1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------
module GHC.CmmToAsm.PPC.Instr
( Instr(..)
, RI(..)
, archWordFormat
, stackFrameHeaderSize
, maxSpillSlots
, allocMoreStack
, makeFarBranches
, mkJumpInstr
, mkLoadInstr
, mkSpillInstr
, patchJumpInstr
, patchRegsOfInstr
, jumpDestsOfInstr
, takeRegRegMoveInstr
, takeDeltaInstr
, mkRegRegMoveInstr
, mkStackAllocInstr
, mkStackDeallocInstr
, regUsageOfInstr
, isJumpishInstr
, isMetaInstr
)
where
import GHC.Prelude
import GHC.CmmToAsm.PPC.Regs
import GHC.CmmToAsm.PPC.Cond
import GHC.CmmToAsm.Types
import GHC.CmmToAsm.Instr (RegUsage(..), noUsage)
import GHC.CmmToAsm.Format
import GHC.CmmToAsm.Reg.Target
import GHC.CmmToAsm.Config
import GHC.Platform.Reg.Class
import GHC.Platform.Reg
import GHC.Platform.Regs
import GHC.Cmm.BlockId
import GHC.Cmm.Dataflow.Collections
import GHC.Cmm.Dataflow.Label
import GHC.Cmm
import GHC.Cmm.Info
import GHC.Data.FastString
import GHC.Cmm.CLabel
import GHC.Utils.Panic
import GHC.Platform
import GHC.Types.Unique.FM (listToUFM, lookupUFM)
import GHC.Types.Unique.Supply
import Control.Monad (replicateM)
import Data.Maybe (fromMaybe)
--------------------------------------------------------------------------------
-- Format of a PPC memory address.
--
archWordFormat :: Bool -> Format
archWordFormat is32Bit
| is32Bit = II32
| otherwise = II64
mkStackAllocInstr :: Platform -> Int -> [Instr]
mkStackAllocInstr platform amount
= mkStackAllocInstr' platform (-amount)
mkStackDeallocInstr :: Platform -> Int -> [Instr]
mkStackDeallocInstr platform amount
= mkStackAllocInstr' platform amount
mkStackAllocInstr' :: Platform -> Int -> [Instr]
mkStackAllocInstr' platform amount
| fits16Bits amount
= [ LD fmt r0 (AddrRegImm sp zero)
, STU fmt r0 (AddrRegImm sp immAmount)
]
| otherwise
= [ LD fmt r0 (AddrRegImm sp zero)
, ADDIS tmp sp (HA immAmount)
, ADD tmp tmp (RIImm (LO immAmount))
, STU fmt r0 (AddrRegReg sp tmp)
]
where
fmt = intFormat $ widthFromBytes (platformWordSizeInBytes platform)
zero = ImmInt 0
tmp = tmpReg platform
immAmount = ImmInt amount
--
-- See note [extra spill slots] in X86/Instr.hs
--
allocMoreStack
:: Platform
-> Int
-> NatCmmDecl statics GHC.CmmToAsm.PPC.Instr.Instr
-> UniqSM (NatCmmDecl statics GHC.CmmToAsm.PPC.Instr.Instr, [(BlockId,BlockId)])
allocMoreStack _ _ top@(CmmData _ _) = return (top,[])
allocMoreStack platform slots (CmmProc info lbl live (ListGraph code)) = do
let
infos = mapKeys info
entries = case code of
[] -> infos
BasicBlock entry _ : _ -- first block is the entry point
| entry `elem` infos -> infos
| otherwise -> entry : infos
uniqs <- replicateM (length entries) getUniqueM
let
delta = ((x + stackAlign - 1) `quot` stackAlign) * stackAlign -- round up
where x = slots * spillSlotSize -- sp delta
alloc = mkStackAllocInstr platform delta
dealloc = mkStackDeallocInstr platform delta
retargetList = (zip entries (map mkBlockId uniqs))
new_blockmap :: LabelMap BlockId
new_blockmap = mapFromList retargetList
insert_stack_insns (BasicBlock id insns)
| Just new_blockid <- mapLookup id new_blockmap
= [ BasicBlock id $ alloc ++ [BCC ALWAYS new_blockid Nothing]
, BasicBlock new_blockid block'
]
| otherwise
= [ BasicBlock id block' ]
where
block' = foldr insert_dealloc [] insns
insert_dealloc insn r
-- BCTR might or might not be a non-local jump. For
-- "labeled-goto" we use JMP, and for "computed-goto" we
-- use MTCTR followed by BCTR. See 'PPC.CodeGen.genJump'.
