fsLit "memcpy", False)
MO_Memset _ -> (fsLit "memset", False)
MO_Memmove _ -> (fsLit "memmove", False)
MO_Memcmp _ -> (fsLit "memcmp", False)
MO_BSwap w -> (fsLit $ bSwapLabel w, False)
MO_BRev w -> (fsLit $ bRevLabel w, False)
MO_PopCnt w -> (fsLit $ popCntLabel w, False)
MO_Pdep w -> (fsLit $ pdepLabel w, False)
MO_Pext w -> (fsLit $ pextLabel w, False)
MO_Clz _ -> unsupported
MO_Ctz _ -> unsupported
MO_AtomicRMW {} -> unsupported
MO_Cmpxchg w -> (fsLit $ cmpxchgLabel w, False)
MO_Xchg w -> (fsLit $ xchgLabel w, False)
MO_AtomicRead _ -> unsupported
MO_AtomicWrite _ -> unsupported
MO_S_Mul2 {} -> unsupported
MO_S_QuotRem {} -> unsupported
MO_U_QuotRem {} -> unsupported
MO_U_QuotRem2 {} -> unsupported
MO_Add2 {} -> unsupported
MO_AddWordC {} -> unsupported
MO_SubWordC {} -> unsupported
MO_AddIntC {} -> unsupported
MO_SubIntC {} -> unsupported
MO_U_Mul2 {} -> unsupported
MO_ReadBarrier -> unsupported
MO_WriteBarrier -> unsupported
MO_Touch -> unsupported
MO_Prefetch_Data _ -> unsupported
unsupported = panic ("outOfLineCmmOp: " ++ show mop
++ " not supported")
-- -----------------------------------------------------------------------------
-- Generating a table-branch
genSwitch :: NCGConfig -> CmmExpr -> SwitchTargets -> NatM InstrBlock
genSwitch config expr targets
| OSAIX <- platformOS platform
= do
(reg,e_code) <- getSomeReg (cmmOffset platform expr offset)
let fmt = archWordFormat $ target32Bit platform
sha = if target32Bit platform then 2 else 3
tmp <- getNewRegNat fmt
lbl <- getNewLabelNat
dynRef <- cmmMakeDynamicReference config DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let code = e_code `appOL` t_code `appOL` toOL [
SL fmt tmp reg (RIImm (ImmInt sha)),
LD fmt tmp (AddrRegReg tableReg tmp),
MTCTR tmp,
BCTR ids (Just lbl) []
]
return code
| (ncgPIC config) || (not $ target32Bit platform)
= do
(reg,e_code) <- getSomeReg (cmmOffset platform expr offset)
let fmt = archWordFormat $ target32Bit platform
sha = if target32Bit platform then 2 else 3
tmp <- getNewRegNat fmt
lbl <- getNewLabelNat
dynRef <- cmmMakeDynamicReference config DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let code = e_code `appOL` t_code `appOL` toOL [
SL fmt tmp reg (RIImm (ImmInt sha)),
LD fmt tmp (AddrRegReg tableReg tmp),
ADD tmp tmp (RIReg tableReg),
MTCTR tmp,
BCTR ids (Just lbl) []
]
return code
| otherwise
= do
(reg,e_code) <- getSomeReg (cmmOffset platform expr offset)
let fmt = archWordFormat $ target32Bit platform
sha = if target32Bit platform then 2 else 3
tmp <- getNewRegNat fmt
lbl <- getNewLabelNat
let code = e_code `appOL` toOL [
SL fmt tmp reg (RIImm (ImmInt sha)),
ADDIS tmp tmp (HA (ImmCLbl lbl)),
LD fmt tmp (AddrRegImm tmp (LO (ImmCLbl lbl))),
MTCTR tmp,
BCTR ids (Just lbl) []
]
return code
where
(offset, ids) = switchTargetsToTable targets
platform = ncgPlatform config
generateJumpTableForInstr :: NCGConfig -> Instr
-> Maybe (NatCmmDecl RawCmmStatics Instr)
generateJumpTableForInstr config (BCTR ids (Just lbl) _) =
let jumpTable
| (ncgPIC config) || (not $ target32Bit $ ncgPlatform config)
= map jumpTableEntryRel ids
| otherwise = map (jumpTableEntry config) ids
where jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 (ncgWordWidth config))
jumpTableEntryRel (Just blockid)
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0
(ncgWordWidth config))
where blockLabel = blockLbl blockid
in Just (CmmData (Section ReadOnlyData lbl) (CmmStaticsRaw lbl jumpTable))
generateJumpTableForInstr _ _ = Nothing
-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers
-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
