1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NondecreasingIndentation #-}
{-# LANGUAGE TupleSections #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
-- This is a big module, but, if you pay attention to
-- (a) the sectioning, and (b) the type signatures, the
-- structure should not be too overwhelming.
module GHC.CmmToAsm.X86.CodeGen (
cmmTopCodeGen,
generateJumpTableForInstr,
extractUnwindPoints,
invertCondBranches,
InstrBlock
)
where
#include "HsVersions.h"
-- NCG stuff:
import GHC.Prelude
import GHC.CmmToAsm.X86.Instr
import GHC.CmmToAsm.X86.Cond
import GHC.CmmToAsm.X86.Regs
import GHC.CmmToAsm.X86.Ppr
import GHC.CmmToAsm.X86.RegInfo
import GHC.Platform.Regs
import GHC.CmmToAsm.CPrim
import GHC.CmmToAsm.Types
import GHC.Cmm.DebugBlock
( DebugBlock(..), UnwindPoint(..), UnwindTable
, UnwindExpr(UwReg), toUnwindExpr
)
import GHC.CmmToAsm.PIC
import GHC.CmmToAsm.Monad
( NatM, getNewRegNat, getNewLabelNat, setDeltaNat
, getDeltaNat, getBlockIdNat, getPicBaseNat, getNewRegPairNat
, getPicBaseMaybeNat, getDebugBlock, getFileId
, addImmediateSuccessorNat, updateCfgNat, getConfig, getPlatform
, getCfgWeights
)
import GHC.CmmToAsm.CFG
import GHC.CmmToAsm.Format
import GHC.CmmToAsm.Config
import GHC.Platform.Reg
import GHC.Platform
-- Our intermediate code:
import GHC.Types.Basic
import GHC.Cmm.BlockId
import GHC.Unit.Types ( primUnitId )
import GHC.Cmm.Utils
import GHC.Cmm.Switch
import GHC.Cmm
import GHC.Cmm.Dataflow.Block
import GHC.Cmm.Dataflow.Collections
import GHC.Cmm.Dataflow.Graph
import GHC.Cmm.Dataflow.Label
import GHC.Cmm.CLabel
import GHC.Types.Tickish ( GenTickish(..) )
import GHC.Types.SrcLoc ( srcSpanFile, srcSpanStartLine, srcSpanStartCol )
-- The rest:
import GHC.Types.ForeignCall ( CCallConv(..) )
import GHC.Data.OrdList
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.FastString
import GHC.Driver.Session
import GHC.Utils.Misc
import GHC.Types.Unique.Supply ( getUniqueM )
import Control.Monad
import Data.Foldable (fold)
import Data.Int
import Data.Maybe
import Data.Word
import qualified Data.Map as M
is32BitPlatform :: NatM Bool
is32BitPlatform = do
platform <- getPlatform
return $ target32Bit platform
sse2Enabled :: NatM Bool
sse2Enabled = do
config <- getConfig
return (ncgSseVersion config >= Just SSE2)
sse4_2Enabled :: NatM Bool
sse4_2Enabled = do
config <- getConfig
return (ncgSseVersion config >= Just SSE42)
cmmTopCodeGen
:: RawCmmDecl
-> NatM [NatCmmDecl (Alignment, RawCmmStatics) Instr]
cmmTopCodeGen (CmmProc info lab live graph) = do
let blocks = toBlockListEntryFirst graph
(nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
picBaseMb <- getPicBaseMaybeNat
platform <- getPlatform
let proc = CmmProc info lab live (ListGraph $ concat nat_blocks)
tops = proc : concat statics
os = platformOS platform
case picBaseMb of
Just picBase -> initializePicBase_x86 ArchX86 os picBase tops
Nothing -> return tops
cmmTopCodeGen (CmmData sec dat) =
return [CmmData sec (mkAlignment 1, dat)] -- no translation, we just use CmmStatic
{- Note [Verifying basic blocks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to guarantee a few things about the results
of instruction selection.
Namely that each basic blocks consists of:
* A (potentially empty) sequence of straight line instructions
followed by
* A (potentially empty) sequence of jump like instructions.
We can verify this by going through the instructions and
making sure that any non-jumpish instruction can't appear
after a jumpish instruction.
There are gotchas however:
* CALLs are strictly speaking control flow but here we care
not about them. Hence we treat them as regular instructions.
It's safe for them to appear inside a basic block
as (ignoring side effects inside the call) they will result in
straight line code.
* NEWBLOCK marks the start of a new basic block so can
be followed by any instructions.
-}
-- Verifying basic blocks is cheap, but not cheap enough to enable it unconditionally.
verifyBasicBlock :: Platform -> [Instr] -> ()
verifyBasicBlock platform instrs
| debugIsOn = go False instrs
| otherwise = ()
where
go _ [] = ()
go atEnd (i:instr)
= case i of
-- Start a new basic block
NEWBLOCK {} -> go False instr
-- Calls are not viable block terminators
CALL {} | atEnd -> faultyBlockWith i
| not atEnd -> go atEnd instr
-- All instructions ok, check if we reached the end and continue.
_ | not atEnd -> go (isJumpishInstr i) instr
-- Only jumps allowed at the end of basic blocks.
| otherwise -> if isJumpishInstr i
then go True instr
else faultyBlockWith i
faultyBlockWith i
= pprPanic "Non control flow instructions after end of basic block."
(pprInstr platform i <+> text "in:" $$ vcat (map (pprInstr platform) instrs))
basicBlockCodeGen
:: CmmBlock
-> NatM ( [NatBasicBlock Instr]
, [NatCmmDecl (Alignment, RawCmmStatics) Instr])
basicBlockCodeGen block = do
let (_, nodes, tail) = blockSplit block
id = entryLabel block
stmts = blockToList nodes
-- Generate location directive
dbg <- getDebugBlock (entryLabel block)
loc_instrs <- case dblSourceTick =<< dbg of
Just (SourceNote span name)
-> do fileId <- getFileId (srcSpanFile span)
let line = srcSpanStartLine span; col = srcSpanStartCol span
return $ unitOL $ LOCATION fileId line col name
_ -> return nilOL
(mid_instrs,mid_bid) <- stmtsToInstrs id stmts
(!tail_instrs,_) <- stmtToInstrs mid_bid tail
let instrs = loc_instrs `appOL` mid_instrs `appOL` tail_instrs
platform <- getPlatform
return $! verifyBasicBlock platform (fromOL instrs)
instrs' <- fold <$> traverse addSpUnwindings instrs
-- code generation may introduce new basic block boundaries, which
-- are indicated by the NEWBLOCK instruction. We must split up the
-- instruction stream into basic blocks again. Also, we extract
-- LDATAs here too.
let
(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs'
mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
= ([], BasicBlock id instrs : blocks, statics)
mkBlocks (LDATA sec dat) (instrs,blocks,statics)
= (instrs, blocks, CmmData sec dat:statics)
mkBlocks instr (instrs,blocks,statics)
= (instr:instrs, blocks, statics)
return (BasicBlock id top : other_blocks, statics)
-- | Convert 'DELTA' instructions into 'UNWIND' instructions to capture changes
-- in the @sp@ register. See Note [What is this unwinding business?] in "GHC.Cmm.DebugBlock"
-- for details.
addSpUnwindings :: Instr -> NatM (OrdList Instr)
addSpUnwindings instr@(DELTA d) = do
config <- getConfig
if ncgDwarfUnwindings config
then do lbl <- mkAsmTempLabel <$> getUniqueM
let unwind = M.singleton MachSp (Just $ UwReg MachSp $ negate d)
return $ toOL [ instr, UNWIND lbl unwind ]
else return (unitOL instr)
addSpUnwindings instr = return $ unitOL instr
{- Note [Keeping track of the current block]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When generating instructions for Cmm we sometimes require
the current block for things like retry loops.
We also sometimes change the current block, if a MachOP
results in branching control flow.
Issues arise if we have two statements in the same block,
which both depend on the current block id *and* change the
basic block after them. This happens for atomic primops
in the X86 backend where we want to update the CFG data structure
when introducing new basic blocks.
For example in #17334 we got this Cmm code:
c3Bf: // global
(_s3t1::I64) = call MO_AtomicRMW W64 AMO_And(_s3sQ::P64 + 88, 18);
(_s3t4::I64) = call MO_AtomicRMW W64 AMO_Or(_s3sQ::P64 + 88, 0);
_s3sT::I64 = _s3sV::I64;
goto c3B1;
This resulted in two new basic blocks being inserted:
c3Bf:
movl $18,%vI_n3Bo
movq 88(%vI_s3sQ),%rax
jmp _n3Bp
n3Bp:
...
cmpxchgq %vI_n3Bq,88(%vI_s3sQ)
jne _n3Bp
...
jmp _n3Bs
n3Bs:
...
cmpxchgq %vI_n3Bt,88(%vI_s3sQ)
jne _n3Bs
...
jmp _c3B1
...
Based on the Cmm we called stmtToInstrs we translated both atomic operations under
the assumption they would be placed into their Cmm basic block `c3Bf`.
However for the retry loop we introduce new labels, so this is not the case
for the second statement.
This resulted in a desync between the explicit control flow graph
we construct as a separate data type and the actual control flow graph in the code.
Instead we now return the new basic block if a statement causes a change
in the current block and use the block for all following statements.
For this reason genCCall is also split into two parts. One for calls which
*won't* change the basic blocks in which successive instructions will be
placed (since they only evaluate CmmExpr, which can only contain MachOps, which
cannot introduce basic blocks in their lowerings). A different one for calls
which *are* known to change the basic block.
-}
-- See Note [Keeping track of the current block] for why
-- we pass the BlockId.
stmtsToInstrs :: BlockId -- ^ Basic block these statement will start to be placed in.
-> [CmmNode O O] -- ^ Cmm Statement
-> NatM (InstrBlock, BlockId) -- ^ Resulting instruction
stmtsToInstrs bid stmts =
go bid stmts nilOL
where
go bid [] instrs = return (instrs,bid)
go bid (s:stmts) instrs = do
(instrs',bid') <- stmtToInstrs bid s
-- If the statement introduced a new block, we use that one
let !newBid = fromMaybe bid bid'
go newBid stmts (instrs `appOL` instrs')
-- | `bid` refers to the current block and is used to update the CFG
-- if new blocks are inserted in the control flow.
-- See Note [Keeping track of the current block] for more details.
stmtToInstrs :: BlockId -- ^ Basic block this statement will start to be placed in.
-> CmmNode e x
-> NatM (InstrBlock, Maybe BlockId)
-- ^ Instructions, and bid of new block if successive
-- statements are placed in a different basic block.
stmtToInstrs bid stmt = do
is32Bit <- is32BitPlatform
platform <- getPlatform
case stmt of
CmmUnsafeForeignCall target result_regs args
-> genCCall is32Bit target result_regs args bid
_ -> (,Nothing) <$> case stmt of
CmmComment s -> return (unitOL (COMMENT s))
CmmTick {} -> return nilOL
CmmUnwind regs -> do
let to_unwind_entry :: (GlobalReg, Maybe CmmExpr) -> UnwindTable
to_unwind_entry (reg, expr) = M.singleton reg (fmap (toUnwindExpr platform) expr)
case foldMap to_unwind_entry regs of
tbl | M.null tbl -> return nilOL
| otherwise -> do
lbl <- mkAsmTempLabel <$> getUniqueM
return $ unitOL $ UNWIND lbl tbl
CmmAssign reg src
| isFloatType ty -> assignReg_FltCode format reg src
| is32Bit && isWord64 ty -> assignReg_I64Code reg src
| otherwise -> assignReg_IntCode format reg src
where ty = cmmRegType platform reg
format = cmmTypeFormat ty
CmmStore addr src
| isFloatType ty -> assignMem_FltCode format addr src
| is32Bit && isWord64 ty -> assignMem_I64Code addr src
| otherwise -> assignMem_IntCode format addr src
where ty = cmmExprType platform src
format = cmmTypeFormat ty
CmmBranch id -> return $ genBranch id
--We try to arrange blocks such that the likely branch is the fallthrough
--in GHC.Cmm.ContFlowOpt. So we can assume the condition is likely false here.
CmmCondBranch arg true false _ -> genCondBranch bid true false arg
CmmSwitch arg ids -> genSwitch arg ids
CmmCall { cml_target = arg
, cml_args_regs = gregs } -> genJump arg (jumpRegs platform gregs)
_ ->
panic "stmtToInstrs: statement should have been cps'd away"
jumpRegs :: Platform -> [GlobalReg] -> [Reg]
jumpRegs platform gregs = [ RegReal r | Just r <- map (globalRegMaybe platform) gregs ]
--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal yields the insns in the correct order.
--
type InstrBlock
= OrdList Instr
-- | Condition codes passed up the tree.
--
data CondCode
= CondCode Bool Cond InstrBlock
-- | a.k.a "Register64"
-- Reg is the lower 32-bit temporary which contains the result.
-- Use getHiVRegFromLo to find the other VRegUnique.
--
-- Rules of this simplified insn selection game are therefore that
-- the returned Reg may be modified
--
data ChildCode64
= ChildCode64
InstrBlock
Reg
-- | Register's passed up the tree. If the stix code forces the register
-- to live in a pre-decided machine register, it comes out as @Fixed@;
-- otherwise, it comes out as @Any@, and the parent can decide which
-- register to put it in.
--
data Register
= Fixed Format Reg InstrBlock
| Any Format (Reg -> InstrBlock)
swizzleRegisterRep :: Register -> Format -> Register
swizzleRegisterRep (Fixed _ reg code) format = Fixed format reg code
swizzleRegisterRep (Any _ codefn) format = Any format codefn
-- | Grab the Reg for a CmmReg
getRegisterReg :: Platform -> CmmReg -> Reg
getRegisterReg _ (CmmLocal (LocalReg u pk))
= -- by Assuming SSE2, Int,Word,Float,Double all can be register allocated
let fmt = cmmTypeFormat pk in
RegVirtual (mkVirtualReg u fmt)
getRegisterReg platform (CmmGlobal mid)
= case globalRegMaybe platform mid of
Just reg -> RegReal $ reg
Nothing -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
-- By this stage, the only MagicIds remaining should be the
-- ones which map to a real machine register on this
-- platform. Hence ...
-- | Memory addressing modes passed up the tree.
data Amode
= Amode AddrMode InstrBlock
{-
Now, given a tree (the argument to a CmmLoad) that references memory,
produce a suitable addressing mode.
A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to. So you can't put
anything in between, lest it overwrite some of those registers. If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:
code
LEA amode, tmp
... other computation ...
... (tmp) ...
-}
-- | Check whether an integer will fit in 32 bits.
-- A CmmInt is intended to be truncated to the appropriate
-- number of bits, so here we truncate it to Int64. This is
-- important because e.g. -1 as a CmmInt might be either
-- -1 or 18446744073709551615.
