1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Bag: an unordered collection with duplicates
-}
{-# LANGUAGE ScopedTypeVariables, DeriveFunctor, TypeFamilies #-}
module GHC.Data.Bag (
Bag, -- abstract type
emptyBag, unitBag, unionBags, unionManyBags,
mapBag,
elemBag, lengthBag,
filterBag, partitionBag, partitionBagWith,
concatBag, catBagMaybes, foldBag,
isEmptyBag, isSingletonBag, consBag, snocBag, anyBag, allBag,
listToBag, nonEmptyToBag, bagToList, headMaybe, mapAccumBagL,
concatMapBag, concatMapBagPair, mapMaybeBag,
mapBagM, mapBagM_,
flatMapBagM, flatMapBagPairM,
mapAndUnzipBagM, mapAccumBagLM,
anyBagM, filterBagM
) where
import GHC.Prelude
import GHC.Exts ( IsList(..) )
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Utils.Monad
import Control.Monad
import Data.Data
import Data.Maybe( mapMaybe, listToMaybe )
import Data.List ( partition, mapAccumL )
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.Foldable as Foldable
import qualified Data.Semigroup ( (<>) )
infixr 3 `consBag`
infixl 3 `snocBag`
data Bag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
| ListBag [a] -- INVARIANT: the list is non-empty
deriving (Functor)
emptyBag :: Bag a
emptyBag = EmptyBag
unitBag :: a -> Bag a
unitBag = UnitBag
lengthBag :: Bag a -> Int
lengthBag EmptyBag = 0
lengthBag (UnitBag {}) = 1
lengthBag (TwoBags b1 b2) = lengthBag b1 + lengthBag b2
lengthBag (ListBag xs) = length xs
elemBag :: Eq a => a -> Bag a -> Bool
elemBag _ EmptyBag = False
elemBag x (UnitBag y) = x == y
elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2
elemBag x (ListBag ys) = any (x ==) ys
unionManyBags :: [Bag a] -> Bag a
unionManyBags xs = foldr unionBags EmptyBag xs
-- This one is a bit stricter! The bag will get completely evaluated.
unionBags :: Bag a -> Bag a -> Bag a
unionBags EmptyBag b = b
unionBags b EmptyBag = b
unionBags b1 b2 = TwoBags b1 b2
consBag :: a -> Bag a -> Bag a
snocBag :: Bag a -> a -> Bag a
consBag elt bag = (unitBag elt) `unionBags` bag
snocBag bag elt = bag `unionBags` (unitBag elt)
isEmptyBag :: Bag a -> Bool
isEmptyBag EmptyBag = True
isEmptyBag _ = False -- NB invariants
isSingletonBag :: Bag a -> Bool
isSingletonBag EmptyBag = False
isSingletonBag (UnitBag _) = True
isSingletonBag (TwoBags _ _) = False -- Neither is empty
isSingletonBag (ListBag xs) = isSingleton xs
filterBag :: (a -> Bool) -> Bag a -> Bag a
filterBag _ EmptyBag = EmptyBag
filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag
filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2
where sat1 = filterBag pred b1
sat2 = filterBag pred b2
filterBag pred (ListBag vs) = listToBag (filter pred vs)
filterBagM :: Monad m => (a -> m Bool) -> Bag a -> m (Bag a)
filterBagM _ EmptyBag = return EmptyBag
filterBagM pred b@(UnitBag val) = do
flag <- pred val
if flag then return b
else return EmptyBag
filterBagM pred (TwoBags b1 b2) = do
sat1 <- filterBagM pred b1
sat2 <- filterBagM pred b2
return (sat1 `unionBags` sat2)
filterBagM pred (ListBag vs) = do
sat <- filterM pred vs
return (listToBag sat)
allBag :: (a -> Bool) -> Bag a -> Bool
allBag _ EmptyBag = True
allBag p (UnitBag v) = p v
allBag p (TwoBags b1 b2) = allBag p b1 && allBag p b2
allBag p (ListBag xs) = all p xs
anyBag :: (a -> Bool) -> Bag a -> Bool
anyBag _ EmptyBag = False
anyBag p (UnitBag v) = p v
anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2
anyBag p (ListBag xs) = any p xs
anyBagM :: Monad m => (a -> m Bool) -> Bag a -> m Bool
anyBagM _ EmptyBag = return False
anyBagM p (UnitBag v) = p v
anyBagM p (TwoBags b1 b2) = do flag <- anyBagM p b1
if flag then return True
else anyBagM p b2
anyBagM p (ListBag xs) = anyM p xs
concatBag :: Bag (Bag a) -> Bag a
concatBag bss = foldr add emptyBag bss
where