condReg :: NatM CondCode -> NatM Register
condReg getCond = do
CondCode _ cond cond_code <- getCond
platform <- getPlatform
let
code dst = cond_code
`appOL` negate_code
`appOL` toOL [
MFCR dst,
RLWINM dst dst (bit + 1) 31 31
]
negate_code | do_negate = unitOL (CRNOR bit bit bit)
| otherwise = nilOL
(bit, do_negate) = case cond of
LTT -> (0, False)
LE -> (1, True)
EQQ -> (2, False)
GE -> (0, True)
GTT -> (1, False)
NE -> (2, True)
LU -> (0, False)
LEU -> (1, True)
GEU -> (0, True)
GU -> (1, False)
_ -> panic "PPC.CodeGen.codeReg: no match"
format = archWordFormat $ target32Bit platform
return (Any format code)
condIntReg :: Cond -> Width -> CmmExpr -> CmmExpr -> NatM Register
condIntReg cond width x y = condReg (condIntCode cond width x y)
condFltReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
condFltReg cond x y = condReg (condFltCode cond x y)
-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions
-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.
-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.
{-
Wolfgang's PowerPC version of The Rules:
A slightly modified version of The Rules to take advantage of the fact
that PowerPC instructions work on all registers and don't implicitly
clobber any fixed registers.
* The only expression for which getRegister returns Fixed is (CmmReg reg).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
It may *not* modify global registers, unless the global
register happens to be the destination register.
It may not clobber any other registers. In fact, only ccalls clobber any
fixed registers.
Also, it may not modify the counter register (used by genCCall).
Corollary: If a getRegister for a subexpression returns Fixed, you need
not move it to a fresh temporary before evaluating the next subexpression.
The Fixed register won't be modified.
Therefore, we don't need a counterpart for the x86's getStableReg on PPC.
* SDM's First Rule is valid for PowerPC, too: subexpressions can depend on
the value of the destination register.
-}
trivialCode
:: Width
-> Bool
-> (Reg -> Reg -> RI -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
trivialCode rep signed instr x (CmmLit (CmmInt y _))
| Just imm <- makeImmediate rep signed y
= do
(src1, code1) <- getSomeReg x
let code dst = code1 `snocOL` instr dst src1 (RIImm imm)
return (Any (intFormat rep) code)
trivialCode rep _ instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let code dst = code1 `appOL` code2 `snocOL` instr dst src1 (RIReg src2)
return (Any (intFormat rep) code)
shiftMulCode
:: Width
-> Bool
-> (Format-> Reg -> Reg -> RI -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
shiftMulCode width sign instr x (CmmLit (CmmInt y _))
| Just imm <- makeImmediate width sign y
= do
(src1, code1) <- getSomeReg x
let format = intFormat width
let ins_fmt = intFormat (max W32 width)
let code dst = code1 `snocOL` instr ins_fmt dst src1 (RIImm imm)
return (Any format code)
shiftMulCode width _ instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let format = intFormat width
let ins_fmt = intFormat (max W32 width)
let code dst = code1 `appOL` code2
`snocOL` instr ins_fmt dst src1 (RIReg src2)
return (Any format code)
trivialCodeNoImm' :: Format -> (Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCodeNoImm' format instr x y = do
(src1, code1) <- getSomeReg x
(src2, code2) <- getSomeReg y
let code dst = code1 `appOL` code2 `snocOL` instr dst src1 src2
return (Any format code)
trivialCodeNoImm :: Format -> (Format -> Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCodeNoImm format instr x y
= trivialCodeNoImm' format (instr format) x y