--
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
where i64 = fromIntegral i :: Int64
-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: NCGConfig -> Maybe BlockId -> CmmStatic
jumpTableEntry config Nothing = CmmStaticLit (CmmInt 0 (ncgWordWidth config))
jumpTableEntry _ (Just blockid) = CmmStaticLit (CmmLabel blockLabel)
where blockLabel = blockLbl blockid
-- -----------------------------------------------------------------------------
-- General things for putting together code sequences
-- Expand CmmRegOff. ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: Platform -> CmmReg -> Int -> CmmExpr
mangleIndexTree platform reg off
= CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
where width = typeWidth (cmmRegType platform reg)
-- | The dual to getAnyReg: compute an expression into a register, but
-- we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed _ reg code ->
return (reg, code)
assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
Amode addr addr_code <- getAmode addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Little-endian store
mov_lo = MOV II32 (OpReg rlo) (OpAddr addr)
mov_hi = MOV II32 (OpReg rhi) (OpAddr (fromJust (addrOffset addr 4)))
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code :: CmmReg -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MOV II32 (OpReg r_src_lo) (OpReg r_dst_lo)
mov_hi = MOV II32 (OpReg r_src_hi) (OpReg r_dst_hi)
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code _ _
= panic "assignReg_I64Code(i386): invalid lvalue"
iselExpr64 :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
code = toOL [
MOV II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpImm (ImmInteger q)) (OpReg rhi)
]
return (ChildCode64 code rlo)
iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
Amode addr addr_code <- getAmode addrTree
(rlo,rhi) <- getNewRegPairNat II32
let
mov_lo = MOV II32 (OpAddr addr) (OpReg rlo)
mov_hi = MOV II32 (OpAddr (fromJust (addrOffset addr 4))) (OpReg rhi)
return (
ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
)
iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
= return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))
-- we handle addition, but rather badly
iselExpr64 (CmmMachOp (MO_Add _) [e1, CmmLit (CmmInt i _)]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
r1hi = getHiVRegFromLo r1lo
code = code1 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpImm (ImmInteger q)) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpReg r2lo) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpReg r2hi) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Sub _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
SUB II32 (OpReg r2lo) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
SBB II32 (OpReg r2hi) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_UU_Conv _ W64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat II32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV II32 (OpImm (ImmInt 0)) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 (CmmMachOp (MO_SS_Conv W32 W64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat II32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV II32 (OpReg r_dst_lo) (OpReg eax) `snocOL`
CLTD II32 `snocOL`
MOV II32 (OpReg eax) (OpReg r_dst_lo) `snocOL`
MOV II32 (OpReg edx) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 expr
= do
platform <- getPlatform
pprPanic "iselExpr64(i386)" (pdoc platform expr)
--------------------------------------------------------------------------------
getRegister :: CmmExpr -> NatM Register
getRegister e = do platform <- getPlatform
is32Bit <- is32BitPlatform
getRegister' platform is32Bit e
getRegister' :: Platform -> Bool -> CmmExpr -> NatM Register
getRegister' platform is32Bit (CmmReg reg)
= case reg of
CmmGlobal PicBaseReg
| is32Bit ->
-- on x86_64, we have %rip for PicBaseReg, but it's not
-- a full-featured register, it can only be used for
-- rip-relative addressing.
do reg' <- getPicBaseNat (archWordFormat is32Bit)
return (Fixed (archWordFormat is32Bit) reg' nilOL)
_ ->
do
let
fmt = cmmTypeFormat (cmmRegType platform reg)
format = fmt
--
platform <- ncgPlatform <$> getConfig
return (Fixed format
(getRegisterReg platform reg)
nilOL)
getRegister' platform is32Bit (CmmRegOff r n)
= getRegister' platform is32Bit $ mangleIndexTree platform r n
getRegister' platform is32Bit (CmmMachOp (MO_AlignmentCheck align _) [e])
= addAlignmentCheck align <$> getRegister' platform is32Bit e
-- for 32-bit architectures, support some 64 -> 32 bit conversions:
-- TO_W_(x), TO_W_(x >> 32)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ _ (CmmLit lit@(CmmFloat f w)) =
float_const_sse2 where
float_const_sse2
| f == 0.0 = do
let
format = floatFormat w
code dst = unitOL (XOR format (OpReg dst) (OpReg dst))
-- I don't know why there are xorpd, xorps, and pxor instructions.
-- They all appear to do the same thing --SDM
return (Any format code)
| otherwise = do
Amode addr code <- memConstant (mkAlignment $ widthInBytes w) lit
loadFloatAmode w addr code
-- catch simple cases of zero- or sign-extended load
getRegister' _ _ (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II32 code)
-- catch simple cases of zero- or sign-extended load
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOV II32) addr -- 32-bit loads zero-extend
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II32) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
| not is32Bit =
return $ Any II64 (\dst -> unitOL $
LEA II64 (OpAddr (ripRel (litToImm displacement))) (OpReg dst))
getRegister' platform is32Bit (CmmMachOp mop [x]) = -- unary MachOps
case mop of
MO_F_Neg w -> sse2NegCode w x
MO_S_Neg w -> triv_ucode NEGI (intFormat w)
MO_Not w -> triv_ucode NOT (intFormat w)
-- Nop conversions
MO_UU_Conv W32 W8 -> toI8Reg W32 x
MO_SS_Conv W32 W8 -> toI8Reg W32 x
MO_XX_Conv W32 W8 -> toI8Reg W32 x
MO_UU_Conv W16 W8 -> toI8Reg W16 x
MO_SS_Conv W16 W8 -> toI8Reg W16 x
MO_XX_Conv W16 W8 -> toI8Reg W16 x
MO_UU_Conv W32 W16 -> toI16Reg W32 x
MO_SS_Conv W32 W16 -> toI16Reg W32 x
MO_XX_Conv W32 W16 -> toI16Reg W32 x
MO_UU_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_SS_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_XX_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_UU_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_SS_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_XX_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_UU_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_SS_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_XX_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_UU_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
MO_SS_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
MO_XX_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
-- widenings
MO_UU_Conv W8 W32 -> integerExtend W8 W32 MOVZxL x
MO_UU_Conv W16 W32 -> integerExtend W16 W32 MOVZxL x
MO_UU_Conv W8 W16 -> integerExtend W8 W16 MOVZxL x
MO_SS_Conv W8 W32 -> integerExtend W8 W32 MOVSxL x
MO_SS_Conv W16 W32 -> integerExtend W16 W32 MOVSxL x
MO_SS_Conv W8 W16 -> integerExtend W8 W16 MOVSxL x
-- We don't care about the upper bits for MO_XX_Conv, so MOV is enough. However, on 32-bit we
-- have 8-bit registers only for a few registers (as opposed to x86-64 where every register
-- has 8-bit version). So for 32-bit code, we'll just zero-extend.
MO_XX_Conv W8 W32
| is32Bit -> integerExtend W8 W32 MOVZxL x
| otherwise -> integerExtend W8 W32 MOV x
MO_XX_Conv W8 W16
| is32Bit -> integerExtend W8 W16 MOVZxL x
| otherwise -> integerExtend W8 W16 MOV x
MO_XX_Conv W16 W32 -> integerExtend W16 W32 MOV x
MO_UU_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVZxL x
MO_UU_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVZxL x
MO_UU_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVZxL x
MO_SS_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVSxL x
MO_SS_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVSxL x
MO_SS_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVSxL x
-- For 32-to-64 bit zero extension, amd64 uses an ordinary movl.
-- However, we don't want the register allocator to throw it
-- away as an unnecessary reg-to-reg move, so we keep it in
-- the form of a movzl and print it as a movl later.
-- This doesn't apply to MO_XX_Conv since in this case we don't care about
-- the upper bits. So we can just use MOV.
MO_XX_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOV x
MO_XX_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOV x
MO_XX_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOV x
MO_FF_Conv W32 W64 -> coerceFP2FP W64 x
MO_FF_Conv W64 W32 -> coerceFP2FP W32 x
MO_FS_Conv from to -> coerceFP2Int from to x
MO_SF_Conv from to -> coerceInt2FP from to x
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VU_Quot {} -> needLlvm
MO_VU_Rem {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister" (pprMachOp mop)
where
triv_ucode :: (Format -> Operand -> Instr) -> Format -> NatM Register
triv_ucode instr format = trivialUCode format (instr format) x
-- signed or unsigned extension.
integerExtend :: Width -> Width
-> (Format -> Operand -> Operand -> Instr)
-> CmmExpr -> NatM Register
integerExtend from to instr expr = do
(reg,e_code) <- if from == W8 then getByteReg expr
else getSomeReg expr
let
code dst =
e_code `snocOL`
instr (intFormat from) (OpReg reg) (OpReg dst)
return (Any (intFormat to) code)
toI8Reg :: Width -> CmmExpr -> NatM Register
toI8Reg new_rep expr
= do codefn <- getAnyReg expr
return (Any (intFormat new_rep) codefn)
-- HACK: use getAnyReg to get a byte-addressable register.
-- If the source was a Fixed register, this will add the
-- mov instruction to put it into the desired destination.
-- We're assuming that the destination won't be a fixed
-- non-byte-addressable register; it won't be, because all
-- fixed registers are word-sized.
toI16Reg = toI8Reg -- for now
conversionNop :: Format -> CmmExpr -> NatM Register
conversionNop new_format expr
= do e_code <- getRegister' platform is32Bit expr
return (swizzleRegisterRep e_code new_format)
getRegister' _ is32Bit (CmmMachOp mop [x, y]) = -- dyadic MachOps
case mop of
MO_F_Eq _ -> condFltReg is32Bit EQQ x y
MO_F_Ne _ -> condFltReg is32Bit NE x y
MO_F_Gt _ -> condFltReg is32Bit GTT x y
MO_F_Ge _ -> condFltReg is32Bit GE x y
-- Invert comparison condition and swap operands
-- See Note [SSE Parity Checks]
MO_F_Lt _ -> condFltReg is32Bit GTT y x
MO_F_Le _ -> condFltReg is32Bit GE y x
MO_Eq _ -> condIntReg EQQ x y
MO_Ne _ -> condIntReg NE x y
MO_S_Gt _ -> condIntReg GTT x y
MO_S_Ge _ -> condIntReg GE x y
MO_S_Lt _ -> condIntReg LTT x y
MO_S_Le _ -> condIntReg LE x y
MO_U_Gt _ -> condIntReg GU x y
MO_U_Ge _ -> condIntReg GEU x y
MO_U_Lt _ -> condIntReg LU x y
MO_U_Le _ -> condIntReg LEU x y
MO_F_Add w -> trivialFCode_sse2 w ADD x y
MO_F_Sub w -> trivialFCode_sse2 w SUB x y
MO_F_Quot w -> trivialFCode_sse2 w FDIV x y
MO_F_Mul w -> trivialFCode_sse2 w MUL x y
MO_Add rep -> add_code rep x y
MO_Sub rep -> sub_code rep x y
MO_S_Quot rep -> div_code rep True True x y
MO_S_Rem rep -> div_code rep True False x y
MO_U_Quot rep -> div_code rep False True x y
MO_U_Rem rep -> div_code rep False False x y
MO_S_MulMayOflo rep -> imulMayOflo rep x y
MO_Mul W8 -> imulW8 x y
MO_Mul rep -> triv_op rep IMUL
MO_And rep -> triv_op rep AND
MO_Or rep -> triv_op rep OR
MO_Xor rep -> triv_op rep XOR
{- Shift ops on x86s have constraints on their source, it
either has to be Imm, CL or 1
=> trivialCode is not restrictive enough (sigh.)
-}
MO_Shl rep -> shift_code rep SHL x y {-False-}
MO_U_Shr rep -> shift_code rep SHR x y {-False-}
MO_S_Shr rep -> shift_code rep SAR x y {-False-}
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister(x86) - binary CmmMachOp (1)" (pprMachOp mop)
where
--------------------
triv_op width instr = trivialCode width op (Just op) x y
where op = instr (intFormat width)
-- Special case for IMUL for bytes, since the result of IMULB will be in
-- %ax, the split to %dx/%edx/%rdx and %ax/%eax/%rax happens only for wider
-- values.
imulW8 :: CmmExpr -> CmmExpr -> NatM Register
imulW8 arg_a arg_b = do
(a_reg, a_code) <- getNonClobberedReg arg_a
b_code <- getAnyReg arg_b
let code = a_code `appOL` b_code eax `appOL`
toOL [ IMUL2 format (OpReg a_reg) ]
format = intFormat W8
return (Fixed format eax code)
imulMayOflo :: Width -> CmmExpr -> CmmExpr -> NatM Register
imulMayOflo rep a b = do
(a_reg, a_code) <- getNonClobberedReg a
b_code <- getAnyReg b
let
shift_amt = case rep of
W32 -> 31
W64 -> 63
_ -> panic "shift_amt"
format = intFormat rep
code = a_code `appOL` b_code eax `appOL`
toOL [
IMUL2 format (OpReg a_reg), -- result in %edx:%eax
SAR format (OpImm (ImmInt shift_amt)) (OpReg eax),
-- sign extend lower part
SUB format (OpReg edx) (OpReg eax)
-- compare against upper
-- eax==0 if high part == sign extended low part
]
return (Fixed format eax code)
--------------------
shift_code :: Width
-> (Format -> Operand -> Operand -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
{- Case1: shift length as immediate -}
shift_code width instr x (CmmLit lit) = do
x_code <- getAnyReg x
let
format = intFormat width
code dst
= x_code dst `snocOL`
instr format (OpImm (litToImm lit)) (OpReg dst)
return (Any format code)
{- Case2: shift length is complex (non-immediate)
* y must go in %ecx.
* we cannot do y first *and* put its result in %ecx, because
%ecx might be clobbered by x.
* if we do y second, then x cannot be
in a clobbered reg. Also, we cannot clobber x's reg
with the instruction itself.
* so we can either:
- do y first, put its result in a fresh tmp, then copy it to %ecx later
- do y second and put its result into %ecx. x gets placed in a fresh
tmp. This is likely to be better, because the reg alloc can
eliminate this reg->reg move here (it won't eliminate the other one,
because the move is into the fixed %ecx).
* in the case of C calls the use of ecx here can interfere with arguments.
We avoid this with the hack described in Note [Evaluate C-call
arguments before placing in destination registers]
-}
shift_code width instr x y{-amount-} = do
x_code <- getAnyReg x
let format = intFormat width
tmp <- getNewRegNat format
y_code <- getAnyReg y
let
code = x_code tmp `appOL`
y_code ecx `snocOL`
instr format (OpReg ecx) (OpReg tmp)
return (Fixed format tmp code)
--------------------
add_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
add_code rep x (CmmLit (CmmInt y _))
| is32BitInteger y
, rep /= W8 -- LEA doesn't support byte size (#18614)
= add_int rep x y
add_code rep x y = trivialCode rep (ADD format) (Just (ADD format)) x y
where format = intFormat rep
-- TODO: There are other interesting patterns we want to replace
-- with a LEA, e.g. `(x + offset) + (y << shift)`.
--------------------
sub_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
sub_code rep x (CmmLit (CmmInt y _))
| is32BitInteger (-y)
, rep /= W8 -- LEA doesn't support byte size (#18614)
= add_int rep x (-y)
sub_code rep x y = trivialCode rep (SUB (intFormat rep)) Nothing x y
-- our three-operand add instruction:
add_int width x y = do
(x_reg, x_code) <- getSomeReg x
let
format = intFormat width
imm = ImmInt (fromInteger y)
code dst
= x_code `snocOL`
LEA format
(OpAddr (AddrBaseIndex (EABaseReg x_reg) EAIndexNone imm))
(OpReg dst)
--
return (Any format code)
----------------------
-- See Note [DIV/IDIV for bytes]
div_code W8 signed quotient x y = do
let widen | signed = MO_SS_Conv W8 W16
| otherwise = MO_UU_Conv W8 W16
div_code
W16
signed
quotient
(CmmMachOp widen [x])
(CmmMachOp widen [y])
div_code width signed quotient x y = do
(y_op, y_code) <- getRegOrMem y -- cannot be clobbered
x_code <- getAnyReg x
let
format = intFormat width
widen | signed = CLTD format
| otherwise = XOR format (OpReg edx) (OpReg edx)
instr | signed = IDIV
| otherwise = DIV
code = y_code `appOL`
x_code eax `appOL`
toOL [widen, instr format y_op]
result | quotient = eax
| otherwise = edx
return (Fixed format result code)
getRegister' _ _ (CmmLoad mem pk)
| isFloatType pk
= do
Amode addr mem_code <- getAmode mem
loadFloatAmode (typeWidth pk) addr mem_code
getRegister' _ is32Bit (CmmLoad mem pk)
| is32Bit && not (isWord64 pk)
= do
code <- intLoadCode instr mem
return (Any format code)
where
width = typeWidth pk
format = intFormat width
instr = case width of
W8 -> MOVZxL II8
_other -> MOV format
-- We always zero-extend 8-bit loads, if we
-- can't think of anything better. This is because
-- we can't guarantee access to an 8-bit variant of every register
-- (esi and edi don't have 8-bit variants), so to make things
-- simpler we do our 8-bit arithmetic with full 32-bit registers.