= case insn of
JMP _ _ -> dealloc ++ (insn : r)
BCTR [] Nothing _ -> dealloc ++ (insn : r)
BCTR ids label rs -> BCTR (map (fmap retarget) ids) label rs : r
BCCFAR cond b p -> BCCFAR cond (retarget b) p : r
BCC cond b p -> BCC cond (retarget b) p : r
_ -> insn : r
-- BL and BCTRL are call-like instructions rather than
-- jumps, and are used only for C calls.
retarget :: BlockId -> BlockId
retarget b
= fromMaybe b (mapLookup b new_blockmap)
new_code
= concatMap insert_stack_insns code
-- in
return (CmmProc info lbl live (ListGraph new_code),retargetList)
-- -----------------------------------------------------------------------------
-- Machine's assembly language
-- We have a few common "instructions" (nearly all the pseudo-ops) but
-- mostly all of 'Instr' is machine-specific.
-- Register or immediate
data RI
= RIReg Reg
| RIImm Imm
data Instr
-- comment pseudo-op
= COMMENT FastString
-- location pseudo-op (file, line, col, name)
| LOCATION Int Int Int String
-- some static data spat out during code
-- generation. Will be extracted before
-- pretty-printing.
| LDATA Section RawCmmStatics
-- start a new basic block. Useful during
-- codegen, removed later. Preceding
-- instruction should be a jump, as per the
-- invariants for a BasicBlock (see Cmm).
| NEWBLOCK BlockId
-- specify current stack offset for
-- benefit of subsequent passes
| DELTA Int
-- Loads and stores.
| LD Format Reg AddrMode -- Load format, dst, src
| LDFAR Format Reg AddrMode -- Load format, dst, src 32 bit offset
| LDR Format Reg AddrMode -- Load and reserve format, dst, src
| LA Format Reg AddrMode -- Load arithmetic format, dst, src
| ST Format Reg AddrMode -- Store format, src, dst
| STFAR Format Reg AddrMode -- Store format, src, dst 32 bit offset
| STU Format Reg AddrMode -- Store with Update format, src, dst
| STC Format Reg AddrMode -- Store conditional format, src, dst
| LIS Reg Imm -- Load Immediate Shifted dst, src
| LI Reg Imm -- Load Immediate dst, src
| MR Reg Reg -- Move Register dst, src -- also for fmr
| CMP Format Reg RI -- format, src1, src2
| CMPL Format Reg RI -- format, src1, src2
| BCC Cond BlockId (Maybe Bool) -- cond, block, hint
| BCCFAR Cond BlockId (Maybe Bool) -- cond, block, hint
-- hint:
-- Just True: branch likely taken
-- Just False: branch likely not taken
-- Nothing: no hint
| JMP CLabel [Reg] -- same as branch,
-- but with CLabel instead of block ID
-- and live global registers
| MTCTR Reg
| BCTR [Maybe BlockId] (Maybe CLabel) [Reg]
-- with list of local destinations, and
-- jump table location if necessary
| BL CLabel [Reg] -- with list of argument regs
| BCTRL [Reg]
| ADD Reg Reg RI -- dst, src1, src2
| ADDO Reg Reg Reg -- add and set overflow