add bs rs = bs `unionBags` rs
catBagMaybes :: Bag (Maybe a) -> Bag a
catBagMaybes bs = foldr add emptyBag bs
where
add Nothing rs = rs
add (Just x) rs = x `consBag` rs
partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predictate -},
Bag a {- Don't -})
partitionBag _ EmptyBag = (EmptyBag, EmptyBag)
partitionBag pred b@(UnitBag val)
= if pred val then (b, EmptyBag) else (EmptyBag, b)
partitionBag pred (TwoBags b1 b2)
= (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
where (sat1, fail1) = partitionBag pred b1
(sat2, fail2) = partitionBag pred b2
partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails)
where (sats, fails) = partition pred vs
partitionBagWith :: (a -> Either b c) -> Bag a
-> (Bag b {- Left -},
Bag c {- Right -})
partitionBagWith _ EmptyBag = (EmptyBag, EmptyBag)
partitionBagWith pred (UnitBag val)
= case pred val of
Left a -> (UnitBag a, EmptyBag)
Right b -> (EmptyBag, UnitBag b)
partitionBagWith pred (TwoBags b1 b2)
= (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
where (sat1, fail1) = partitionBagWith pred b1
(sat2, fail2) = partitionBagWith pred b2
partitionBagWith pred (ListBag vs) = (listToBag sats, listToBag fails)
where (sats, fails) = partitionWith pred vs
foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative
-> (a -> r) -- Replace UnitBag with this
-> r -- Replace EmptyBag with this
-> Bag a
-> r
{- Standard definition
foldBag t u e EmptyBag = e
foldBag t u e (UnitBag x) = u x
foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2)
foldBag t u e (ListBag xs) = foldr (t.u) e xs
-}
-- More tail-recursive definition, exploiting associativity of "t"
foldBag _ _ e EmptyBag = e
foldBag t u e (UnitBag x) = u x `t` e
foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
foldBag t u e (ListBag xs) = foldr (t.u) e xs
mapBag :: (a -> b) -> Bag a -> Bag b
mapBag = fmap
concatMapBag :: (a -> Bag b) -> Bag a -> Bag b
concatMapBag _ EmptyBag = EmptyBag
concatMapBag f (UnitBag x) = f x
concatMapBag f (TwoBags b1 b2) = unionBags (concatMapBag f b1) (concatMapBag f b2)
concatMapBag f (ListBag xs) = foldr (unionBags . f) emptyBag xs
concatMapBagPair :: (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
concatMapBagPair _ EmptyBag = (EmptyBag, EmptyBag)
concatMapBagPair f (UnitBag x) = f x
concatMapBagPair f (TwoBags b1 b2) = (unionBags r1 r2, unionBags s1 s2)
where
(r1, s1) = concatMapBagPair f b1
(r2, s2) = concatMapBagPair f b2
concatMapBagPair f (ListBag xs) = foldr go (emptyBag, emptyBag) xs
where
go a (s1, s2) = (unionBags r1 s1, unionBags r2 s2)
where
(r1, r2) = f a
mapMaybeBag :: (a -> Maybe b) -> Bag a -> Bag b
mapMaybeBag _ EmptyBag = EmptyBag
mapMaybeBag f (UnitBag x) = case f x of
Nothing -> EmptyBag
Just y -> UnitBag y
mapMaybeBag f (TwoBags b1 b2) = unionBags (mapMaybeBag f b1) (mapMaybeBag f b2)
mapMaybeBag f (ListBag xs) = ListBag (mapMaybe f xs)
mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b)
mapBagM _ EmptyBag = return EmptyBag
mapBagM f (UnitBag x) = do r <- f x
return (UnitBag r)
mapBagM f (TwoBags b1 b2) = do r1 <- mapBagM f b1
r2 <- mapBagM f b2
return (TwoBags r1 r2)
mapBagM f (ListBag xs) = do rs <- mapM f xs
return (ListBag rs)
mapBagM_ :: Monad m => (a -> m b) -> Bag a -> m ()
mapBagM_ _ EmptyBag = return ()
mapBagM_ f (UnitBag x) = f x >> return ()
mapBagM_ f (TwoBags b1 b2) = mapBagM_ f b1 >> mapBagM_ f b2
mapBagM_ f (ListBag xs) = mapM_ f xs
flatMapBagM :: Monad m => (a -> m (Bag b)) -> Bag a -> m (Bag b)
flatMapBagM _ EmptyBag = return EmptyBag
flatMapBagM f (UnitBag x) = f x
flatMapBagM f (TwoBags b1 b2) = do r1 <- flatMapBagM f b1
r2 <- flatMapBagM f b2
return (r1 `unionBags` r2)
flatMapBagM f (ListBag xs) = foldrM k EmptyBag xs
where
k x b2 = do { b1 <- f x; return (b1 `unionBags` b2) }