-- Simpler memory load code on x86_64
getRegister' _ is32Bit (CmmLoad mem pk)
| not is32Bit
= do
code <- intLoadCode (MOV format) mem
return (Any format code)
where format = intFormat $ typeWidth pk
getRegister' _ is32Bit (CmmLit (CmmInt 0 width))
= let
format = intFormat width
-- x86_64: 32-bit xor is one byte shorter, and zero-extends to 64 bits
format1 = if is32Bit then format
else case format of
II64 -> II32
_ -> format
code dst
= unitOL (XOR format1 (OpReg dst) (OpReg dst))
in
return (Any format code)
-- optimisation for loading small literals on x86_64: take advantage
-- of the automatic zero-extension from 32 to 64 bits, because the 32-bit
-- instruction forms are shorter.
getRegister' platform is32Bit (CmmLit lit)
| not is32Bit, isWord64 (cmmLitType platform lit), not (isBigLit lit)
= let
imm = litToImm lit
code dst = unitOL (MOV II32 (OpImm imm) (OpReg dst))
in
return (Any II64 code)
where
isBigLit (CmmInt i _) = i < 0 || i > 0xffffffff
isBigLit _ = False
-- note1: not the same as (not.is32BitLit), because that checks for
-- signed literals that fit in 32 bits, but we want unsigned
-- literals here.
-- note2: all labels are small, because we're assuming the
-- small memory model (see gcc docs, -mcmodel=small).
getRegister' platform _ (CmmLit lit)
= do let format = cmmTypeFormat (cmmLitType platform lit)
imm = litToImm lit
code dst = unitOL (MOV format (OpImm imm) (OpReg dst))
return (Any format code)
getRegister' platform _ other
| isVecExpr other = needLlvm
| otherwise = pprPanic "getRegister(x86)" (pdoc platform other)
intLoadCode :: (Operand -> Operand -> Instr) -> CmmExpr
-> NatM (Reg -> InstrBlock)
intLoadCode instr mem = do
Amode src mem_code <- getAmode mem
return (\dst -> mem_code `snocOL` instr (OpAddr src) (OpReg dst))
-- Compute an expression into *any* register, adding the appropriate
-- move instruction if necessary.
getAnyReg :: CmmExpr -> NatM (Reg -> InstrBlock)
getAnyReg expr = do
r <- getRegister expr
anyReg r
anyReg :: Register -> NatM (Reg -> InstrBlock)
anyReg (Any _ code) = return code
anyReg (Fixed rep reg fcode) = return (\dst -> fcode `snocOL` reg2reg rep reg dst)
-- A bit like getSomeReg, but we want a reg that can be byte-addressed.
-- Fixed registers might not be byte-addressable, so we make sure we've
-- got a temporary, inserting an extra reg copy if necessary.
getByteReg :: CmmExpr -> NatM (Reg, InstrBlock)
getByteReg expr = do
is32Bit <- is32BitPlatform
if is32Bit
then do r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
| isVirtualReg reg -> return (reg,code)
| otherwise -> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
-- ToDo: could optimise slightly by checking for
-- byte-addressable real registers, but that will
-- happen very rarely if at all.
else getSomeReg expr -- all regs are byte-addressable on x86_64
-- Another variant: this time we want the result in a register that cannot
-- be modified by code to evaluate an arbitrary expression.
getNonClobberedReg :: CmmExpr -> NatM (Reg, InstrBlock)
getNonClobberedReg expr = do
r <- getRegister expr
platform <- ncgPlatform <$> getConfig
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
-- only certain regs can be clobbered
| reg `elem` instrClobberedRegs platform
-> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
| otherwise ->
return (reg, code)
reg2reg :: Format -> Reg -> Reg -> Instr
reg2reg format src dst = MOV format (OpReg src) (OpReg dst)
--------------------------------------------------------------------------------
-- | Convert a 'CmmExpr' representing a memory address into an 'Amode'.
--
-- An 'Amode' is a datatype representing a valid address form for the target
-- (e.g. "Base + Index + disp" or immediate) and the code to compute it.
getAmode :: CmmExpr -> NatM Amode
getAmode e = do
platform <- getPlatform
let is32Bit = target32Bit platform
case e of
CmmRegOff r n
-> getAmode $ mangleIndexTree platform r n
CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg), CmmLit displacement]
| not is32Bit
-> return $ Amode (ripRel (litToImm displacement)) nilOL
-- This is all just ridiculous, since it carefully undoes
-- what mangleIndexTree has just done.
CmmMachOp (MO_Sub _rep) [x, CmmLit lit@(CmmInt i _)]
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
-> do
(x_reg, x_code) <- getSomeReg x
let off = ImmInt (-(fromInteger i))
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
CmmMachOp (MO_Add _rep) [x, CmmLit lit]
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
-> do
(x_reg, x_code) <- getSomeReg x
let off = litToImm lit
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
-- Turn (lit1 << n + lit2) into (lit2 + lit1 << n) so it will be
-- recognised by the next rule.
CmmMachOp (MO_Add rep) [a@(CmmMachOp (MO_Shl _) _), b@(CmmLit _)]
-> getAmode (CmmMachOp (MO_Add rep) [b,a])
-- Matches: (x + offset) + (y << shift)
CmmMachOp (MO_Add _) [CmmRegOff x offset, CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)]]
| shift == 0 || shift == 1 || shift == 2 || shift == 3
-> x86_complex_amode (CmmReg x) y shift (fromIntegral offset)
CmmMachOp (MO_Add _) [x, CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)]]
| shift == 0 || shift == 1 || shift == 2 || shift == 3
-> x86_complex_amode x y shift 0
CmmMachOp (MO_Add _) [x, CmmMachOp (MO_Add _) [CmmMachOp (MO_Shl _)
[y, CmmLit (CmmInt shift _)], CmmLit (CmmInt offset _)]]
| shift == 0 || shift == 1 || shift == 2 || shift == 3
&& is32BitInteger offset
-> x86_complex_amode x y shift offset
CmmMachOp (MO_Add _) [x,y]
| not (isLit y) -- we already handle valid literals above.
-> x86_complex_amode x y 0 0
CmmLit lit
| is32BitLit is32Bit lit
-> return (Amode (ImmAddr (litToImm lit) 0) nilOL)
-- Literal with offsets too big (> 32 bits) fails during the linking phase
-- (#15570). We already handled valid literals above so we don't have to
-- test anything here.
CmmLit (CmmLabelOff l off)
-> getAmode (CmmMachOp (MO_Add W64) [ CmmLit (CmmLabel l)
, CmmLit (CmmInt (fromIntegral off) W64)
])
CmmLit (CmmLabelDiffOff l1 l2 off w)
-> getAmode (CmmMachOp (MO_Add W64) [ CmmLit (CmmLabelDiffOff l1 l2 0 w)
, CmmLit (CmmInt (fromIntegral off) W64)
])
-- in case we can't do something better, we just compute the expression
-- and put the result in a register
_ -> do
(reg,code) <- getSomeReg e
return (Amode (AddrBaseIndex (EABaseReg reg) EAIndexNone (ImmInt 0)) code)
-- | Like 'getAmode', but on 32-bit use simple register addressing
-- (i.e. no index register). This stops us from running out of
-- registers on x86 when using instructions such as cmpxchg, which can
-- use up to three virtual registers and one fixed register.
getSimpleAmode :: Bool -> CmmExpr -> NatM Amode
getSimpleAmode is32Bit addr
| is32Bit = do
addr_code <- getAnyReg addr
config <- getConfig
addr_r <- getNewRegNat (intFormat (ncgWordWidth config))
let amode = AddrBaseIndex (EABaseReg addr_r) EAIndexNone (ImmInt 0)
return $! Amode amode (addr_code addr_r)
| otherwise = getAmode addr
x86_complex_amode :: CmmExpr -> CmmExpr -> Integer -> Integer -> NatM Amode
x86_complex_amode base index shift offset
= do (x_reg, x_code) <- getNonClobberedReg base
-- x must be in a temp, because it has to stay live over y_code
-- we could compare x_reg and y_reg and do something better here...
(y_reg, y_code) <- getSomeReg index
let
code = x_code `appOL` y_code
base = case shift of 0 -> 1; 1 -> 2; 2 -> 4; 3 -> 8;
n -> panic $ "x86_complex_amode: unhandled shift! (" ++ show n ++ ")"
return (Amode (AddrBaseIndex (EABaseReg x_reg) (EAIndex y_reg base) (ImmInt (fromIntegral offset)))
code)
-- -----------------------------------------------------------------------------
-- getOperand: sometimes any operand will do.
-- getNonClobberedOperand: the value of the operand will remain valid across
-- the computation of an arbitrary expression, unless the expression
-- is computed directly into a register which the operand refers to
-- (see trivialCode where this function is used for an example).
getNonClobberedOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand (CmmLit lit) =
if isSuitableFloatingPointLit lit
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (mkAlignment $ widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
platform <- getPlatform
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType platform lit))
then return (OpImm (litToImm lit), nilOL)
else getNonClobberedOperand_generic (CmmLit lit)
getNonClobberedOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
-- this logic could be simplified
-- TODO FIXME
if (if is32Bit then not (isWord64 pk) else True)
-- if 32bit and pk is at float/double/simd value
-- or if 64bit
-- this could use some eyeballs or i'll need to stare at it more later
then do
platform <- ncgPlatform <$> getConfig
Amode src mem_code <- getAmode mem
(src',save_code) <-
if (amodeCouldBeClobbered platform src)
then do
tmp <- getNewRegNat (archWordFormat is32Bit)
return (AddrBaseIndex (EABaseReg tmp) EAIndexNone (ImmInt 0),
unitOL (LEA (archWordFormat is32Bit)
(OpAddr src)
(OpReg tmp)))
else
return (src, nilOL)
return (OpAddr src', mem_code `appOL` save_code)
else
-- if its a word or gcptr on 32bit?
getNonClobberedOperand_generic (CmmLoad mem pk)
getNonClobberedOperand e = getNonClobberedOperand_generic e
getNonClobberedOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand_generic e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
amodeCouldBeClobbered :: Platform -> AddrMode -> Bool
amodeCouldBeClobbered platform amode = any (regClobbered platform) (addrModeRegs amode)
regClobbered :: Platform -> Reg -> Bool
regClobbered platform (RegReal (RealRegSingle rr)) = freeReg platform rr
regClobbered _ _ = False
-- getOperand: the operand is not required to remain valid across the
-- computation of an arbitrary expression.
getOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand (CmmLit lit) = do
use_sse2 <- sse2Enabled
if (use_sse2 && isSuitableFloatingPointLit lit)
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (mkAlignment $ widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
platform <- getPlatform
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType platform lit))
then return (OpImm (litToImm lit), nilOL)
else getOperand_generic (CmmLit lit)
getOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else
getOperand_generic (CmmLoad mem pk)
getOperand e = getOperand_generic e
getOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand_generic e = do
(reg, code) <- getSomeReg e
return (OpReg reg, code)
isOperand :: Bool -> CmmExpr -> Bool
isOperand _ (CmmLoad _ _) = True
isOperand is32Bit (CmmLit lit) = is32BitLit is32Bit lit
|| isSuitableFloatingPointLit lit
isOperand _ _ = False
-- | Given a 'Register', produce a new 'Register' with an instruction block
-- which will check the value for alignment. Used for @-falignment-sanitisation@.
addAlignmentCheck :: Int -> Register -> Register
addAlignmentCheck align reg =
case reg of
Fixed fmt reg code -> Fixed fmt reg (code `appOL` check fmt reg)
Any fmt f -> Any fmt (\reg -> f reg `appOL` check fmt reg)
where
check :: Format -> Reg -> InstrBlock
check fmt reg =
ASSERT(not $ isFloatFormat fmt)
toOL [ TEST fmt (OpImm $ ImmInt $ align-1) (OpReg reg)
, JXX_GBL NE $ ImmCLbl mkBadAlignmentLabel
]
memConstant :: Alignment -> CmmLit -> NatM Amode
memConstant align lit = do
lbl <- getNewLabelNat
let rosection = Section ReadOnlyData lbl
config <- getConfig
platform <- getPlatform
(addr, addr_code) <- if target32Bit platform
then do dynRef <- cmmMakeDynamicReference
config
DataReference
lbl
Amode addr addr_code <- getAmode dynRef
return (addr, addr_code)
else return (ripRel (ImmCLbl lbl), nilOL)
let code =
LDATA rosection (align, CmmStaticsRaw lbl [CmmStaticLit lit])
`consOL` addr_code
return (Amode addr code)
loadFloatAmode :: Width -> AddrMode -> InstrBlock -> NatM Register
loadFloatAmode w addr addr_code = do
let format = floatFormat w
code dst = addr_code `snocOL`
MOV format (OpAddr addr) (OpReg dst)
return (Any format code)
-- if we want a floating-point literal as an operand, we can
-- use it directly from memory. However, if the literal is
-- zero, we're better off generating it into a register using
-- xor.
isSuitableFloatingPointLit :: CmmLit -> Bool
isSuitableFloatingPointLit (CmmFloat f _) = f /= 0.0
isSuitableFloatingPointLit _ = False
getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
getRegOrMem e@(CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
getRegOrMem e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
is32BitLit :: Bool -> CmmLit -> Bool
is32BitLit is32Bit lit
| not is32Bit = case lit of
CmmInt i W64 -> is32BitInteger i
-- assume that labels are in the range 0-2^31-1: this assumes the
-- small memory model (see gcc docs, -mcmodel=small).
