1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
{-# LANGUAGE MagicHash #-}
-----------------------------------------------------------------------------
--
-- Pretty-printing assembly language
--
-- (c) The University of Glasgow 1993-2005
--
-----------------------------------------------------------------------------
module GHC.CmmToAsm.Ppr (
castFloatToWord8Array,
castDoubleToWord8Array,
floatToBytes,
doubleToBytes,
pprASCII,
pprString,
pprFileEmbed,
pprSectionHeader
)
where
import GhcPrelude
import AsmUtils
import GHC.Cmm.CLabel
import GHC.Cmm
import GHC.CmmToAsm.Config
import FastString
import Outputable
import GHC.Platform
import qualified Data.Array.Unsafe as U ( castSTUArray )
import Data.Array.ST
import Control.Monad.ST
import Data.Word
import Data.Bits
import Data.ByteString (ByteString)
import qualified Data.ByteString as BS
import GHC.Exts
import GHC.Word
-- -----------------------------------------------------------------------------
-- Converting floating-point literals to integrals for printing
castFloatToWord8Array :: STUArray s Int Float -> ST s (STUArray s Int Word8)
castFloatToWord8Array = U.castSTUArray
castDoubleToWord8Array :: STUArray s Int Double -> ST s (STUArray s Int Word8)
castDoubleToWord8Array = U.castSTUArray
-- floatToBytes and doubleToBytes convert to the host's byte
-- order. Providing that we're not cross-compiling for a
-- target with the opposite endianness, this should work ok
-- on all targets.
-- ToDo: this stuff is very similar to the shenanigans in PprAbs,
-- could they be merged?
floatToBytes :: Float -> [Int]
floatToBytes f
= runST (do
arr <- newArray_ ((0::Int),3)
writeArray arr 0 f
arr <- castFloatToWord8Array arr
i0 <- readArray arr 0
i1 <- readArray arr 1
i2 <- readArray arr 2
i3 <- readArray arr 3
return (map fromIntegral [i0,i1,i2,i3])
)
doubleToBytes :: Double -> [Int]
doubleToBytes d
= runST (do
arr <- newArray_ ((0::Int),7)
writeArray arr 0 d
arr <- castDoubleToWord8Array arr
i0 <- readArray arr 0
i1 <- readArray arr 1
i2 <- readArray arr 2
i3 <- readArray arr 3
i4 <- readArray arr 4
i5 <- readArray arr 5
i6 <- readArray arr 6
i7 <- readArray arr 7
return (map fromIntegral [i0,i1,i2,i3,i4,i5,i6,i7])
)
-- ---------------------------------------------------------------------------
-- Printing ASCII strings.
--
-- Print as a string and escape non-printable characters.
-- This is similar to charToC in Utils.
pprASCII :: ByteString -> SDoc
pprASCII str
-- Transform this given literal bytestring to escaped string and construct
-- the literal SDoc directly.
-- See #14741
-- and Note [Pretty print ASCII when AsmCodeGen]
= text $ BS.foldr (\w s -> do1 w ++ s) "" str
where
do1 :: Word8 -> String
do1 w | 0x09 == w = "\\t"
| 0x0A == w = "\\n"
| 0x22 == w = "\\\""
| 0x5C == w = "\\\\"
-- ASCII printable characters range
| w >= 0x20 && w <= 0x7E = [chr' w]
| otherwise = '\\' : octal w
-- we know that the Chars we create are in the ASCII range
-- so we bypass the check in "chr"
chr' :: Word8 -> Char
chr' (W8# w#) = C# (chr# (word2Int# w#))
octal :: Word8 -> String
octal w = [ chr' (ord0 + (w `unsafeShiftR` 6) .&. 0x07)
, chr' (ord0 + (w `unsafeShiftR` 3) .&. 0x07)
, chr' (ord0 + w .&. 0x07)
]
ord0 = 0x30 -- = ord '0'
-- | Emit a ".string" directive
pprString :: ByteString -> SDoc
pprString bs = text "\t.string " <> doubleQuotes (pprASCII bs)
-- | Emit a ".incbin" directive
--
-- A NULL byte is added after the binary data.
pprFileEmbed :: FilePath -> SDoc
pprFileEmbed path
= text "\t.incbin "
<> pprFilePathString path -- proper escape (see #16389)
<> text "\n\t.byte 0"
{-
Note [Embedding large binary blobs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To embed a blob of binary data (e.g. an UTF-8 encoded string) into the generated
code object, we have several options:
1. Generate a ".byte" directive for each byte. This is what was done in the past
(see Note [Pretty print ASCII when AsmCodeGen]).