srCode :: Width -> Bool -> (Format-> Reg -> Reg -> RI -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
srCode width sgn instr x (CmmLit (CmmInt y _))
| Just imm <- makeImmediate width sgn y
= do
let op_len = max W32 width
extend = if sgn then extendSExpr else extendUExpr
(src1, code1) <- getSomeReg (extend width op_len x)
let code dst = code1 `snocOL`
instr (intFormat op_len) dst src1 (RIImm imm)
return (Any (intFormat width) code)
srCode width sgn instr x y = do
let op_len = max W32 width
extend = if sgn then extendSExpr else extendUExpr
(src1, code1) <- getSomeReg (extend width op_len x)
(src2, code2) <- getSomeReg (extendUExpr width op_len y)
-- Note: Shift amount `y` is unsigned
let code dst = code1 `appOL` code2 `snocOL`
instr (intFormat op_len) dst src1 (RIReg src2)
return (Any (intFormat width) code)
divCode :: Width -> Bool -> CmmExpr -> CmmExpr -> NatM Register
divCode width sgn x y = do
let op_len = max W32 width
extend = if sgn then extendSExpr else extendUExpr
(src1, code1) <- getSomeReg (extend width op_len x)
(src2, code2) <- getSomeReg (extend width op_len y)
let code dst = code1 `appOL` code2 `snocOL`
DIV (intFormat op_len) sgn dst src1 src2
return (Any (intFormat width) code)
trivialUCode :: Format
-> (Reg -> Reg -> Instr)
-> CmmExpr
-> NatM Register
trivialUCode rep instr x = do
(src, code) <- getSomeReg x
let code' dst = code `snocOL` instr dst src
return (Any rep code')
-- There is no "remainder" instruction on the PPC, so we have to do
-- it the hard way.
-- The "sgn" parameter is the signedness for the division instruction
remainderCode :: Width -> Bool -> Reg -> CmmExpr -> CmmExpr
-> NatM (Reg -> InstrBlock)
remainderCode rep sgn reg_q arg_x arg_y = do
let op_len = max W32 rep
fmt = intFormat op_len
extend = if sgn then extendSExpr else extendUExpr
(x_reg, x_code) <- getSomeReg (extend rep op_len arg_x)
(y_reg, y_code) <- getSomeReg (extend rep op_len arg_y)
return $ \reg_r -> y_code `appOL` x_code
`appOL` toOL [ DIV fmt sgn reg_q x_reg y_reg
, MULL fmt reg_r reg_q (RIReg y_reg)
, SUBF reg_r reg_r x_reg
]
coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP fromRep toRep x = do
platform <- getPlatform
let arch = platformArch platform
coerceInt2FP' arch fromRep toRep x
coerceInt2FP' :: Arch -> Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP' ArchPPC fromRep toRep x = do
(src, code) <- getSomeReg x
lbl <- getNewLabelNat
itmp <- getNewRegNat II32
ftmp <- getNewRegNat FF64
config <- getConfig
platform <- getPlatform
dynRef <- cmmMakeDynamicReference config DataReference lbl
Amode addr addr_code <- getAmode D dynRef
let
code' dst = code `appOL` maybe_exts `appOL` toOL [
LDATA (Section ReadOnlyData lbl) $ CmmStaticsRaw lbl
[CmmStaticLit (CmmInt 0x43300000 W32),
CmmStaticLit (CmmInt 0x80000000 W32)],
XORIS itmp src (ImmInt 0x8000),
ST II32 itmp (spRel platform 3),
LIS itmp (ImmInt 0x4330),
ST II32 itmp (spRel platform 2),
LD FF64 ftmp (spRel platform 2)
] `appOL` addr_code `appOL` toOL [
LD FF64 dst addr,
FSUB FF64 dst ftmp dst
] `appOL` maybe_frsp dst
maybe_exts = case fromRep of
W8 -> unitOL $ EXTS II8 src src
W16 -> unitOL $ EXTS II16 src src
W32 -> nilOL
_ -> panic "PPC.CodeGen.coerceInt2FP: no match"
maybe_frsp dst
= case toRep of
W32 -> unitOL $ FRSP dst dst
W64 -> nilOL
_ -> panic "PPC.CodeGen.coerceInt2FP: no match"
return (Any (floatFormat toRep) code')
-- On an ELF v1 Linux we use the compiler doubleword in the stack frame
-- this is the TOC pointer doubleword on ELF v2 Linux. The latter is only
-- set right before a call and restored right after return from the call.