CmmLabel _ -> True
-- however we can't assume that label offsets are in this range
-- (see #15570)
CmmLabelOff _ off -> is32BitInteger (fromIntegral off)
CmmLabelDiffOff _ _ off _ -> is32BitInteger (fromIntegral off)
_ -> True
is32BitLit _ _ = True
-- Set up a condition code for a conditional branch.
getCondCode :: CmmExpr -> NatM CondCode
-- yes, they really do seem to want exactly the same!
getCondCode (CmmMachOp mop [x, y])
=
case mop of
MO_F_Eq W32 -> condFltCode EQQ x y
MO_F_Ne W32 -> condFltCode NE x y
MO_F_Gt W32 -> condFltCode GTT x y
MO_F_Ge W32 -> condFltCode GE x y
-- Invert comparison condition and swap operands
-- See Note [SSE Parity Checks]
MO_F_Lt W32 -> condFltCode GTT y x
MO_F_Le W32 -> condFltCode GE y x
MO_F_Eq W64 -> condFltCode EQQ x y
MO_F_Ne W64 -> condFltCode NE x y
MO_F_Gt W64 -> condFltCode GTT x y
MO_F_Ge W64 -> condFltCode GE x y
MO_F_Lt W64 -> condFltCode GTT y x
MO_F_Le W64 -> condFltCode GE y x
_ -> condIntCode (machOpToCond mop) x y
getCondCode other = do
platform <- getPlatform
pprPanic "getCondCode(2)(x86,x86_64)" (pdoc platform other)
machOpToCond :: MachOp -> Cond
machOpToCond mo = case mo of
MO_Eq _ -> EQQ
MO_Ne _ -> NE
MO_S_Gt _ -> GTT
MO_S_Ge _ -> GE
MO_S_Lt _ -> LTT
MO_S_Le _ -> LE
MO_U_Gt _ -> GU
MO_U_Ge _ -> GEU
MO_U_Lt _ -> LU
MO_U_Le _ -> LEU
_other -> pprPanic "machOpToCond" (pprMachOp mo)
-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.
condIntCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condIntCode cond x y = do is32Bit <- is32BitPlatform
condIntCode' is32Bit cond x y
condIntCode' :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM CondCode
-- memory vs immediate
condIntCode' is32Bit cond (CmmLoad x pk) (CmmLit lit)
| is32BitLit is32Bit lit = do
Amode x_addr x_code <- getAmode x
let
imm = litToImm lit
code = x_code `snocOL`
CMP (cmmTypeFormat pk) (OpImm imm) (OpAddr x_addr)
--
return (CondCode False cond code)
-- anything vs zero, using a mask
-- TODO: Add some sanity checking!!!!
condIntCode' is32Bit cond (CmmMachOp (MO_And _) [x,o2]) (CmmLit (CmmInt 0 pk))
| (CmmLit lit@(CmmInt mask _)) <- o2, is32BitLit is32Bit lit
= do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intFormat pk) (OpImm (ImmInteger mask)) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs zero
condIntCode' _ cond x (CmmLit (CmmInt 0 pk)) = do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intFormat pk) (OpReg x_reg) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs operand
condIntCode' is32Bit cond x y
| isOperand is32Bit y = do
platform <- getPlatform
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL` y_code `snocOL`
CMP (cmmTypeFormat (cmmExprType platform x)) y_op (OpReg x_reg)
return (CondCode False cond code)
-- operand vs. anything: invert the comparison so that we can use a
-- single comparison instruction.
| isOperand is32Bit x
, Just revcond <- maybeFlipCond cond = do
platform <- getPlatform
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getOperand x
let
code = y_code `appOL` x_code `snocOL`
CMP (cmmTypeFormat (cmmExprType platform x)) x_op (OpReg y_reg)
return (CondCode False revcond code)
-- anything vs anything
condIntCode' _ cond x y = do
platform <- getPlatform
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getRegOrMem x
let
code = y_code `appOL`
x_code `snocOL`
CMP (cmmTypeFormat (cmmExprType platform x)) (OpReg y_reg) x_op
return (CondCode False cond code)
--------------------------------------------------------------------------------
condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condFltCode cond x y
= condFltCode_sse2
where
-- in the SSE2 comparison ops (ucomiss, ucomisd) the left arg may be
-- an operand, but the right must be a reg. We can probably do better
-- than this general case...
condFltCode_sse2 = do
platform <- getPlatform
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL`
y_code `snocOL`
CMP (floatFormat $ cmmExprWidth platform x) y_op (OpReg x_reg)
-- NB(1): we need to use the unsigned comparison operators on the
-- result of this comparison.
return (CondCode True (condToUnsigned cond) code)
-- -----------------------------------------------------------------------------
-- Generating assignments
-- Assignments are really at the heart of the whole code generation
-- business. Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers. If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side. This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).
assignMem_IntCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_FltCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
-- integer assignment to memory
-- specific case of adding/subtracting an integer to a particular address.
-- ToDo: catch other cases where we can use an operation directly on a memory
-- address.
assignMem_IntCode pk addr (CmmMachOp op [CmmLoad addr2 _,
CmmLit (CmmInt i _)])
| addr == addr2, pk /= II64 || is32BitInteger i,
Just instr <- check op
= do Amode amode code_addr <- getAmode addr
let code = code_addr `snocOL`
instr pk (OpImm (ImmInt (fromIntegral i))) (OpAddr amode)
return code
where
check (MO_Add _) = Just ADD
check (MO_Sub _) = Just SUB
check _ = Nothing
-- ToDo: more?
-- general case
assignMem_IntCode pk addr src = do
is32Bit <- is32BitPlatform
Amode addr code_addr <- getAmode addr
(code_src, op_src) <- get_op_RI is32Bit src
let
code = code_src `appOL`
code_addr `snocOL`
MOV pk op_src (OpAddr addr)
-- NOTE: op_src is stable, so it will still be valid
-- after code_addr. This may involve the introduction
-- of an extra MOV to a temporary register, but we hope
-- the register allocator will get rid of it.
--
return code
where
get_op_RI :: Bool -> CmmExpr -> NatM (InstrBlock,Operand) -- code, operator
get_op_RI is32Bit (CmmLit lit) | is32BitLit is32Bit lit
= return (nilOL, OpImm (litToImm lit))
get_op_RI _ op
= do (reg,code) <- getNonClobberedReg op
return (code, OpReg reg)
-- Assign; dst is a reg, rhs is mem
assignReg_IntCode pk reg (CmmLoad src _) = do
load_code <- intLoadCode (MOV pk) src
platform <- ncgPlatform <$> getConfig
return (load_code (getRegisterReg platform reg))
-- dst is a reg, but src could be anything
assignReg_IntCode _ reg src = do
platform <- ncgPlatform <$> getConfig
code <- getAnyReg src
return (code (getRegisterReg platform reg))
-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
(src_reg, src_code) <- getNonClobberedReg src
Amode addr addr_code <- getAmode addr
let
code = src_code `appOL`
addr_code `snocOL`
MOV pk (OpReg src_reg) (OpAddr addr)
return code
-- Floating point assignment to a register/temporary
assignReg_FltCode _ reg src = do
src_code <- getAnyReg src
platform <- ncgPlatform <$> getConfig
return (src_code (getRegisterReg platform reg))
genJump :: CmmExpr{-the branch target-} -> [Reg] -> NatM InstrBlock
genJump (CmmLoad mem _) regs = do
Amode target code <- getAmode mem
return (code `snocOL` JMP (OpAddr target) regs)
genJump (CmmLit lit) regs =
return (unitOL (JMP (OpImm (litToImm lit)) regs))
genJump expr regs = do
(reg,code) <- getSomeReg expr
return (code `snocOL` JMP (OpReg reg) regs)
-- -----------------------------------------------------------------------------
-- Unconditional branches
genBranch :: BlockId -> InstrBlock
genBranch = toOL . mkJumpInstr
-- -----------------------------------------------------------------------------
-- Conditional jumps/branches
{-
Conditional jumps are always to local labels, so we can use branch
instructions. We peek at the arguments to decide what kind of
comparison to do.
I386: First, we have to ensure that the condition
codes are set according to the supplied comparison operation.
-}
{- Note [64-bit integer comparisons on 32-bit]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When doing these comparisons there are 2 kinds of
comparisons.
* Comparison for equality (or lack thereof)
We use xor to check if high/low bits are
equal. Then combine the results using or and
perform a single conditional jump based on the
result.
* Other comparisons:
We map all other comparisons to the >= operation.
Why? Because it's easy to encode it with a single
conditional jump.
We do this by first computing [r1_lo - r2_lo]
and use the carry flag to compute
[r1_high - r2_high - CF].
At which point if r1 >= r2 then the result will be
positive. Otherwise negative so we can branch on this
condition.
-}
genCondBranch
:: BlockId -- the source of the jump
-> BlockId -- the true branch target
-> BlockId -- the false branch target
-> CmmExpr -- the condition on which to branch
-> NatM InstrBlock -- Instructions
genCondBranch bid id false expr = do
is32Bit <- is32BitPlatform
genCondBranch' is32Bit bid id false expr
-- | We return the instructions generated.
genCondBranch' :: Bool -> BlockId -> BlockId -> BlockId -> CmmExpr
-> NatM InstrBlock
-- 64-bit integer comparisons on 32-bit
-- See Note [64-bit integer comparisons on 32-bit]
genCondBranch' is32Bit _bid true false (CmmMachOp mop [e1,e2])
| is32Bit, Just W64 <- maybeIntComparison mop = do
-- The resulting registers here are both the lower part of
-- the register as well as a way to get at the higher part.
ChildCode64 code1 r1 <- iselExpr64 e1
ChildCode64 code2 r2 <- iselExpr64 e2
let cond = machOpToCond mop :: Cond
let cmpCode = intComparison cond true false r1 r2
return $ code1 `appOL` code2 `appOL` cmpCode
where
intComparison :: Cond -> BlockId -> BlockId -> Reg -> Reg -> InstrBlock
intComparison cond true false r1_lo r2_lo =
case cond of
-- Impossible results of machOpToCond
ALWAYS -> panic "impossible"
NEG -> panic "impossible"
POS -> panic "impossible"
CARRY -> panic "impossible"
OFLO -> panic "impossible"
PARITY -> panic "impossible"
NOTPARITY -> panic "impossible"
-- Special case #1 x == y and x != y
EQQ -> cmpExact
NE -> cmpExact
-- [x >= y]
GE -> cmpGE
GEU -> cmpGE
-- [x > y] <==> ![y >= x]
GTT -> intComparison GE false true r2_lo r1_lo
GU -> intComparison GEU false true r2_lo r1_lo
-- [x <= y] <==> [y >= x]
LE -> intComparison GE true false r2_lo r1_lo
LEU -> intComparison GEU true false r2_lo r1_lo
-- [x < y] <==> ![x >= x]
LTT -> intComparison GE false true r1_lo r2_lo
LU -> intComparison GEU false true r1_lo r2_lo
where
r1_hi = getHiVRegFromLo r1_lo
r2_hi = getHiVRegFromLo r2_lo
cmpExact :: OrdList Instr
cmpExact =
toOL
[ XOR II32 (OpReg r2_hi) (OpReg r1_hi)
, XOR II32 (OpReg r2_lo) (OpReg r1_lo)
, OR II32 (OpReg r1_hi) (OpReg r1_lo)
, JXX cond true
, JXX ALWAYS false
]
cmpGE = toOL
[ CMP II32 (OpReg r2_lo) (OpReg r1_lo)
, SBB II32 (OpReg r2_hi) (OpReg r1_hi)
, JXX cond true
, JXX ALWAYS false ]
genCondBranch' _ bid id false bool = do
CondCode is_float cond cond_code <- getCondCode bool
use_sse2 <- sse2Enabled
if not is_float || not use_sse2
then
return (cond_code `snocOL` JXX cond id `appOL` genBranch false)
else do
-- See Note [SSE Parity Checks]
let jmpFalse = genBranch false
code
= case cond of
NE -> or_unordered
GU -> plain_test
GEU -> plain_test
-- Use ASSERT so we don't break releases if
-- LTT/LE creep in somehow.
LTT ->
ASSERT2(False, ppr "Should have been turned into >")
and_ordered
LE ->
ASSERT2(False, ppr "Should have been turned into >=")
and_ordered
_ -> and_ordered
plain_test = unitOL (
JXX cond id
) `appOL` jmpFalse
or_unordered = toOL [
JXX cond id,
JXX PARITY id
] `appOL` jmpFalse
and_ordered = toOL [
JXX PARITY false,
JXX cond id,
JXX ALWAYS false
]
updateCfgNat (\cfg -> adjustEdgeWeight cfg (+3) bid false)
return (cond_code `appOL` code)
{- Note [Introducing cfg edges inside basic blocks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During instruction selection a statement `s`
in a block B with control of the sort: B -> C
will sometimes result in control
flow of the sort:
┌ < ┐
v ^
B -> B1 ┴ -> C
as is the case for some atomic operations.
Now to keep the CFG in sync when introducing B1 we clearly
want to insert it between B and C. However there is
a catch when we have to deal with self loops.
We might start with code and a CFG of these forms:
loop:
stmt1 ┌ < ┐
.... v ^
stmtX loop ┘
stmtY
....
goto loop:
Now we introduce B1:
┌ ─ ─ ─ ─ ─┐
loop: │ ┌ < ┐ │
instrs v │ │ ^
.... loop ┴ B1 ┴ ┘
instrsFromX
stmtY
goto loop:
This is simple, all outgoing edges from loop now simply
start from B1 instead and the code generator knows which
new edges it introduced for the self loop of B1.
Disaster strikes if the statement Y follows the same pattern.
If we apply the same rule that all outgoing edges change then
we end up with:
loop ─> B1 ─> B2 ┬─┐
│ │ └─<┤ │
│ └───<───┘ │
└───────<────────┘
This is problematic. The edge B1->B1 is modified as expected.
However the modification is wrong!
The assembly in this case looked like this:
_loop:
<instrs>
_B1:
...
cmpxchgq ...
jne _B1
<instrs>
<end _B1>
_B2:
...
cmpxchgq ...
jne _B2
<instrs>
jmp loop
There is no edge _B2 -> _B1 here. It's still a self loop onto _B1.
The problem here is that really B1 should be two basic blocks.
Otherwise we have control flow in the *middle* of a basic block.
A contradiction!
So to account for this we add yet another basic block marker:
_B:
<instrs>
_B1:
...
cmpxchgq ...
jne _B1
jmp _B1'
_B1':
<instrs>
<end _B1>
_B2:
...
Now when inserting B2 we will only look at the outgoing edges of B1' and
everything will work out nicely.
You might also wonder why we don't insert jumps at the end of _B1'. There is
no way another block ends up jumping to the labels _B1 or _B2 since they are
essentially invisible to other blocks. View them as control flow labels local
to the basic block if you'd like.
Not doing this ultimately caused (part 2 of) #17334.
-}
-- -----------------------------------------------------------------------------
-- Generating C calls
-- Now the biggest nightmare---calls. Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations. Apart from that, the code is easy.
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
--
-- See Note [Keeping track of the current block] for information why we need
-- to take/return a block id.
genCCall
:: Bool -- 32 bit platform?
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> BlockId -- The block we are in
-> NatM (InstrBlock, Maybe BlockId)
-- First we deal with cases which might introduce new blocks in the stream.
genCCall is32Bit (PrimTarget (MO_AtomicRMW width amop))
[dst] [addr, n] bid = do
Amode amode addr_code <-
if amop `elem` [AMO_Add, AMO_Sub]
then getAmode addr
else getSimpleAmode is32Bit addr -- See genCCall for MO_Cmpxchg
arg <- getNewRegNat format
arg_code <- getAnyReg n
platform <- ncgPlatform <$> getConfig
let dst_r = getRegisterReg platform (CmmLocal dst)
(code, lbl) <- op_code dst_r arg amode
return (addr_code `appOL` arg_code arg `appOL` code, Just lbl)
where
-- Code for the operation
op_code :: Reg -- Destination reg
-> Reg -- Register containing argument
-> AddrMode -- Address of location to mutate
-> NatM (OrdList Instr,BlockId) -- TODO: Return Maybe BlockId
op_code dst_r arg amode = case amop of
-- In the common case where dst_r is a virtual register the
-- final move should go away, because it's the last use of arg
-- and the first use of dst_r.
AMO_Add -> return $ (toOL [ LOCK (XADD format (OpReg arg) (OpAddr amode))
, MOV format (OpReg arg) (OpReg dst_r)
], bid)
AMO_Sub -> return $ (toOL [ NEGI format (OpReg arg)
, LOCK (XADD format (OpReg arg) (OpAddr amode))
, MOV format (OpReg arg) (OpReg dst_r)
], bid)
-- In these cases we need a new block id, and have to return it so
-- that later instruction selection can reference it.