flatMapBagPairM :: Monad m => (a -> m (Bag b, Bag c)) -> Bag a -> m (Bag b, Bag c)
flatMapBagPairM _ EmptyBag = return (EmptyBag, EmptyBag)
flatMapBagPairM f (UnitBag x) = f x
flatMapBagPairM f (TwoBags b1 b2) = do (r1,s1) <- flatMapBagPairM f b1
(r2,s2) <- flatMapBagPairM f b2
return (r1 `unionBags` r2, s1 `unionBags` s2)
flatMapBagPairM f (ListBag xs) = foldrM k (EmptyBag, EmptyBag) xs
where
k x (r2,s2) = do { (r1,s1) <- f x
; return (r1 `unionBags` r2, s1 `unionBags` s2) }
mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c)
mapAndUnzipBagM _ EmptyBag = return (EmptyBag, EmptyBag)
mapAndUnzipBagM f (UnitBag x) = do (r,s) <- f x
return (UnitBag r, UnitBag s)
mapAndUnzipBagM f (TwoBags b1 b2) = do (r1,s1) <- mapAndUnzipBagM f b1
(r2,s2) <- mapAndUnzipBagM f b2
return (TwoBags r1 r2, TwoBags s1 s2)
mapAndUnzipBagM f (ListBag xs) = do ts <- mapM f xs
let (rs,ss) = unzip ts
return (ListBag rs, ListBag ss)
mapAccumBagL ::(acc -> x -> (acc, y)) -- ^ combining function
-> acc -- ^ initial state
-> Bag x -- ^ inputs
-> (acc, Bag y) -- ^ final state, outputs
mapAccumBagL _ s EmptyBag = (s, EmptyBag)
mapAccumBagL f s (UnitBag x) = let (s1, x1) = f s x in (s1, UnitBag x1)
mapAccumBagL f s (TwoBags b1 b2) = let (s1, b1') = mapAccumBagL f s b1
(s2, b2') = mapAccumBagL f s1 b2
in (s2, TwoBags b1' b2')
mapAccumBagL f s (ListBag xs) = let (s', xs') = mapAccumL f s xs
in (s', ListBag xs')
mapAccumBagLM :: Monad m
=> (acc -> x -> m (acc, y)) -- ^ combining function
-> acc -- ^ initial state
-> Bag x -- ^ inputs
-> m (acc, Bag y) -- ^ final state, outputs
mapAccumBagLM _ s EmptyBag = return (s, EmptyBag)
mapAccumBagLM f s (UnitBag x) = do { (s1, x1) <- f s x; return (s1, UnitBag x1) }
mapAccumBagLM f s (TwoBags b1 b2) = do { (s1, b1') <- mapAccumBagLM f s b1
; (s2, b2') <- mapAccumBagLM f s1 b2
; return (s2, TwoBags b1' b2') }
mapAccumBagLM f s (ListBag xs) = do { (s', xs') <- mapAccumLM f s xs
; return (s', ListBag xs') }
listToBag :: [a] -> Bag a
listToBag [] = EmptyBag
listToBag [x] = UnitBag x
listToBag vs = ListBag vs
nonEmptyToBag :: NonEmpty a -> Bag a
nonEmptyToBag (x :| []) = UnitBag x
nonEmptyToBag (x :| xs) = ListBag (x : xs)
bagToList :: Bag a -> [a]
bagToList b = foldr (:) [] b
headMaybe :: Bag a -> Maybe a
headMaybe EmptyBag = Nothing
headMaybe (UnitBag v) = Just v
headMaybe (TwoBags b1 _) = headMaybe b1
headMaybe (ListBag l) = listToMaybe l
instance (Outputable a) => Outputable (Bag a) where
ppr bag = braces (pprWithCommas ppr (bagToList bag))
instance Data a => Data (Bag a) where
gfoldl k z b = z listToBag `k` bagToList b -- traverse abstract type abstractly
toConstr _ = abstractConstr $ "Bag("++show (typeOf (undefined::a))++")"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "Bag"
dataCast1 x = gcast1 x
instance Foldable.Foldable Bag where
foldr _ z EmptyBag = z
foldr k z (UnitBag x) = k x z
foldr k z (TwoBags b1 b2) = foldr k (foldr k z b2) b1
foldr k z (ListBag xs) = foldr k z xs
foldl _ z EmptyBag = z
foldl k z (UnitBag x) = k z x
foldl k z (TwoBags b1 b2) = foldl k (foldl k z b1) b2
foldl k z (ListBag xs) = foldl k z xs
foldl' _ z EmptyBag = z
foldl' k z (UnitBag x) = k z x
foldl' k z (TwoBags b1 b2) = let r1 = foldl' k z b1 in seq r1 $ foldl' k r1 b2
foldl' k z (ListBag xs) = foldl' k z xs
instance Traversable Bag where
traverse _ EmptyBag = pure EmptyBag
traverse f (UnitBag x) = UnitBag <$> f x
traverse f (TwoBags b1 b2) = TwoBags <$> traverse f b1 <*> traverse f b2
traverse f (ListBag xs) = ListBag <$> traverse f xs
instance IsList (Bag a) where
type Item (Bag a) = a
fromList = listToBag
toList = bagToList
instance Semigroup (Bag a) where
(<>) = unionBags
instance Monoid (Bag a) where
mempty = emptyBag
|