| ADDC Reg Reg Reg -- (carrying) dst, src1, src2
| ADDE Reg Reg Reg -- (extended) dst, src1, src2
| ADDZE Reg Reg -- (to zero extended) dst, src
| ADDIS Reg Reg Imm -- Add Immediate Shifted dst, src1, src2
| SUBF Reg Reg Reg -- dst, src1, src2 ; dst = src2 - src1
| SUBFO Reg Reg Reg -- subtract from and set overflow
| SUBFC Reg Reg RI -- (carrying) dst, src1, src2 ;
-- dst = src2 - src1
| SUBFE Reg Reg Reg -- (extended) dst, src1, src2 ;
-- dst = src2 - src1
| MULL Format Reg Reg RI
| MULLO Format Reg Reg Reg -- multiply and set overflow
| MFOV Format Reg -- move overflow bit (1|33) to register
-- pseudo-instruction; pretty printed as
-- mfxer dst
-- extr[w|d]i dst, dst, 1, [1|33]
| MULHU Format Reg Reg Reg
| DIV Format Bool Reg Reg Reg
| AND Reg Reg RI -- dst, src1, src2
| ANDC Reg Reg Reg -- AND with complement, dst = src1 & ~ src2
| NAND Reg Reg Reg -- dst, src1, src2
| OR Reg Reg RI -- dst, src1, src2
| ORIS Reg Reg Imm -- OR Immediate Shifted dst, src1, src2
| XOR Reg Reg RI -- dst, src1, src2
| XORIS Reg Reg Imm -- XOR Immediate Shifted dst, src1, src2
| EXTS Format Reg Reg
| CNTLZ Format Reg Reg
| NEG Reg Reg
| NOT Reg Reg
| SL Format Reg Reg RI -- shift left
| SR Format Reg Reg RI -- shift right
| SRA Format Reg Reg RI -- shift right arithmetic
| RLWINM Reg Reg Int Int Int -- Rotate Left Word Immediate then AND with Mask
| CLRLI Format Reg Reg Int -- clear left immediate (extended mnemonic)
| CLRRI Format Reg Reg Int -- clear right immediate (extended mnemonic)
| FADD Format Reg Reg Reg
| FSUB Format Reg Reg Reg
| FMUL Format Reg Reg Reg
| FDIV Format Reg Reg Reg
| FABS Reg Reg -- abs is the same for single and double
| FNEG Reg Reg -- negate is the same for single and double prec.
| FCMP Reg Reg
| FCTIWZ Reg Reg -- convert to integer word
| FCTIDZ Reg Reg -- convert to integer double word
| FCFID Reg Reg -- convert from integer double word
| FRSP Reg Reg -- reduce to single precision
-- (but destination is a FP register)
| CRNOR Int Int Int -- condition register nor
| MFCR Reg -- move from condition register
| MFLR Reg -- move from link register
| FETCHPC Reg -- pseudo-instruction:
-- bcl to next insn, mflr reg
| HWSYNC -- heavy weight sync
| ISYNC -- instruction synchronize
| LWSYNC -- memory barrier
| NOP -- no operation, PowerPC 64 bit
-- needs this as place holder to
-- reload TOC pointer
-- | Get the registers that are being used by this instruction.
-- regUsage doesn't need to do any trickery for jumps and such.
-- Just state precisely the regs read and written by that insn.
-- The consequences of control flow transfers, as far as register
-- allocation goes, are taken care of by the register allocator.