AMO_And -> cmpxchg_code (\ src dst -> unitOL $ AND format src dst)
AMO_Nand -> cmpxchg_code (\ src dst -> toOL [ AND format src dst
, NOT format dst
])
AMO_Or -> cmpxchg_code (\ src dst -> unitOL $ OR format src dst)
AMO_Xor -> cmpxchg_code (\ src dst -> unitOL $ XOR format src dst)
where
-- Simulate operation that lacks a dedicated instruction using
-- cmpxchg.
cmpxchg_code :: (Operand -> Operand -> OrdList Instr)
-> NatM (OrdList Instr, BlockId)
cmpxchg_code instrs = do
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
tmp <- getNewRegNat format
--Record inserted blocks
-- We turn A -> B into A -> A' -> A'' -> B
-- with a self loop on A'.
addImmediateSuccessorNat bid lbl1
addImmediateSuccessorNat lbl1 lbl2
updateCfgNat (addWeightEdge lbl1 lbl1 0)
return $ (toOL
[ MOV format (OpAddr amode) (OpReg eax)
, JXX ALWAYS lbl1
, NEWBLOCK lbl1
-- Keep old value so we can return it:
, MOV format (OpReg eax) (OpReg dst_r)
, MOV format (OpReg eax) (OpReg tmp)
]
`appOL` instrs (OpReg arg) (OpReg tmp) `appOL` toOL
[ LOCK (CMPXCHG format (OpReg tmp) (OpAddr amode))
, JXX NE lbl1
-- See Note [Introducing cfg edges inside basic blocks]
-- why this basic block is required.
, JXX ALWAYS lbl2
, NEWBLOCK lbl2
],
lbl2)
format = intFormat width
genCCall is32Bit (PrimTarget (MO_Ctz width)) [dst] [src] bid
| is32Bit, width == W64 = do
ChildCode64 vcode rlo <- iselExpr64 src
platform <- ncgPlatform <$> getConfig
let rhi = getHiVRegFromLo rlo
dst_r = getRegisterReg platform (CmmLocal dst)
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
let format = if width == W8 then II16 else intFormat width
tmp_r <- getNewRegNat format
-- New CFG Edges:
-- bid -> lbl2
-- bid -> lbl1 -> lbl2
-- We also changes edges originating at bid to start at lbl2 instead.
weights <- getCfgWeights
updateCfgNat (addWeightEdge bid lbl1 110 .
addWeightEdge lbl1 lbl2 110 .
addImmediateSuccessor weights bid lbl2)
-- The following instruction sequence corresponds to the pseudo-code
--
-- if (src) {
-- dst = src.lo32 ? BSF(src.lo32) : (BSF(src.hi32) + 32);
-- } else {
-- dst = 64;
-- }
let !instrs = vcode `appOL` toOL
([ MOV II32 (OpReg rhi) (OpReg tmp_r)
, OR II32 (OpReg rlo) (OpReg tmp_r)
, MOV II32 (OpImm (ImmInt 64)) (OpReg dst_r)
, JXX EQQ lbl2
, JXX ALWAYS lbl1
, NEWBLOCK lbl1
, BSF II32 (OpReg rhi) dst_r
, ADD II32 (OpImm (ImmInt 32)) (OpReg dst_r)
, BSF II32 (OpReg rlo) tmp_r
, CMOV NE II32 (OpReg tmp_r) dst_r
, JXX ALWAYS lbl2
, NEWBLOCK lbl2
])
return (instrs, Just lbl2)
| otherwise = do
code_src <- getAnyReg src
config <- getConfig
let platform = ncgPlatform config
let dst_r = getRegisterReg platform (CmmLocal dst)
if ncgBmiVersion config >= Just BMI2
then do
src_r <- getNewRegNat (intFormat width)
let instrs = appOL (code_src src_r) $ case width of
W8 -> toOL
[ OR II32 (OpImm (ImmInteger 0xFFFFFF00)) (OpReg src_r)
, TZCNT II32 (OpReg src_r) dst_r
]
W16 -> toOL
[ TZCNT II16 (OpReg src_r) dst_r
, MOVZxL II16 (OpReg dst_r) (OpReg dst_r)
]
_ -> unitOL $ TZCNT (intFormat width) (OpReg src_r) dst_r
return (instrs, Nothing)
else do
-- The following insn sequence makes sure 'ctz 0' has a defined value.
-- starting with Haswell, one could use the TZCNT insn instead.
let format = if width == W8 then II16 else intFormat width
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
let !instrs = code_src src_r `appOL` toOL
([ MOVZxL II8 (OpReg src_r) (OpReg src_r) | width == W8 ] ++
[ BSF format (OpReg src_r) tmp_r
, MOV II32 (OpImm (ImmInt bw)) (OpReg dst_r)
, CMOV NE format (OpReg tmp_r) dst_r
]) -- NB: We don't need to zero-extend the result for the
-- W8/W16 cases because the 'MOV' insn already
-- took care of implicitly clearing the upper bits
return (instrs, Nothing)
where
bw = widthInBits width
genCCall bits mop dst args bid = do
config <- getConfig
instr <- genCCall' config bits mop dst args bid
return (instr, Nothing)
-- genCCall' handles cases not introducing new code blocks.
genCCall'
:: NCGConfig
-> Bool -- 32 bit platform?
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> BlockId -- The block we are in
-> NatM InstrBlock
-- Unroll memcpy calls if the number of bytes to copy isn't too
-- large. Otherwise, call C's memcpy.
genCCall' config _ (PrimTarget (MO_Memcpy align)) _
[dst, src, CmmLit (CmmInt n _)] _
| fromInteger insns <= ncgInlineThresholdMemcpy config = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat format
code_src <- getAnyReg src
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
return $ code_dst dst_r `appOL` code_src src_r `appOL`
go dst_r src_r tmp_r (fromInteger n)
where
platform = ncgPlatform config
-- The number of instructions we will generate (approx). We need 2
-- instructions per move.
insns = 2 * ((n + sizeBytes - 1) `div` sizeBytes)
maxAlignment = wordAlignment platform -- only machine word wide MOVs are supported
effectiveAlignment = min (alignmentOf align) maxAlignment
format = intFormat . widthFromBytes $ alignmentBytes effectiveAlignment
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (formatInBytes format)
go :: Reg -> Reg -> Reg -> Integer -> OrdList Instr
go dst src tmp i
| i >= sizeBytes =
unitOL (MOV format (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV format (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - sizeBytes)
-- Deal with remaining bytes.
| i >= 4 = -- Will never happen on 32-bit
unitOL (MOV II32 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II32 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 4)
| i >= 2 =
unitOL (MOVZxL II16 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II16 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 2)
| i >= 1 =
unitOL (MOVZxL II8 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II8 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 1)
| otherwise = nilOL
where
src_addr = AddrBaseIndex (EABaseReg src) EAIndexNone
(ImmInteger (n - i))
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone
(ImmInteger (n - i))
genCCall' config _ (PrimTarget (MO_Memset align)) _
[dst,
CmmLit (CmmInt c _),
CmmLit (CmmInt n _)]
_
| fromInteger insns <= ncgInlineThresholdMemset config = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat format
if format == II64 && n >= 8 then do
code_imm8byte <- getAnyReg (CmmLit (CmmInt c8 W64))
imm8byte_r <- getNewRegNat II64
return $ code_dst dst_r `appOL`
code_imm8byte imm8byte_r `appOL`
go8 dst_r imm8byte_r (fromInteger n)
else
return $ code_dst dst_r `appOL`
go4 dst_r (fromInteger n)
where
platform = ncgPlatform config
maxAlignment = wordAlignment platform -- only machine word wide MOVs are supported
effectiveAlignment = min (alignmentOf align) maxAlignment
format = intFormat . widthFromBytes $ alignmentBytes effectiveAlignment
c2 = c `shiftL` 8 .|. c
c4 = c2 `shiftL` 16 .|. c2
c8 = c4 `shiftL` 32 .|. c4
-- The number of instructions we will generate (approx). We need 1
-- instructions per move.
insns = (n + sizeBytes - 1) `div` sizeBytes
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (formatInBytes format)
-- Depending on size returns the widest MOV instruction and its
-- width.
gen4 :: AddrMode -> Integer -> (InstrBlock, Integer)
gen4 addr size
| size >= 4 =
(unitOL (MOV II32 (OpImm (ImmInteger c4)) (OpAddr addr)), 4)
| size >= 2 =
(unitOL (MOV II16 (OpImm (ImmInteger c2)) (OpAddr addr)), 2)
| size >= 1 =
(unitOL (MOV II8 (OpImm (ImmInteger c)) (OpAddr addr)), 1)
| otherwise = (nilOL, 0)
-- Generates a 64-bit wide MOV instruction from REG to MEM.
gen8 :: AddrMode -> Reg -> InstrBlock
gen8 addr reg8byte =
unitOL (MOV format (OpReg reg8byte) (OpAddr addr))
-- Unrolls memset when the widest MOV is <= 4 bytes.
go4 :: Reg -> Integer -> InstrBlock
go4 dst left =
if left <= 0 then nilOL
else curMov `appOL` go4 dst (left - curWidth)
where
possibleWidth = minimum [left, sizeBytes]
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone (ImmInteger (n - left))
(curMov, curWidth) = gen4 dst_addr possibleWidth
-- Unrolls memset when the widest MOV is 8 bytes (thus another Reg
-- argument). Falls back to go4 when all 8 byte moves are
-- exhausted.
go8 :: Reg -> Reg -> Integer -> InstrBlock
go8 dst reg8byte left =
if possibleWidth >= 8 then
let curMov = gen8 dst_addr reg8byte
in curMov `appOL` go8 dst reg8byte (left - 8)
else go4 dst left
where
possibleWidth = minimum [left, sizeBytes]
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone (ImmInteger (n - left))
genCCall' _ _ (PrimTarget MO_ReadBarrier) _ _ _ = return nilOL
genCCall' _ _ (PrimTarget MO_WriteBarrier) _ _ _ = return nilOL
-- barriers compile to no code on x86/x86-64;
-- we keep it this long in order to prevent earlier optimisations.
genCCall' _ _ (PrimTarget MO_Touch) _ _ _ = return nilOL
genCCall' _ is32bit (PrimTarget (MO_Prefetch_Data n )) _ [src] _ =
case n of
0 -> genPrefetch src $ PREFETCH NTA format
1 -> genPrefetch src $ PREFETCH Lvl2 format
2 -> genPrefetch src $ PREFETCH Lvl1 format
3 -> genPrefetch src $ PREFETCH Lvl0 format
l -> panic $ "unexpected prefetch level in genCCall MO_Prefetch_Data: " ++ (show l)
-- the c / llvm prefetch convention is 0, 1, 2, and 3
-- the x86 corresponding names are : NTA, 2 , 1, and 0
where
format = archWordFormat is32bit
-- need to know what register width for pointers!
genPrefetch inRegSrc prefetchCTor =
do
code_src <- getAnyReg inRegSrc
src_r <- getNewRegNat format
return $ code_src src_r `appOL`
(unitOL (prefetchCTor (OpAddr
((AddrBaseIndex (EABaseReg src_r ) EAIndexNone (ImmInt 0)))) ))
-- prefetch always takes an address
genCCall' _ is32Bit (PrimTarget (MO_BSwap width)) [dst] [src] _ = do
platform <- ncgPlatform <$> getConfig
let dst_r = getRegisterReg platform (CmmLocal dst)
case width of
W64 | is32Bit -> do
ChildCode64 vcode rlo <- iselExpr64 src
let dst_rhi = getHiVRegFromLo dst_r
rhi = getHiVRegFromLo rlo
return $ vcode `appOL`
toOL [ MOV II32 (OpReg rlo) (OpReg dst_rhi),
MOV II32 (OpReg rhi) (OpReg dst_r),
BSWAP II32 dst_rhi,
BSWAP II32 dst_r ]
W16 -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL`
unitOL (BSWAP II32 dst_r) `appOL`
unitOL (SHR II32 (OpImm $ ImmInt 16) (OpReg dst_r))
_ -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL` unitOL (BSWAP format dst_r)
where
format = intFormat width
genCCall' config is32Bit (PrimTarget (MO_PopCnt width)) dest_regs@[dst]
args@[src] bid = do
sse4_2 <- sse4_2Enabled
let platform = ncgPlatform config
if sse4_2
then do code_src <- getAnyReg src
src_r <- getNewRegNat format
let dst_r = getRegisterReg platform (CmmLocal dst)
return $ code_src src_r `appOL`
(if width == W8 then
-- The POPCNT instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r) (OpReg src_r)) `appOL`
unitOL (POPCNT II16 (OpReg src_r) dst_r)
else
unitOL (POPCNT format (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference config
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall' config is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (popCntLabel width)
genCCall' config is32Bit (PrimTarget (MO_Pdep width)) dest_regs@[dst]
args@[src, mask] bid = do
let platform = ncgPlatform config
if ncgBmiVersion config >= Just BMI2
then do code_src <- getAnyReg src
code_mask <- getAnyReg mask
src_r <- getNewRegNat format
mask_r <- getNewRegNat format
let dst_r = getRegisterReg platform (CmmLocal dst)
return $ code_src src_r `appOL` code_mask mask_r `appOL`
(if width == W8 then
-- The PDEP instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r ) (OpReg src_r )) `appOL`
unitOL (MOVZxL II8 (OpReg mask_r) (OpReg mask_r)) `appOL`
unitOL (PDEP II16 (OpReg mask_r) (OpReg src_r ) dst_r)
else
unitOL (PDEP format (OpReg mask_r) (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference config
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall' config is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (pdepLabel width)
genCCall' config is32Bit (PrimTarget (MO_Pext width)) dest_regs@[dst]
args@[src, mask] bid = do
let platform = ncgPlatform config
if ncgBmiVersion config >= Just BMI2
then do code_src <- getAnyReg src
code_mask <- getAnyReg mask
src_r <- getNewRegNat format
mask_r <- getNewRegNat format
let dst_r = getRegisterReg platform (CmmLocal dst)
return $ code_src src_r `appOL` code_mask mask_r `appOL`
(if width == W8 then
-- The PEXT instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r ) (OpReg src_r )) `appOL`
unitOL (MOVZxL II8 (OpReg mask_r) (OpReg mask_r)) `appOL`
unitOL (PEXT II16 (OpReg mask_r) (OpReg src_r) dst_r)
else
unitOL (PEXT format (OpReg mask_r) (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference config
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall' config is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (pextLabel width)
genCCall' config is32Bit (PrimTarget (MO_Clz width)) dest_regs@[dst] args@[src] bid
| is32Bit && width == W64 = do
-- Fallback to `hs_clz64` on i386
targetExpr <- cmmMakeDynamicReference config CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall' config is32Bit target dest_regs args bid
| otherwise = do
code_src <- getAnyReg src
config <- getConfig
let platform = ncgPlatform config
let dst_r = getRegisterReg platform (CmmLocal dst)
if ncgBmiVersion config >= Just BMI2
then do
src_r <- getNewRegNat (intFormat width)
return $ appOL (code_src src_r) $ case width of
W8 -> toOL
[ MOVZxL II8 (OpReg src_r) (OpReg src_r) -- zero-extend to 32 bit
, LZCNT II32 (OpReg src_r) dst_r -- lzcnt with extra 24 zeros
, SUB II32 (OpImm (ImmInt 24)) (OpReg dst_r) -- compensate for extra zeros
]
W16 -> toOL
[ LZCNT II16 (OpReg src_r) dst_r
, MOVZxL II16 (OpReg dst_r) (OpReg dst_r) -- zero-extend from 16 bit
]
_ -> unitOL (LZCNT (intFormat width) (OpReg src_r) dst_r)
else do
let format = if width == W8 then II16 else intFormat width
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
return $ code_src src_r `appOL` toOL
([ MOVZxL II8 (OpReg src_r) (OpReg src_r) | width == W8 ] ++
[ BSR format (OpReg src_r) tmp_r
, MOV II32 (OpImm (ImmInt (2*bw-1))) (OpReg dst_r)
, CMOV NE format (OpReg tmp_r) dst_r
, XOR format (OpImm (ImmInt (bw-1))) (OpReg dst_r)
]) -- NB: We don't need to zero-extend the result for the
-- W8/W16 cases because the 'MOV' insn already
-- took care of implicitly clearing the upper bits
where
bw = widthInBits width
lbl = mkCmmCodeLabel primUnitId (clzLabel width)
genCCall' config is32Bit (PrimTarget (MO_UF_Conv width)) dest_regs args bid = do
targetExpr <- cmmMakeDynamicReference config
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall' config is32Bit target dest_regs args bid
where
lbl = mkCmmCodeLabel primUnitId (word2FloatLabel width)
genCCall' _ _ (PrimTarget (MO_AtomicRead width)) [dst] [addr] _ = do
load_code <- intLoadCode (MOV (intFormat width)) addr
platform <- ncgPlatform <$> getConfig
return (load_code (getRegisterReg platform (CmmLocal dst)))
genCCall' _ _ (PrimTarget (MO_AtomicWrite width)) [] [addr, val] _ = do
code <- assignMem_IntCode (intFormat width) addr val
return $ code `snocOL` MFENCE
genCCall' _ is32Bit (PrimTarget (MO_Cmpxchg width)) [dst] [addr, old, new] _ = do
-- On x86 we don't have enough registers to use cmpxchg with a
-- complicated addressing mode, so on that architecture we
-- pre-compute the address first.