-- So it is fine.
coerceInt2FP' (ArchPPC_64 _) fromRep toRep x = do
(src, code) <- getSomeReg x
platform <- getPlatform
let
code' dst = code `appOL` maybe_exts `appOL` toOL [
ST II64 src (spRel platform 3),
LD FF64 dst (spRel platform 3),
FCFID dst dst
] `appOL` maybe_frsp dst
maybe_exts = case fromRep of
W8 -> unitOL $ EXTS II8 src src
W16 -> unitOL $ EXTS II16 src src
W32 -> unitOL $ EXTS II32 src src
W64 -> nilOL
_ -> panic "PPC.CodeGen.coerceInt2FP: no match"
maybe_frsp dst
= case toRep of
W32 -> unitOL $ FRSP dst dst
W64 -> nilOL
_ -> panic "PPC.CodeGen.coerceInt2FP: no match"
return (Any (floatFormat toRep) code')
coerceInt2FP' _ _ _ _ = panic "PPC.CodeGen.coerceInt2FP: unknown arch"
coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int fromRep toRep x = do
platform <- getPlatform
let arch = platformArch platform
coerceFP2Int' arch fromRep toRep x
coerceFP2Int' :: Arch -> Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int' ArchPPC _ toRep x = do
platform <- getPlatform
-- the reps don't really matter: F*->FF64 and II32->I* are no-ops
(src, code) <- getSomeReg x
tmp <- getNewRegNat FF64
let
code' dst = code `appOL` toOL [
-- convert to int in FP reg
FCTIWZ tmp src,
-- store value (64bit) from FP to stack
ST FF64 tmp (spRel platform 2),
-- read low word of value (high word is undefined)
LD II32 dst (spRel platform 3)]
return (Any (intFormat toRep) code')
coerceFP2Int' (ArchPPC_64 _) _ toRep x = do
platform <- getPlatform
-- the reps don't really matter: F*->FF64 and II64->I* are no-ops
(src, code) <- getSomeReg x
tmp <- getNewRegNat FF64
let
code' dst = code `appOL` toOL [
-- convert to int in FP reg
FCTIDZ tmp src,
-- store value (64bit) from FP to compiler word on stack
ST FF64 tmp (spRel platform 3),
LD II64 dst (spRel platform 3)]
return (Any (intFormat toRep) code')
coerceFP2Int' _ _ _ _ = panic "PPC.CodeGen.coerceFP2Int: unknown arch"
-- Note [.LCTOC1 in PPC PIC code]
-- The .LCTOC1 label is defined to point 32768 bytes into the GOT table
-- to make the most of the PPC's 16-bit displacements.
-- As 16-bit signed offset is used (usually via addi/lwz instructions)
-- first element will have '-32768' offset against .LCTOC1.
-- Note [implicit register in PPC PIC code]
-- PPC generates calls by labels in assembly
-- in form of:
-- bl puts+32768@plt
-- in this form it's not seen directly (by GHC NCG)
-- that r30 (PicBaseReg) is used,
-- but r30 is a required part of PLT code setup:
-- puts+32768@plt:
-- lwz r11,-30484(r30) ; offset in .LCTOC1
-- mtctr r11
-- bctr
|