--
regUsageOfInstr :: Platform -> Instr -> RegUsage
regUsageOfInstr platform instr
= case instr of
LD _ reg addr -> usage (regAddr addr, [reg])
LDFAR _ reg addr -> usage (regAddr addr, [reg])
LDR _ reg addr -> usage (regAddr addr, [reg])
LA _ reg addr -> usage (regAddr addr, [reg])
ST _ reg addr -> usage (reg : regAddr addr, [])
STFAR _ reg addr -> usage (reg : regAddr addr, [])
STU _ reg addr -> usage (reg : regAddr addr, [])
STC _ reg addr -> usage (reg : regAddr addr, [])
LIS reg _ -> usage ([], [reg])
LI reg _ -> usage ([], [reg])
MR reg1 reg2 -> usage ([reg2], [reg1])
CMP _ reg ri -> usage (reg : regRI ri,[])
CMPL _ reg ri -> usage (reg : regRI ri,[])
BCC _ _ _ -> noUsage
BCCFAR _ _ _ -> noUsage
JMP _ regs -> usage (regs, [])
MTCTR reg -> usage ([reg],[])
BCTR _ _ regs -> usage (regs, [])
BL _ params -> usage (params, callClobberedRegs platform)
BCTRL params -> usage (params, callClobberedRegs platform)
ADD reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
ADDO reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
ADDC reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
ADDE reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
ADDZE reg1 reg2 -> usage ([reg2], [reg1])
ADDIS reg1 reg2 _ -> usage ([reg2], [reg1])
SUBF reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
SUBFO reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
SUBFC reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SUBFE reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
MULL _ reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
MULLO _ reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
MFOV _ reg -> usage ([], [reg])
MULHU _ reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
DIV _ _ reg1 reg2 reg3
-> usage ([reg2,reg3], [reg1])
AND reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
ANDC reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
NAND reg1 reg2 reg3 -> usage ([reg2,reg3], [reg1])
OR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
ORIS reg1 reg2 _ -> usage ([reg2], [reg1])
XOR reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
XORIS reg1 reg2 _ -> usage ([reg2], [reg1])
EXTS _ reg1 reg2 -> usage ([reg2], [reg1])
CNTLZ _ reg1 reg2 -> usage ([reg2], [reg1])
NEG reg1 reg2 -> usage ([reg2], [reg1])
NOT reg1 reg2 -> usage ([reg2], [reg1])
SL _ reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SR _ reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
SRA _ reg1 reg2 ri -> usage (reg2 : regRI ri, [reg1])
RLWINM reg1 reg2 _ _ _ -> usage ([reg2], [reg1])
CLRLI _ reg1 reg2 _ -> usage ([reg2], [reg1])
CLRRI _ reg1 reg2 _ -> usage ([reg2], [reg1])
FADD _ r1 r2 r3 -> usage ([r2,r3], [r1])
FSUB _ r1 r2 r3 -> usage ([r2,r3], [r1])
FMUL _ r1 r2 r3 -> usage ([r2,r3], [r1])
FDIV _ r1 r2 r3 -> usage ([r2,r3], [r1])
FABS r1 r2 -> usage ([r2], [r1])
FNEG r1 r2 -> usage ([r2], [r1])
FCMP r1 r2 -> usage ([r1,r2], [])
FCTIWZ r1 r2 -> usage ([r2], [r1])
FCTIDZ r1 r2 -> usage ([r2], [r1])
FCFID r1 r2 -> usage ([r2], [r1])
FRSP r1 r2 -> usage ([r2], [r1])
MFCR reg -> usage ([], [reg])
MFLR reg -> usage ([], [reg])
FETCHPC reg -> usage ([], [reg])
_ -> noUsage
where
usage (src, dst) = RU (filter (interesting platform) src)
(filter (interesting platform) dst)
regAddr (AddrRegReg r1 r2) = [r1, r2]
regAddr (AddrRegImm r1 _) = [r1]
regRI (RIReg r) = [r]
regRI _ = []
interesting :: Platform -> Reg -> Bool
interesting _ (RegVirtual _) = True
interesting platform (RegReal (RealRegSingle i)) = freeReg platform i
interesting _ (RegReal (RealRegPair{}))
= panic "PPC.Instr.interesting: no reg pairs on this arch"
-- | Apply a given mapping to all the register references in this
-- instruction.