Amode amode addr_code <- getSimpleAmode is32Bit addr
newval <- getNewRegNat format
newval_code <- getAnyReg new
oldval <- getNewRegNat format
oldval_code <- getAnyReg old
platform <- getPlatform
let dst_r = getRegisterReg platform (CmmLocal dst)
code = toOL
[ MOV format (OpReg oldval) (OpReg eax)
, LOCK (CMPXCHG format (OpReg newval) (OpAddr amode))
, MOV format (OpReg eax) (OpReg dst_r)
]
return $ addr_code `appOL` newval_code newval `appOL` oldval_code oldval
`appOL` code
where
format = intFormat width
genCCall' config is32Bit (PrimTarget (MO_Xchg width)) [dst] [addr, value] _
| (is32Bit && width == W64) = panic "gencCall: 64bit atomic exchange not supported on 32bit platforms"
| otherwise = do
let dst_r = getRegisterReg platform (CmmLocal dst)
Amode amode addr_code <- getSimpleAmode is32Bit addr
(newval, newval_code) <- getSomeReg value
-- Copy the value into the target register, perform the exchange.
let code = toOL
[ MOV format (OpReg newval) (OpReg dst_r)
-- On X86 xchg implies a lock prefix if we use a memory argument.
-- so this is atomic.
, XCHG format (OpAddr amode) dst_r
]
return $ addr_code `appOL` newval_code `appOL` code
where
format = intFormat width
platform = ncgPlatform config
genCCall' _ is32Bit target dest_regs args bid = do
platform <- ncgPlatform <$> getConfig
case (target, dest_regs) of
-- void return type prim op
(PrimTarget op, []) ->
outOfLineCmmOp bid op Nothing args
-- we only cope with a single result for foreign calls
(PrimTarget op, [r]) -> case op of
MO_F32_Fabs -> case args of
[x] -> sse2FabsCode W32 x
_ -> panic "genCCall: Wrong number of arguments for fabs"
MO_F64_Fabs -> case args of
[x] -> sse2FabsCode W64 x
_ -> panic "genCCall: Wrong number of arguments for fabs"
MO_F32_Sqrt -> actuallyInlineSSE2Op (\fmt r -> SQRT fmt (OpReg r)) FF32 args
MO_F64_Sqrt -> actuallyInlineSSE2Op (\fmt r -> SQRT fmt (OpReg r)) FF64 args
_other_op -> outOfLineCmmOp bid op (Just r) args
where
actuallyInlineSSE2Op = actuallyInlineFloatOp'
actuallyInlineFloatOp' instr format [x]
= do res <- trivialUFCode format (instr format) x
any <- anyReg res
return (any (getRegisterReg platform (CmmLocal r)))
actuallyInlineFloatOp' _ _ args
= panic $ "genCCall.actuallyInlineFloatOp': bad number of arguments! ("
++ show (length args) ++ ")"
sse2FabsCode :: Width -> CmmExpr -> NatM InstrBlock
sse2FabsCode w x = do
let fmt = floatFormat w
x_code <- getAnyReg x
let
const | FF32 <- fmt = CmmInt 0x7fffffff W32
| otherwise = CmmInt 0x7fffffffffffffff W64
Amode amode amode_code <- memConstant (mkAlignment $ widthInBytes w) const
tmp <- getNewRegNat fmt
let
code dst = x_code dst `appOL` amode_code `appOL` toOL [
MOV fmt (OpAddr amode) (OpReg tmp),
AND fmt (OpReg tmp) (OpReg dst)
]
return $ code (getRegisterReg platform (CmmLocal r))
(PrimTarget (MO_S_QuotRem width), _) -> divOp1 platform True width dest_regs args
(PrimTarget (MO_U_QuotRem width), _) -> divOp1 platform False width dest_regs args
(PrimTarget (MO_U_QuotRem2 width), _) -> divOp2 platform False width dest_regs args
(PrimTarget (MO_Add2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do hCode <- getAnyReg (CmmLit (CmmInt 0 width))
let format = intFormat width
lCode <- anyReg =<< trivialCode width (ADD_CC format)
(Just (ADD_CC format)) arg_x arg_y
let reg_l = getRegisterReg platform (CmmLocal res_l)
reg_h = getRegisterReg platform (CmmLocal res_h)
code = hCode reg_h `appOL`
lCode reg_l `snocOL`
ADC format (OpImm (ImmInteger 0)) (OpReg reg_h)
return code
_ -> panic "genCCall: Wrong number of arguments/results for add2"
(PrimTarget (MO_AddWordC width), [res_r, res_c]) ->
addSubIntC platform ADD_CC (const Nothing) CARRY width res_r res_c args
(PrimTarget (MO_SubWordC width), [res_r, res_c]) ->
addSubIntC platform SUB_CC (const Nothing) CARRY width res_r res_c args
(PrimTarget (MO_AddIntC width), [res_r, res_c]) ->
addSubIntC platform ADD_CC (Just . ADD_CC) OFLO width res_r res_c args
(PrimTarget (MO_SubIntC width), [res_r, res_c]) ->
addSubIntC platform SUB_CC (const Nothing) OFLO width res_r res_c args
(PrimTarget (MO_U_Mul2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do (y_reg, y_code) <- getRegOrMem arg_y
x_code <- getAnyReg arg_x
let format = intFormat width
reg_h = getRegisterReg platform (CmmLocal res_h)
reg_l = getRegisterReg platform (CmmLocal res_l)
code = y_code `appOL`
x_code rax `appOL`
toOL [MUL2 format y_reg,
MOV format (OpReg rdx) (OpReg reg_h),
MOV format (OpReg rax) (OpReg reg_l)]
return code
_ -> panic "genCCall: Wrong number of arguments/results for mul2"
(PrimTarget (MO_S_Mul2 width), [res_c, res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do (y_reg, y_code) <- getRegOrMem arg_y
x_code <- getAnyReg arg_x
reg_tmp <- getNewRegNat II8
let format = intFormat width
reg_h = getRegisterReg platform (CmmLocal res_h)
reg_l = getRegisterReg platform (CmmLocal res_l)
reg_c = getRegisterReg platform (CmmLocal res_c)
code = y_code `appOL`
x_code rax `appOL`
toOL [ IMUL2 format y_reg
, MOV format (OpReg rdx) (OpReg reg_h)
, MOV format (OpReg rax) (OpReg reg_l)
, SETCC CARRY (OpReg reg_tmp)
, MOVZxL II8 (OpReg reg_tmp) (OpReg reg_c)
]
return code
_ -> panic "genCCall: Wrong number of arguments/results for imul2"
_ -> do
(instrs0, args') <- evalArgs bid args
instrs1 <- if is32Bit
then genCCall32' target dest_regs args'
else genCCall64' target dest_regs args'
return (instrs0 `appOL` instrs1)
where divOp1 platform signed width results [arg_x, arg_y]
= divOp platform signed width results Nothing arg_x arg_y
divOp1 _ _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp1"
divOp2 platform signed width results [arg_x_high, arg_x_low, arg_y]
= divOp platform signed width results (Just arg_x_high) arg_x_low arg_y
divOp2 _ _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp2"
-- See Note [DIV/IDIV for bytes]
divOp platform signed W8 [res_q, res_r] m_arg_x_high arg_x_low arg_y =
let widen | signed = MO_SS_Conv W8 W16
| otherwise = MO_UU_Conv W8 W16
arg_x_low_16 = CmmMachOp widen [arg_x_low]
arg_y_16 = CmmMachOp widen [arg_y]
m_arg_x_high_16 = (\p -> CmmMachOp widen [p]) <$> m_arg_x_high
in divOp
platform signed W16 [res_q, res_r]
m_arg_x_high_16 arg_x_low_16 arg_y_16
divOp platform signed width [res_q, res_r]
m_arg_x_high arg_x_low arg_y
= do let format = intFormat width
reg_q = getRegisterReg platform (CmmLocal res_q)
reg_r = getRegisterReg platform (CmmLocal res_r)
widen | signed = CLTD format
| otherwise = XOR format (OpReg rdx) (OpReg rdx)
instr | signed = IDIV
| otherwise = DIV
(y_reg, y_code) <- getRegOrMem arg_y
x_low_code <- getAnyReg arg_x_low
x_high_code <- case m_arg_x_high of
Just arg_x_high ->
getAnyReg arg_x_high
Nothing ->
return $ const $ unitOL widen
return $ y_code `appOL`
x_low_code rax `appOL`
x_high_code rdx `appOL`
toOL [instr format y_reg,
MOV format (OpReg rax) (OpReg reg_q),
MOV format (OpReg rdx) (OpReg reg_r)]
divOp _ _ _ _ _ _ _
= panic "genCCall: Wrong number of results for divOp"
addSubIntC platform instr mrevinstr cond width
res_r res_c [arg_x, arg_y]
= do let format = intFormat width
rCode <- anyReg =<< trivialCode width (instr format)
(mrevinstr format) arg_x arg_y
reg_tmp <- getNewRegNat II8
let reg_c = getRegisterReg platform (CmmLocal res_c)
reg_r = getRegisterReg platform (CmmLocal res_r)
code = rCode reg_r `snocOL`
SETCC cond (OpReg reg_tmp) `snocOL`
MOVZxL II8 (OpReg reg_tmp) (OpReg reg_c)
return code
addSubIntC _ _ _ _ _ _ _ _
= panic "genCCall: Wrong number of arguments/results for addSubIntC"
{-
Note [Evaluate C-call arguments before placing in destination registers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When producing code for C calls we must take care when placing arguments
in their final registers. Specifically, we must ensure that temporary register
usage due to evaluation of one argument does not clobber a register in which we
already placed a previous argument (e.g. as the code generation logic for
MO_Shl can clobber %rcx due to x86 instruction limitations).
This is precisely what happened in #18527. Consider this C--:
(result::I64) = call "ccall" doSomething(_s2hp::I64, 2244, _s2hq::I64, _s2hw::I64 | (1 << _s2hz::I64));
Here we are calling the C function `doSomething` with three arguments, the last
involving a non-trivial expression involving MO_Shl. In this case the NCG could
naively generate the following assembly (where $tmp denotes some temporary
register and $argN denotes the register for argument N, as dictated by the
platform's calling convention):
mov _s2hp, $arg1 # place first argument
mov _s2hq, $arg2 # place second argument
# Compute 1 << _s2hz
mov _s2hz, %rcx
shl %cl, $tmp
# Compute (_s2hw | (1 << _s2hz))
mov _s2hw, $arg3
or $tmp, $arg3
# Perform the call
call func
This code is outright broken on Windows which assigns $arg1 to %rcx. This means
that the evaluation of the last argument clobbers the first argument.
To avoid this we use a rather awful hack: when producing code for a C call with
at least one non-trivial argument, we first evaluate all of the arguments into
local registers before moving them into their final calling-convention-defined
homes. This is performed by 'evalArgs'. Here we define "non-trivial" to be an
expression which might contain a MachOp since these are the only cases which
might clobber registers. Furthermore, we use a conservative approximation of
this condition (only looking at the top-level of CmmExprs) to avoid spending
too much effort trying to decide whether we want to take the fast path.
Note that this hack *also* applies to calls to out-of-line PrimTargets (which
are lowered via a C call) since outOfLineCmmOp produces the call via
(stmtToInstrs (CmmUnsafeForeignCall ...)), which will ultimately end up
back in genCCall{32,64}.
-}
-- | See Note [Evaluate C-call arguments before placing in destination registers]
evalArgs :: BlockId -> [CmmActual] -> NatM (InstrBlock, [CmmActual])
evalArgs bid actuals
| any mightContainMachOp actuals = do
regs_blks <- mapM evalArg actuals
return (concatOL $ map fst regs_blks, map snd regs_blks)
| otherwise = return (nilOL, actuals)
where
mightContainMachOp (CmmReg _) = False
mightContainMachOp (CmmRegOff _ _) = False
mightContainMachOp (CmmLit _) = False
mightContainMachOp _ = True
evalArg :: CmmActual -> NatM (InstrBlock, CmmExpr)
evalArg actual = do
platform <- getPlatform
lreg <- newLocalReg $ cmmExprType platform actual
(instrs, bid1) <- stmtToInstrs bid $ CmmAssign (CmmLocal lreg) actual
-- The above assignment shouldn't change the current block
MASSERT(isNothing bid1)
return (instrs, CmmReg $ CmmLocal lreg)
newLocalReg :: CmmType -> NatM LocalReg
newLocalReg ty = LocalReg <$> getUniqueM <*> pure ty
-- Note [DIV/IDIV for bytes]
--
-- IDIV reminder:
-- Size Dividend Divisor Quotient Remainder
-- byte %ax r/m8 %al %ah
-- word %dx:%ax r/m16 %ax %dx
-- dword %edx:%eax r/m32 %eax %edx
-- qword %rdx:%rax r/m64 %rax %rdx
--
-- We do a special case for the byte division because the current
-- codegen doesn't deal well with accessing %ah register (also,
-- accessing %ah in 64-bit mode is complicated because it cannot be an
-- operand of many instructions). So we just widen operands to 16 bits
-- and get the results from %al, %dl. This is not optimal, but a few
-- register moves are probably not a huge deal when doing division.
genCCall32' :: ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall32' target dest_regs args = do
config <- getConfig
let platform = ncgPlatform config
prom_args = map (maybePromoteCArg platform W32) args
-- If the size is smaller than the word, we widen things (see maybePromoteCArg)
arg_size_bytes :: CmmType -> Int
arg_size_bytes ty = max (widthInBytes (typeWidth ty)) (widthInBytes (wordWidth platform))
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
push_arg :: CmmActual {-current argument-}
-> NatM InstrBlock -- code
push_arg arg -- we don't need the hints on x86
| isWord64 arg_ty = do
ChildCode64 code r_lo <- iselExpr64 arg
delta <- getDeltaNat
setDeltaNat (delta - 8)
let r_hi = getHiVRegFromLo r_lo
return ( code `appOL`
toOL [PUSH II32 (OpReg r_hi), DELTA (delta - 4),
PUSH II32 (OpReg r_lo), DELTA (delta - 8),
DELTA (delta-8)]
)
| isFloatType arg_ty = do
(reg, code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `appOL`
toOL [SUB II32 (OpImm (ImmInt size)) (OpReg esp),
DELTA (delta-size),
let addr = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
format = floatFormat (typeWidth arg_ty)
in
-- assume SSE2
MOV format (OpReg reg) (OpAddr addr)
]
)
| otherwise = do
-- Arguments can be smaller than 32-bit, but we still use @PUSH
-- II32@ - the usual calling conventions expect integers to be
-- 4-byte aligned.