2. Generate a single ".string"/".asciz" directive for the whole sequence of
bytes. Bytes in the ASCII printable range are rendered as characters and
other values are escaped (e.g., "\t", "\077", etc.).
3. Create a temporary file into which we dump the binary data and generate a
single ".incbin" directive. The assembler will include the binary file for
us in the generated output object.
Now the code generator uses either (2) or (3), depending on the binary blob
size. Using (3) for small blobs adds too much overhead (see benchmark results
in #16190), so we only do it when the size is above a threshold (500K at the
time of writing).
The threshold is configurable via the `-fbinary-blob-threshold` flag.
-}
{-
Note [Pretty print ASCII when AsmCodeGen]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously, when generating assembly code, we created SDoc with
`(ptext . sLit)` for every bytes in literal bytestring, then
combine them using `hcat`.
When handling literal bytestrings with millions of bytes,
millions of SDoc would be created and to combine, leading to
high memory usage.
Now we escape the given bytestring to string directly and construct
SDoc only once. This improvement could dramatically decrease the
memory allocation from 4.7GB to 1.3GB when embedding a 3MB literal
string in source code. See #14741 for profiling results.
-}
-- ----------------------------------------------------------------------------
-- Printing section headers.
--
-- If -split-section was specified, include the suffix label, otherwise just
-- print the section type. For Darwin, where subsections-for-symbols are
-- used instead, only print section type.
--
-- For string literals, additional flags are specified to enable merging of
-- identical strings in the linker. With -split-sections each string also gets
-- a unique section to allow strings from unused code to be GC'd.
pprSectionHeader :: NCGConfig -> Section -> SDoc
pprSectionHeader config (Section t suffix) =
case platformOS (ncgPlatform config) of
OSAIX -> pprXcoffSectionHeader t
OSDarwin -> pprDarwinSectionHeader t
OSMinGW32 -> pprGNUSectionHeader config (char '$') t suffix
_ -> pprGNUSectionHeader config (char '.') t suffix
pprGNUSectionHeader :: NCGConfig -> SDoc -> SectionType -> CLabel -> SDoc
pprGNUSectionHeader config sep t suffix =
text ".section " <> ptext header <> subsection <> flags
where
platform = ncgPlatform config
splitSections = ncgSplitSections config
subsection
| splitSections = sep <> ppr suffix
| otherwise = empty
header = case t of
Text -> sLit ".text"
Data -> sLit ".data"
ReadOnlyData | OSMinGW32 <- platformOS platform
-> sLit ".rdata"
| otherwise -> sLit ".rodata"
RelocatableReadOnlyData | OSMinGW32 <- platformOS platform
-- Concept does not exist on Windows,
-- So map these to R/O data.
-> sLit ".rdata$rel.ro"
| otherwise -> sLit ".data.rel.ro"
UninitialisedData -> sLit ".bss"
ReadOnlyData16 | OSMinGW32 <- platformOS platform
-> sLit ".rdata$cst16"
| otherwise -> sLit ".rodata.cst16"
CString
| OSMinGW32 <- platformOS platform
-> sLit ".rdata"
| otherwise -> sLit ".rodata.str"
OtherSection _ ->
panic "PprBase.pprGNUSectionHeader: unknown section type"
flags = case t of
CString
| OSMinGW32 <- platformOS platform
-> empty
| otherwise -> text ",\"aMS\"," <> sectionType platform "progbits" <> text ",1"
_ -> empty
-- XCOFF doesn't support relocating label-differences, so we place all
-- RO sections into .text[PR] sections
pprXcoffSectionHeader :: SectionType -> SDoc
pprXcoffSectionHeader t = text $ case t of
Text -> ".csect .text[PR]"
Data -> ".csect .data[RW]"
ReadOnlyData -> ".csect .text[PR] # ReadOnlyData"
RelocatableReadOnlyData -> ".csect .text[PR] # RelocatableReadOnlyData"
ReadOnlyData16 -> ".csect .text[PR] # ReadOnlyData16"
CString -> ".csect .text[PR] # CString"
UninitialisedData -> ".csect .data[BS]"
OtherSection _ ->
panic "PprBase.pprXcoffSectionHeader: unknown section type"
pprDarwinSectionHeader :: SectionType -> SDoc
pprDarwinSectionHeader t =
ptext $ case t of
Text -> sLit ".text"
Data -> sLit ".data"
ReadOnlyData -> sLit ".const"
RelocatableReadOnlyData -> sLit ".const_data"
UninitialisedData -> sLit ".data"
ReadOnlyData16 -> sLit ".const"
CString -> sLit ".section\t__TEXT,__cstring,cstring_literals"
OtherSection _ ->
panic "PprBase.pprDarwinSectionHeader: unknown section type"
|