patchRegsOfInstr :: Instr -> (Reg -> Reg) -> Instr
patchRegsOfInstr instr env
= case instr of
LD fmt reg addr -> LD fmt (env reg) (fixAddr addr)
LDFAR fmt reg addr -> LDFAR fmt (env reg) (fixAddr addr)
LDR fmt reg addr -> LDR fmt (env reg) (fixAddr addr)
LA fmt reg addr -> LA fmt (env reg) (fixAddr addr)
ST fmt reg addr -> ST fmt (env reg) (fixAddr addr)
STFAR fmt reg addr -> STFAR fmt (env reg) (fixAddr addr)
STU fmt reg addr -> STU fmt (env reg) (fixAddr addr)
STC fmt reg addr -> STC fmt (env reg) (fixAddr addr)
LIS reg imm -> LIS (env reg) imm
LI reg imm -> LI (env reg) imm
MR reg1 reg2 -> MR (env reg1) (env reg2)
CMP fmt reg ri -> CMP fmt (env reg) (fixRI ri)
CMPL fmt reg ri -> CMPL fmt (env reg) (fixRI ri)
BCC cond lbl p -> BCC cond lbl p
BCCFAR cond lbl p -> BCCFAR cond lbl p
JMP l regs -> JMP l regs -- global regs will not be remapped
MTCTR reg -> MTCTR (env reg)
BCTR targets lbl rs -> BCTR targets lbl rs
BL imm argRegs -> BL imm argRegs -- argument regs
BCTRL argRegs -> BCTRL argRegs -- cannot be remapped
ADD reg1 reg2 ri -> ADD (env reg1) (env reg2) (fixRI ri)
ADDO reg1 reg2 reg3 -> ADDO (env reg1) (env reg2) (env reg3)
ADDC reg1 reg2 reg3 -> ADDC (env reg1) (env reg2) (env reg3)
ADDE reg1 reg2 reg3 -> ADDE (env reg1) (env reg2) (env reg3)
ADDZE reg1 reg2 -> ADDZE (env reg1) (env reg2)
ADDIS reg1 reg2 imm -> ADDIS (env reg1) (env reg2) imm
SUBF reg1 reg2 reg3 -> SUBF (env reg1) (env reg2) (env reg3)
SUBFO reg1 reg2 reg3 -> SUBFO (env reg1) (env reg2) (env reg3)
SUBFC reg1 reg2 ri -> SUBFC (env reg1) (env reg2) (fixRI ri)
SUBFE reg1 reg2 reg3 -> SUBFE (env reg1) (env reg2) (env reg3)
MULL fmt reg1 reg2 ri
-> MULL fmt (env reg1) (env reg2) (fixRI ri)
MULLO fmt reg1 reg2 reg3
-> MULLO fmt (env reg1) (env reg2) (env reg3)
MFOV fmt reg -> MFOV fmt (env reg)
MULHU fmt reg1 reg2 reg3
-> MULHU fmt (env reg1) (env reg2) (env reg3)
DIV fmt sgn reg1 reg2 reg3
-> DIV fmt sgn (env reg1) (env reg2) (env reg3)
AND reg1 reg2 ri -> AND (env reg1) (env reg2) (fixRI ri)
ANDC reg1 reg2 reg3 -> ANDC (env reg1) (env reg2) (env reg3)
NAND reg1 reg2 reg3 -> NAND (env reg1) (env reg2) (env reg3)
OR reg1 reg2 ri -> OR (env reg1) (env reg2) (fixRI ri)
ORIS reg1 reg2 imm -> ORIS (env reg1) (env reg2) imm
XOR reg1 reg2 ri -> XOR (env reg1) (env reg2) (fixRI ri)
XORIS reg1 reg2 imm -> XORIS (env reg1) (env reg2) imm
EXTS fmt reg1 reg2 -> EXTS fmt (env reg1) (env reg2)
CNTLZ fmt reg1 reg2 -> CNTLZ fmt (env reg1) (env reg2)
NEG reg1 reg2 -> NEG (env reg1) (env reg2)
NOT reg1 reg2 -> NOT (env reg1) (env reg2)
SL fmt reg1 reg2 ri
-> SL fmt (env reg1) (env reg2) (fixRI ri)
SR fmt reg1 reg2 ri
-> SR fmt (env reg1) (env reg2) (fixRI ri)
SRA fmt reg1 reg2 ri
-> SRA fmt (env reg1) (env reg2) (fixRI ri)
RLWINM reg1 reg2 sh mb me
-> RLWINM (env reg1) (env reg2) sh mb me
CLRLI fmt reg1 reg2 n -> CLRLI fmt (env reg1) (env reg2) n
CLRRI fmt reg1 reg2 n -> CLRRI fmt (env reg1) (env reg2) n
FADD fmt r1 r2 r3 -> FADD fmt (env r1) (env r2) (env r3)
FSUB fmt r1 r2 r3 -> FSUB fmt (env r1) (env r2) (env r3)
FMUL fmt r1 r2 r3 -> FMUL fmt (env r1) (env r2) (env r3)
FDIV fmt r1 r2 r3 -> FDIV fmt (env r1) (env r2) (env r3)
FABS r1 r2 -> FABS (env r1) (env r2)
FNEG r1 r2 -> FNEG (env r1) (env r2)
FCMP r1 r2 -> FCMP (env r1) (env r2)
FCTIWZ r1 r2 -> FCTIWZ (env r1) (env r2)
FCTIDZ r1 r2 -> FCTIDZ (env r1) (env r2)
FCFID r1 r2 -> FCFID (env r1) (env r2)
FRSP r1 r2 -> FRSP (env r1) (env r2)
MFCR reg -> MFCR (env reg)
MFLR reg -> MFLR (env reg)
FETCHPC reg -> FETCHPC (env reg)
_ -> instr
where
fixAddr (AddrRegReg r1 r2) = AddrRegReg (env r1) (env r2)
fixAddr (AddrRegImm r1 i) = AddrRegImm (env r1) i
fixRI (RIReg r) = RIReg (env r)
fixRI other = other
--------------------------------------------------------------------------------
-- | Checks whether this instruction is a jump/branch instruction.