ASSERT((typeWidth arg_ty) <= W32) return ()
(operand, code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `snocOL`
PUSH II32 operand `snocOL`
DELTA (delta-size))
where
arg_ty = cmmExprType platform arg
size = arg_size_bytes arg_ty -- Byte size
let
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintiain. See Note [rts/StgCRun.c : Stack Alignment on X86]
sizes = map (arg_size_bytes . cmmExprType platform) (reverse args)
raw_arg_size = sum sizes + platformWordSizeInBytes platform
arg_pad_size = (roundTo 16 $ raw_arg_size) - raw_arg_size
tot_arg_size = raw_arg_size + arg_pad_size - platformWordSizeInBytes platform
delta0 <- getDeltaNat
setDeltaNat (delta0 - arg_pad_size)
push_codes <- mapM push_arg (reverse prom_args)
delta <- getDeltaNat
MASSERT(delta == delta0 - tot_arg_size)
-- deal with static vs dynamic call targets
(callinsns,cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) []), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do { (dyn_r, dyn_c) <- getSomeReg expr
; ASSERT( isWord32 (cmmExprType platform expr) )
return (dyn_c `snocOL` CALL (Right dyn_r) [], conv) }
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let push_code
| arg_pad_size /= 0
= toOL [SUB II32 (OpImm (ImmInt arg_pad_size)) (OpReg esp),
DELTA (delta0 - arg_pad_size)]
`appOL` concatOL push_codes
| otherwise
= concatOL push_codes
-- Deallocate parameters after call for ccall;
-- but not for stdcall (callee does it)
--
-- We have to pop any stack padding we added
-- even if we are doing stdcall, though (#5052)
pop_size
| ForeignConvention StdCallConv _ _ _ <- cconv = arg_pad_size
| otherwise = tot_arg_size
call = callinsns `appOL`
toOL (
(if pop_size==0 then [] else
[ADD II32 (OpImm (ImmInt pop_size)) (OpReg esp)])
++
[DELTA delta0]
)
setDeltaNat delta0
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest]
| isFloatType ty =
-- we assume SSE2
let tmp_amode = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
fmt = floatFormat w
in toOL [ SUB II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA (delta0 - b),
X87Store fmt tmp_amode,
-- X87Store only supported for the CDECL ABI
-- NB: This code will need to be
-- revisited once GHC does more work around
-- SIGFPE f
MOV fmt (OpAddr tmp_amode) (OpReg r_dest),
ADD II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA delta0]
| isWord64 ty = toOL [MOV II32 (OpReg eax) (OpReg r_dest),
MOV II32 (OpReg edx) (OpReg r_dest_hi)]
| otherwise = unitOL (MOV (intFormat w)
(OpReg eax)
(OpReg r_dest))
where
ty = localRegType dest
w = typeWidth ty
b = widthInBytes w
r_dest_hi = getHiVRegFromLo r_dest
r_dest = getRegisterReg platform (CmmLocal dest)
assign_code many = pprPanic "genCCall.assign_code - too many return values:" (ppr many)
return (push_code `appOL`
call `appOL`
assign_code dest_regs)
genCCall64' :: ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall64' target dest_regs args = do
platform <- getPlatform
-- load up the register arguments
let prom_args = map (maybePromoteCArg platform W32) args
let load_args :: [CmmExpr]
-> [Reg] -- int regs avail for args
-> [Reg] -- FP regs avail for args
-> InstrBlock -- code computing args
-> InstrBlock -- code assigning args to ABI regs
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock,InstrBlock)
-- no more regs to use
load_args args [] [] code acode =
return (args, [], [], code, acode)
-- no more args to push
load_args [] aregs fregs code acode =
return ([], aregs, fregs, code, acode)
load_args (arg : rest) aregs fregs code acode
| isFloatType arg_rep = case fregs of
[] -> push_this_arg
(r:rs) -> do
(code',acode') <- reg_this_arg r
load_args rest aregs rs code' acode'
| otherwise = case aregs of
[] -> push_this_arg
(r:rs) -> do
(code',acode') <- reg_this_arg r
load_args rest rs fregs code' acode'
where
-- put arg into the list of stack pushed args
push_this_arg = do
(args',ars,frs,code',acode')
<- load_args rest aregs fregs code acode
return (arg:args', ars, frs, code', acode')
-- pass the arg into the given register
reg_this_arg r
-- "operand" args can be directly assigned into r
| isOperand False arg = do
arg_code <- getAnyReg arg
return (code, (acode `appOL` arg_code r))
-- The last non-operand arg can be directly assigned after its
-- computation without going into a temporary register
| all (isOperand False) rest = do
arg_code <- getAnyReg arg
return (code `appOL` arg_code r,acode)
-- other args need to be computed beforehand to avoid clobbering
-- previously assigned registers used to pass parameters (see
-- #11792, #12614). They are assigned into temporary registers
-- and get assigned to proper call ABI registers after they all
-- have been computed.
| otherwise = do
arg_code <- getAnyReg arg
tmp <- getNewRegNat arg_fmt
let
code' = code `appOL` arg_code tmp
acode' = acode `snocOL` reg2reg arg_fmt tmp r
return (code',acode')
arg_rep = cmmExprType platform arg
arg_fmt = cmmTypeFormat arg_rep
load_args_win :: [CmmExpr]
-> [Reg] -- used int regs
-> [Reg] -- used FP regs
-> [(Reg, Reg)] -- (int, FP) regs avail for args
-> InstrBlock
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock,InstrBlock)
load_args_win args usedInt usedFP [] code
= return (args, usedInt, usedFP, code, nilOL)
-- no more regs to use
load_args_win [] usedInt usedFP _ code
= return ([], usedInt, usedFP, code, nilOL)
-- no more args to push
load_args_win (arg : rest) usedInt usedFP
((ireg, freg) : regs) code
| isFloatType arg_rep = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) (freg : usedFP) regs
(code `appOL`
arg_code freg `snocOL`
-- If we are calling a varargs function
-- then we need to define ireg as well
-- as freg
MOV II64 (OpReg freg) (OpReg ireg))
| otherwise = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) usedFP regs
(code `appOL` arg_code ireg)
where
arg_rep = cmmExprType platform arg
arg_size = 8 -- always, at the mo
push_args [] code = return code
push_args (arg:rest) code
| isFloatType arg_rep = do
(arg_reg, arg_code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
SUB (intFormat (wordWidth platform)) (OpImm (ImmInt arg_size)) (OpReg rsp),
DELTA (delta-arg_size),
MOV (floatFormat width) (OpReg arg_reg) (OpAddr (spRel platform 0))]
push_args rest code'
| otherwise = do
-- Arguments can be smaller than 64-bit, but we still use @PUSH
-- II64@ - the usual calling conventions expect integers to be
-- 8-byte aligned.
ASSERT(width <= W64) return ()
(arg_op, arg_code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
PUSH II64 arg_op,
DELTA (delta-arg_size)]
push_args rest code'
where
arg_rep = cmmExprType platform arg
width = typeWidth arg_rep
leaveStackSpace n = do
delta <- getDeltaNat
setDeltaNat (delta - n * arg_size)
return $ toOL [
SUB II64 (OpImm (ImmInt (n * platformWordSizeInBytes platform))) (OpReg rsp),
DELTA (delta - n * arg_size)]
(stack_args, int_regs_used, fp_regs_used, load_args_code, assign_args_code)
<-
if platformOS platform == OSMinGW32
then load_args_win prom_args [] [] (allArgRegs platform) nilOL
else do
(stack_args, aregs, fregs, load_args_code, assign_args_code)
<- load_args prom_args (allIntArgRegs platform)
(allFPArgRegs platform)
nilOL nilOL
let used_regs rs as = reverse (drop (length rs) (reverse as))
fregs_used = used_regs fregs (allFPArgRegs platform)
aregs_used = used_regs aregs (allIntArgRegs platform)
return (stack_args, aregs_used, fregs_used, load_args_code
, assign_args_code)
let
arg_regs_used = int_regs_used ++ fp_regs_used
arg_regs = [eax] ++ arg_regs_used
-- for annotating the call instruction with
sse_regs = length fp_regs_used
arg_stack_slots = if platformOS platform == OSMinGW32
then length stack_args + length (allArgRegs platform)
else length stack_args
tot_arg_size = arg_size * arg_stack_slots
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintain. See Note [rts/StgCRun.c : Stack Alignment on X86]
let word_size = platformWordSizeInBytes platform
(real_size, adjust_rsp) <-
if (tot_arg_size + word_size) `rem` 16 == 0
then return (tot_arg_size, nilOL)
else do -- we need to adjust...
delta <- getDeltaNat
setDeltaNat (delta - word_size)
return (tot_arg_size + word_size, toOL [
SUB II64 (OpImm (ImmInt word_size)) (OpReg rsp),
DELTA (delta - word_size) ])
-- push the stack args, right to left
push_code <- push_args (reverse stack_args) nilOL
-- On Win64, we also have to leave stack space for the arguments
-- that we are passing in registers
lss_code <- if platformOS platform == OSMinGW32
then leaveStackSpace (length (allArgRegs platform))
else return nilOL
delta <- getDeltaNat
-- deal with static vs dynamic call targets
(callinsns,_cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) arg_regs), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do (dyn_r, dyn_c) <- getSomeReg expr
return (dyn_c `snocOL` CALL (Right dyn_r) arg_regs, conv)
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let
-- The x86_64 ABI requires us to set %al to the number of SSE2
-- registers that contain arguments, if the called routine
-- is a varargs function. We don't know whether it's a
-- varargs function or not, so we have to assume it is.
--
-- It's not safe to omit this assignment, even if the number
-- of SSE2 regs in use is zero. If %al is larger than 8
-- on entry to a varargs function, seg faults ensue.
assign_eax n = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))
let call = callinsns `appOL`
toOL (
-- Deallocate parameters after call for ccall;
-- stdcall has callee do it, but is not supported on
-- x86_64 target (see #3336)
(if real_size==0 then [] else
[ADD (intFormat (platformWordWidth platform)) (OpImm (ImmInt real_size)) (OpReg esp)])
++
[DELTA (delta + real_size)]
)
setDeltaNat (delta + real_size)
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest] =
case typeWidth rep of
W32 | isFloatType rep -> unitOL (MOV (floatFormat W32)
(OpReg xmm0)
(OpReg r_dest))
W64 | isFloatType rep -> unitOL (MOV (floatFormat W64)
(OpReg xmm0)
(OpReg r_dest))
_ -> unitOL (MOV (cmmTypeFormat rep) (OpReg rax) (OpReg r_dest))
where
rep = localRegType dest
r_dest = getRegisterReg platform (CmmLocal dest)
assign_code _many = panic "genCCall.assign_code many"
return (adjust_rsp `appOL`
push_code `appOL`
load_args_code `appOL`
assign_args_code `appOL`
lss_code `appOL`
assign_eax sse_regs `appOL`
call `appOL`
assign_code dest_regs)
maybePromoteCArg :: Platform -> Width -> CmmExpr -> CmmExpr
maybePromoteCArg platform wto arg
| wfrom < wto = CmmMachOp (MO_UU_Conv wfrom wto) [arg]
| otherwise = arg
where
wfrom = cmmExprWidth platform arg
outOfLineCmmOp :: BlockId -> CallishMachOp -> Maybe CmmFormal -> [CmmActual]
-> NatM InstrBlock
outOfLineCmmOp bid mop res args
= do
config <- getConfig
targetExpr <- cmmMakeDynamicReference config CallReference lbl
let target = ForeignTarget targetExpr
(ForeignConvention CCallConv [] [] CmmMayReturn)
-- We know foreign calls results in no new basic blocks, so we can ignore
-- the returned block id.
(instrs, _) <- stmtToInstrs bid (CmmUnsafeForeignCall target (catMaybes [res]) args)
return instrs
where
-- Assume we can call these functions directly, and that they're not in a dynamic library.
-- TODO: Why is this ok? Under linux this code will be in libm.so
-- Is it because they're really implemented as a primitive instruction by the assembler?? -- BL 2009/12/31
lbl = mkForeignLabel fn Nothing ForeignLabelInThisPackage IsFunction
fn = case mop of
MO_F32_Sqrt -> fsLit "sqrtf"
MO_F32_Fabs -> fsLit "fabsf"
MO_F32_Sin -> fsLit "sinf"
MO_F32_Cos -> fsLit "cosf"
MO_F32_Tan -> fsLit "tanf"
MO_F32_Exp -> fsLit "expf"
MO_F32_ExpM1 -> fsLit "expm1f"
MO_F32_Log -> fsLit "logf"
MO_F32_Log1P -> fsLit "log1pf"
MO_F32_Asin -> fsLit "asinf"
MO_F32_Acos -> fsLit "acosf"
MO_F32_Atan -> fsLit "atanf"
MO_F32_Sinh -> fsLit "sinhf"
MO_F32_Cosh -> fsLit "coshf"
MO_F32_Tanh -> fsLit "tanhf"
MO_F32_Pwr -> fsLit "powf"
MO_F32_Asinh -> fsLit "asinhf"
MO_F32_Acosh -> fsLit "acoshf"
MO_F32_Atanh -> fsLit "atanhf"
MO_F64_Sqrt -> fsLit "sqrt"
MO_F64_Fabs -> fsLit "fabs"
MO_F64_Sin -> fsLit "sin"
MO_F64_Cos -> fsLit "cos"
MO_F64_Tan -> fsLit "tan"
MO_F64_Exp -> fsLit "exp"
MO_F64_ExpM1 -> fsLit "expm1"
MO_F64_Log -> fsLit "log"
MO_F64_Log1P -> fsLit "log1p"
MO_F64_Asin -> fsLit "asin"
MO_F64_Acos -> fsLit "acos"
MO_F64_Atan -> fsLit "atan"
MO_F64_Sinh -> fsLit "sinh"
MO_F64_Cosh -> fsLit "cosh"
MO_F64_Tanh -> fsLit "tanh"
MO_F64_Pwr -> fsLit "pow"
MO_F64_Asinh -> fsLit "asinh"
MO_F64_Acosh -> fsLit "acosh"
MO_F64_Atanh -> fsLit "atanh"
MO_Memcpy _ -> fsLit "memcpy"
MO_Memset _ -> fsLit "memset"
MO_Memmove _ -> fsLit "memmove"
MO_Memcmp _ -> fsLit "memcmp"
MO_PopCnt _ -> fsLit "popcnt"
MO_BSwap _ -> fsLit "bswap"
{- Here the C implementation is used as there is no x86
instruction to reverse a word's bit order.
-}
MO_BRev w -> bRevLabel w
MO_Clz w -> clzLabel w
MO_Ctz _ -> unsupported
MO_Pdep w -> pdepLabel w
MO_Pext w -> pextLabel w
MO_AtomicRMW _ _ -> fsLit "atomicrmw"
MO_AtomicRead _ -> fsLit "atomicread"
MO_AtomicWrite _ -> fsLit "atomicwrite"
MO_Cmpxchg _ -> fsLit "cmpxchg"
MO_Xchg _ -> should_be_inline
MO_UF_Conv _ -> unsupported
MO_S_Mul2 {} -> unsupported
MO_S_QuotRem {} -> unsupported
MO_U_QuotRem {} -> unsupported
MO_U_QuotRem2 {} -> unsupported
MO_Add2 {} -> unsupported
MO_AddIntC {} -> unsupported
MO_SubIntC {} -> unsupported
MO_AddWordC {} -> unsupported
MO_SubWordC {} -> unsupported
MO_U_Mul2 {} -> unsupported
MO_ReadBarrier -> unsupported
MO_WriteBarrier -> unsupported
MO_Touch -> unsupported
(MO_Prefetch_Data _ ) -> unsupported
unsupported = panic ("outOfLineCmmOp: " ++ show mop
++ " not supported here")
-- If we generate a call for the given primop
-- something went wrong.
should_be_inline = panic ("outOfLineCmmOp: " ++ show mop
++ " should be handled inline")
-- -----------------------------------------------------------------------------
-- Generating a table-branch
genSwitch :: CmmExpr -> SwitchTargets -> NatM InstrBlock
genSwitch expr targets = do
config <- getConfig
let platform = ncgPlatform config
if ncgPIC config
then do
(reg,e_code) <- getNonClobberedReg (cmmOffset platform expr offset)
-- getNonClobberedReg because it needs to survive across t_code
lbl <- getNewLabelNat
let is32bit = target32Bit platform
os = platformOS platform
-- Might want to use .rodata.<function we're in> instead, but as
-- long as it's something unique it'll work out since the
-- references to the jump table are in the appropriate section.
rosection = case os of
-- on Mac OS X/x86_64, put the jump table in the text section to
-- work around a limitation of the linker.