-- One that can change the flow of control in a way that the
-- register allocator needs to worry about.
isJumpishInstr :: Instr -> Bool
isJumpishInstr instr
= case instr of
BCC{} -> True
BCCFAR{} -> True
BCTR{} -> True
BCTRL{} -> True
BL{} -> True
JMP{} -> True
_ -> False
-- | Checks whether this instruction is a jump/branch instruction.
-- One that can change the flow of control in a way that the
-- register allocator needs to worry about.
jumpDestsOfInstr :: Instr -> [BlockId]
jumpDestsOfInstr insn
= case insn of
BCC _ id _ -> [id]
BCCFAR _ id _ -> [id]
BCTR targets _ _ -> [id | Just id <- targets]
_ -> []
-- | Change the destination of this jump instruction.
-- Used in the linear allocator when adding fixup blocks for join
-- points.
patchJumpInstr :: Instr -> (BlockId -> BlockId) -> Instr
patchJumpInstr insn patchF
= case insn of
BCC cc id p -> BCC cc (patchF id) p
BCCFAR cc id p -> BCCFAR cc (patchF id) p
BCTR ids lbl rs -> BCTR (map (fmap patchF) ids) lbl rs
_ -> insn
-- -----------------------------------------------------------------------------
-- | An instruction to spill a register into a spill slot.
mkSpillInstr
:: NCGConfig
-> Reg -- register to spill
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
mkSpillInstr config reg delta slot
= let platform = ncgPlatform config
off = spillSlotToOffset platform slot
arch = platformArch platform
in
let fmt = case targetClassOfReg platform reg of
RcInteger -> case arch of
ArchPPC -> II32
_ -> II64
RcDouble -> FF64
_ -> panic "PPC.Instr.mkSpillInstr: no match"
instr = case makeImmediate W32 True (off-delta) of
Just _ -> ST
Nothing -> STFAR -- pseudo instruction: 32 bit offsets
in instr fmt reg (AddrRegImm sp (ImmInt (off-delta)))
mkLoadInstr
:: NCGConfig
-> Reg -- register to load
-> Int -- current stack delta
-> Int -- spill slot to use
-> Instr
mkLoadInstr config reg delta slot
= let platform = ncgPlatform config
off = spillSlotToOffset platform slot
arch = platformArch platform
in
let fmt = case targetClassOfReg platform reg of
RcInteger -> case arch of
ArchPPC -> II32
_ -> II64
RcDouble -> FF64
_ -> panic "PPC.Instr.mkLoadInstr: no match"
instr = case makeImmediate W32 True (off-delta) of
Just _ -> LD
Nothing -> LDFAR -- pseudo instruction: 32 bit offsets
in instr fmt reg (AddrRegImm sp (ImmInt (off-delta)))
-- | The size of a minimal stackframe header including minimal
-- parameter save area.
stackFrameHeaderSize :: Platform -> Int
stackFrameHeaderSize platform
= case platformOS platform of
OSAIX -> 24 + 8 * 4
_ -> case platformArch platform of
-- header + parameter save area
ArchPPC -> 64 -- TODO: check ABI spec
ArchPPC_64 ELF_V1 -> 48 + 8 * 8
ArchPPC_64 ELF_V2 -> 32 + 8 * 8
_ -> panic "PPC.stackFrameHeaderSize: not defined for this OS"
-- | The maximum number of bytes required to spill a register. PPC32
-- has 32-bit GPRs and 64-bit FPRs, while PPC64 has 64-bit GPRs and
-- 64-bit FPRs. So the maximum is 8 regardless of platforms unlike
-- x86. Note that AltiVec's vector registers are 128-bit wide so we
-- must not use this to spill them.
spillSlotSize :: Int
spillSlotSize = 8
-- | The number of spill slots available without allocating more.
maxSpillSlots :: NCGConfig -> Int
maxSpillSlots config
-- = 0 -- useful for testing allocMoreStack
= let platform = ncgPlatform config
in ((ncgSpillPreallocSize config - stackFrameHeaderSize platform)
`div` spillSlotSize) - 1
-- | The number of bytes that the stack pointer should be aligned
-- to. This is 16 both on PPC32 and PPC64 ELF (see ELF processor
-- specific supplements).
stackAlign :: Int
stackAlign = 16
-- | Convert a spill slot number to a *byte* offset, with no sign.
spillSlotToOffset :: Platform -> Int -> Int
spillSlotToOffset platform slot
= stackFrameHeaderSize platform + spillSlotSize * slot
--------------------------------------------------------------------------------
-- | See if this instruction is telling us the current C stack delta
takeDeltaInstr
:: Instr
-> Maybe Int
takeDeltaInstr instr
= case instr of
DELTA i -> Just i
_ -> Nothing
isMetaInstr
:: Instr
-> Bool
isMetaInstr instr
= case instr of
COMMENT{} -> True
LOCATION{} -> True
LDATA{} -> True
NEWBLOCK{} -> True
DELTA{} -> True
_ -> False
-- | Copy the value in a register to another one.
-- Must work for all register classes.
mkRegRegMoveInstr
:: Reg
-> Reg
-> Instr
mkRegRegMoveInstr src dst
= MR dst src
-- | Make an unconditional jump instruction.
mkJumpInstr
:: BlockId
-> [Instr]
mkJumpInstr id
= [BCC ALWAYS id Nothing]
-- | Take the source and destination from this reg -> reg move instruction
-- or Nothing if it's not one
takeRegRegMoveInstr :: Instr -> Maybe (Reg,Reg)
takeRegRegMoveInstr (MR dst src) = Just (src,dst)
takeRegRegMoveInstr _ = Nothing
-- -----------------------------------------------------------------------------
-- Making far branches
-- Conditional branches on PowerPC are limited to +-32KB; if our Procs get too
-- big, we have to work around this limitation.
makeFarBranches
:: LabelMap RawCmmStatics
-> [NatBasicBlock Instr]
-> [NatBasicBlock Instr]
makeFarBranches info_env blocks
| last blockAddresses < nearLimit = blocks
| otherwise = zipWith handleBlock blockAddresses blocks
where
blockAddresses = scanl (+) 0 $ map blockLen blocks
blockLen (BasicBlock _ instrs) = length instrs
handleBlock addr (BasicBlock id instrs)
= BasicBlock id (zipWith makeFar [addr..] instrs)
makeFar _ (BCC ALWAYS tgt _) = BCC ALWAYS tgt Nothing
makeFar addr (BCC cond tgt p)
| abs (addr - targetAddr) >= nearLimit
= BCCFAR cond tgt p
| otherwise
= BCC cond tgt p
where Just targetAddr = lookupUFM blockAddressMap tgt
makeFar _ other = other
-- 8192 instructions are allowed; let's keep some distance, as
-- we have a few pseudo-insns that are pretty-printed as
-- multiple instructions, and it's just not worth the effort
-- to calculate things exactly
nearLimit = 7000 - mapSize info_env * maxRetInfoTableSizeW
blockAddressMap = listToUFM $ zip (map blockId blocks) blockAddresses
|