-- ld64 is unable to handle the relocations for
-- .quad L1 - L0
-- if L0 is not preceded by a non-anonymous label in its section.
OSDarwin | not is32bit -> Section Text lbl
_ -> Section ReadOnlyData lbl
dynRef <- cmmMakeDynamicReference config DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let op = OpAddr (AddrBaseIndex (EABaseReg tableReg)
(EAIndex reg (platformWordSizeInBytes platform)) (ImmInt 0))
offsetReg <- getNewRegNat (intFormat (platformWordWidth platform))
return $ if is32bit || os == OSDarwin
then e_code `appOL` t_code `appOL` toOL [
ADD (intFormat (platformWordWidth platform)) op (OpReg tableReg),
JMP_TBL (OpReg tableReg) ids rosection lbl
]
else -- HACK: On x86_64 binutils<2.17 is only able to generate
-- PC32 relocations, hence we only get 32-bit offsets in
-- the jump table. As these offsets are always negative
-- we need to properly sign extend them to 64-bit. This
-- hack should be removed in conjunction with the hack in
-- PprMach.hs/pprDataItem once binutils 2.17 is standard.
e_code `appOL` t_code `appOL` toOL [
MOVSxL II32 op (OpReg offsetReg),
ADD (intFormat (platformWordWidth platform))
(OpReg offsetReg)
(OpReg tableReg),
JMP_TBL (OpReg tableReg) ids rosection lbl
]
else do
(reg,e_code) <- getSomeReg (cmmOffset platform expr offset)
lbl <- getNewLabelNat
let op = OpAddr (AddrBaseIndex EABaseNone (EAIndex reg (platformWordSizeInBytes platform)) (ImmCLbl lbl))
code = e_code `appOL` toOL [
JMP_TBL op ids (Section ReadOnlyData lbl) lbl
]
return code
where
(offset, blockIds) = switchTargetsToTable targets
ids = map (fmap DestBlockId) blockIds
generateJumpTableForInstr :: NCGConfig -> Instr -> Maybe (NatCmmDecl (Alignment, RawCmmStatics) Instr)
generateJumpTableForInstr config (JMP_TBL _ ids section lbl)
= let getBlockId (DestBlockId id) = id
getBlockId _ = panic "Non-Label target in Jump Table"
blockIds = map (fmap getBlockId) ids
in Just (createJumpTable config blockIds section lbl)
generateJumpTableForInstr _ _ = Nothing
createJumpTable :: NCGConfig -> [Maybe BlockId] -> Section -> CLabel
-> GenCmmDecl (Alignment, RawCmmStatics) h g
createJumpTable config ids section lbl
= let jumpTable
| ncgPIC config =
let ww = ncgWordWidth config
jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 ww)
jumpTableEntryRel (Just blockid)
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0 ww)
where blockLabel = blockLbl blockid
in map jumpTableEntryRel ids
| otherwise = map (jumpTableEntry config) ids
in CmmData section (mkAlignment 1, CmmStaticsRaw lbl jumpTable)
extractUnwindPoints :: [Instr] -> [UnwindPoint]
extractUnwindPoints instrs =
[ UnwindPoint lbl unwinds | UNWIND lbl unwinds <- instrs]
-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers
-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
condIntReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
condIntReg cond x y = do
CondCode _ cond cond_code <- condIntCode cond x y
tmp <- getNewRegNat II8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL II8 (OpReg tmp) (OpReg dst)
]
return (Any II32 code)
-----------------------------------------------------------
--- Note [SSE Parity Checks] ---
-----------------------------------------------------------
-- We have to worry about unordered operands (eg. comparisons
-- against NaN). If the operands are unordered, the comparison
-- sets the parity flag, carry flag and zero flag.
-- All comparisons are supposed to return false for unordered
-- operands except for !=, which returns true.
--
-- Optimisation: we don't have to test the parity flag if we
-- know the test has already excluded the unordered case: eg >
-- and >= test for a zero carry flag, which can only occur for
-- ordered operands.
--
-- By reversing comparisons we can avoid testing the parity
-- for < and <= as well. If any of the arguments is an NaN we
-- return false either way. If both arguments are valid then
-- x <= y <-> y >= x holds. So it's safe to swap these.
--
-- We invert the condition inside getRegister'and getCondCode
-- which should cover all invertable cases.
-- All other functions translating FP comparisons to assembly
-- use these to two generate the comparison code.
--
-- As an example consider a simple check:
--
-- func :: Float -> Float -> Int
-- func x y = if x < y then 1 else 0
--
-- Which in Cmm gives the floating point comparison.
--
-- if (%MO_F_Lt_W32(F1, F2)) goto c2gg; else goto c2gf;
--
-- We used to compile this to an assembly code block like this:
-- _c2gh:
-- ucomiss %xmm2,%xmm1
-- jp _c2gf
-- jb _c2gg
-- jmp _c2gf
--
-- Where we have to introduce an explicit
-- check for unordered results (using jmp parity):
--
-- We can avoid this by exchanging the arguments and inverting the direction
-- of the comparison. This results in the sequence of:
--
-- ucomiss %xmm1,%xmm2
-- ja _c2g2
-- jmp _c2g1
--
-- Removing the jump reduces the pressure on the branch predidiction system
-- and plays better with the uOP cache.
condFltReg :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM Register
condFltReg is32Bit cond x y = condFltReg_sse2
where
condFltReg_sse2 = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp1 <- getNewRegNat (archWordFormat is32Bit)
tmp2 <- getNewRegNat (archWordFormat is32Bit)
let -- See Note [SSE Parity Checks]
code dst =
cond_code `appOL`
(case cond of
NE -> or_unordered dst
GU -> plain_test dst
GEU -> plain_test dst
-- Use ASSERT so we don't break releases if these creep in.
LTT -> ASSERT2(False, ppr "Should have been turned into >")
and_ordered dst
LE -> ASSERT2(False, ppr "Should have been turned into >=")
and_ordered dst
_ -> and_ordered dst)
plain_test dst = toOL [
SETCC cond (OpReg tmp1),
MOVZxL II8 (OpReg tmp1) (OpReg dst)
]
or_unordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC PARITY (OpReg tmp2),
OR II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
and_ordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC NOTPARITY (OpReg tmp2),
AND II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
return (Any II32 code)
-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions
-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.
-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.
{-
The Rules of the Game are:
* You cannot assume anything about the destination register dst;
it may be anything, including a fixed reg.
* You may compute an operand into a fixed reg, but you may not
subsequently change the contents of that fixed reg. If you
want to do so, first copy the value either to a temporary
or into dst. You are free to modify dst even if it happens
to be a fixed reg -- that's not your problem.
* You cannot assume that a fixed reg will stay live over an
arbitrary computation. The same applies to the dst reg.
* Temporary regs obtained from getNewRegNat are distinct from
each other and from all other regs, and stay live over
arbitrary computations.
--------------------
SDM's version of The Rules:
* If getRegister returns Any, that means it can generate correct
code which places the result in any register, period. Even if that
register happens to be read during the computation.
Corollary #1: this means that if you are generating code for an
operation with two arbitrary operands, you cannot assign the result
of the first operand into the destination register before computing
the second operand. The second operand might require the old value
of the destination register.
Corollary #2: A function might be able to generate more efficient
code if it knows the destination register is a new temporary (and
therefore not read by any of the sub-computations).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
(c) known registers (eg. %ecx is used by shifts)
In particular, it may *not* modify global registers, unless the global
register happens to be the destination register.
-}
trivialCode :: Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode width instr m a b
= do is32Bit <- is32BitPlatform
trivialCode' is32Bit width instr m a b
trivialCode' :: Bool -> Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode' is32Bit width _ (Just revinstr) (CmmLit lit_a) b
| is32BitLit is32Bit lit_a = do
b_code <- getAnyReg b
let
code dst
= b_code dst `snocOL`
revinstr (OpImm (litToImm lit_a)) (OpReg dst)
return (Any (intFormat width) code)
trivialCode' _ width instr _ a b
= genTrivialCode (intFormat width) instr a b
-- This is re-used for floating pt instructions too.
genTrivialCode :: Format -> (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
genTrivialCode rep instr a b = do
(b_op, b_code) <- getNonClobberedOperand b
a_code <- getAnyReg a
tmp <- getNewRegNat rep
let
-- We want the value of b to stay alive across the computation of a.
-- But, we want to calculate a straight into the destination register,
-- because the instruction only has two operands (dst := dst `op` src).
-- The troublesome case is when the result of b is in the same register
-- as the destination reg. In this case, we have to save b in a
-- new temporary across the computation of a.
code dst
| dst `regClashesWithOp` b_op =
b_code `appOL`
unitOL (MOV rep b_op (OpReg tmp)) `appOL`
a_code dst `snocOL`
instr (OpReg tmp) (OpReg dst)
| otherwise =
b_code `appOL`
a_code dst `snocOL`
instr b_op (OpReg dst)
return (Any rep code)
regClashesWithOp :: Reg -> Operand -> Bool
reg `regClashesWithOp` OpReg reg2 = reg == reg2
reg `regClashesWithOp` OpAddr amode = any (==reg) (addrModeRegs amode)
_ `regClashesWithOp` _ = False
-----------
trivialUCode :: Format -> (Operand -> Instr)
-> CmmExpr -> NatM Register
trivialUCode rep instr x = do
x_code <- getAnyReg x
let
code dst =
x_code dst `snocOL`
instr (OpReg dst)
return (Any rep code)
-----------
trivialFCode_sse2 :: Width -> (Format -> Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialFCode_sse2 pk instr x y
= genTrivialCode format (instr format) x y
where format = floatFormat pk
trivialUFCode :: Format -> (Reg -> Reg -> Instr) -> CmmExpr -> NatM Register
trivialUFCode format instr x = do
(x_reg, x_code) <- getSomeReg x
let
code dst =
x_code `snocOL`
instr x_reg dst
return (Any format code)
--------------------------------------------------------------------------------
coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP from to x = coerce_sse2
where
coerce_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case to of W32 -> CVTSI2SS; W64 -> CVTSI2SD
n -> panic $ "coerceInt2FP.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intFormat from) x_op dst
return (Any (floatFormat to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int from to x = coerceFP2Int_sse2
where
coerceFP2Int_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case from of W32 -> CVTTSS2SIQ; W64 -> CVTTSD2SIQ;
n -> panic $ "coerceFP2Init.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intFormat to) x_op dst
return (Any (intFormat to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2FP :: Width -> CmmExpr -> NatM Register
coerceFP2FP to x = do
(x_reg, x_code) <- getSomeReg x
let
opc = case to of W32 -> CVTSD2SS; W64 -> CVTSS2SD;
n -> panic $ "coerceFP2FP: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc x_reg dst
return (Any ( floatFormat to) code)
--------------------------------------------------------------------------------
sse2NegCode :: Width -> CmmExpr -> NatM Register
sse2NegCode w x = do
let fmt = floatFormat w
x_code <- getAnyReg x
-- This is how gcc does it, so it can't be that bad:
let
const = case fmt of
FF32 -> CmmInt 0x80000000 W32
FF64 -> CmmInt 0x8000000000000000 W64
x@II8 -> wrongFmt x
x@II16 -> wrongFmt x
x@II32 -> wrongFmt x
x@II64 -> wrongFmt x
where
wrongFmt x = panic $ "sse2NegCode: " ++ show x
Amode amode amode_code <- memConstant (mkAlignment $ widthInBytes w) const
tmp <- getNewRegNat fmt
let
code dst = x_code dst `appOL` amode_code `appOL` toOL [
MOV fmt (OpAddr amode) (OpReg tmp),
XOR fmt (OpReg tmp) (OpReg dst)
]
--
return (Any fmt code)
isVecExpr :: CmmExpr -> Bool
isVecExpr (CmmMachOp (MO_V_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_V_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_V_Add {}) _) = True
isVecExpr (CmmMachOp (MO_V_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_V_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Rem {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Neg {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Add {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Neg {}) _) = True
isVecExpr (CmmMachOp _ [e]) = isVecExpr e
isVecExpr _ = False
needLlvm :: NatM a
needLlvm =
sorry $ unlines ["The native code generator does not support vector"
,"instructions. Please use -fllvm."]
-- | This works on the invariant that all jumps in the given blocks are required.
-- Starting from there we try to make a few more jumps redundant by reordering
-- them.
-- We depend on the information in the CFG to do so so without a given CFG
-- we do nothing.
invertCondBranches :: Maybe CFG -- ^ CFG if present
-> LabelMap a -- ^ Blocks with info tables
-> [NatBasicBlock Instr] -- ^ List of basic blocks
-> [NatBasicBlock Instr]
invertCondBranches Nothing _ bs = bs
invertCondBranches (Just cfg) keep bs =
invert bs
where
invert :: [NatBasicBlock Instr] -> [NatBasicBlock Instr]
invert ((BasicBlock lbl1 ins@(_:_:_xs)):b2@(BasicBlock lbl2 _):bs)
| --pprTrace "Block" (ppr lbl1) True,
(jmp1,jmp2) <- last2 ins
, JXX cond1 target1 <- jmp1
, target1 == lbl2
--, pprTrace "CutChance" (ppr b1) True
, JXX ALWAYS target2 <- jmp2
-- We have enough information to check if we can perform the inversion
-- TODO: We could also check for the last asm instruction which sets
-- status flags instead. Which I suspect is worse in terms of compiler
-- performance, but might be applicable to more cases
, Just edgeInfo1 <- getEdgeInfo lbl1 target1 cfg
, Just edgeInfo2 <- getEdgeInfo lbl1 target2 cfg
-- Both jumps come from the same cmm statement
, transitionSource edgeInfo1 == transitionSource edgeInfo2
, CmmSource {trans_cmmNode = cmmCondBranch} <- transitionSource edgeInfo1
--Int comparisons are invertable
, CmmCondBranch (CmmMachOp op _args) _ _ _ <- cmmCondBranch
, Just _ <- maybeIntComparison op
, Just invCond <- maybeInvertCond cond1
--Swap the last two jumps, invert the conditional jumps condition.
= let jumps =
case () of
-- We are free the eliminate the jmp. So we do so.
_ | not (mapMember target1 keep)
-> [JXX invCond target2]
-- If the conditional target is unlikely we put the other
-- target at the front.
| edgeWeight edgeInfo2 > edgeWeight edgeInfo1
-> [JXX invCond target2, JXX ALWAYS target1]
-- Keep things as-is otherwise
| otherwise
-> [jmp1, jmp2]
in --pprTrace "Cutable" (ppr [jmp1,jmp2] <+> text "=>" <+> ppr jumps) $
(BasicBlock lbl1
(dropTail 2 ins ++ jumps))
: invert (b2:bs)
invert (b:bs) = b : invert bs
invert [] = []
|