1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
-- (c) The University of Glasgow, 1997-2006
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
-- |
-- There are two principal string types used internally by GHC:
--
-- ['FastString']
--
-- * A compact, hash-consed, representation of character strings.
-- * Generated by 'fsLit'.
-- * You can get a 'GHC.Types.Unique.Unique' from them.
-- * Equality test is O(1) (it uses the Unique).
-- * Comparison is O(1) or O(n):
-- * O(n) but deterministic with lexical comparison (`lexicalCompareFS`)
-- * O(1) but non-deterministic with Unique comparison (`uniqCompareFS`)
-- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ftext'.
--
-- ['PtrString']
--
-- * Pointer and size of a Latin-1 encoded string.
-- * Practically no operations.
-- * Outputting them is fast.
-- * Generated by 'sLit'.
-- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ptext'
-- * Requires manual memory management.
-- Improper use may lead to memory leaks or dangling pointers.
-- * It assumes Latin-1 as the encoding, therefore it cannot represent
-- arbitrary Unicode strings.
--
-- Use 'PtrString' unless you want the facilities of 'FastString'.
module GHC.Data.FastString
(
-- * ByteString
bytesFS,
fastStringToByteString,
mkFastStringByteString,
fastZStringToByteString,
unsafeMkByteString,
-- * ShortByteString
fastStringToShortByteString,
mkFastStringShortByteString,
-- * FastZString
FastZString,
hPutFZS,
zString,
lengthFZS,
-- * FastStrings
FastString(..), -- not abstract, for now.
NonDetFastString (..),
LexicalFastString (..),
-- ** Construction
fsLit,
mkFastString,
mkFastStringBytes,
mkFastStringByteList,
mkFastString#,
-- ** Deconstruction
unpackFS, -- :: FastString -> String
unconsFS, -- :: FastString -> Maybe (Char, FastString)
-- ** Encoding
zEncodeFS,
-- ** Operations
uniqueOfFS,
lengthFS,
nullFS,
appendFS,
headFS,
concatFS,
consFS,
nilFS,
isUnderscoreFS,
lexicalCompareFS,
uniqCompareFS,
-- ** Outputting
hPutFS,
-- ** Internal
getFastStringTable,
getFastStringZEncCounter,
-- * PtrStrings
PtrString (..),
-- ** Construction
sLit,
mkPtrString#,
mkPtrString,
-- ** Deconstruction
unpackPtrString,
-- ** Operations
lengthPS
) where
#include "HsVersions.h"
import GHC.Prelude as Prelude
import GHC.Utils.Encoding
import GHC.Utils.IO.Unsafe
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Data.FastMutInt
import Control.Concurrent.MVar
import Control.DeepSeq
import Control.Monad
import Data.ByteString (ByteString)
import Data.ByteString.Short (ShortByteString)
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as BSC
import qualified Data.ByteString.Unsafe as BS
import qualified Data.ByteString.Short as SBS
#if !MIN_VERSION_bytestring(0,11,0)
import qualified Data.ByteString.Short.Internal as SBS
#endif
import Foreign.C
import System.IO
import Data.Data
import Data.IORef
import Data.Char
import Data.Semigroup as Semi
import Foreign
#if GHC_STAGE >= 2
import GHC.Conc.Sync (sharedCAF)
#endif
#if __GLASGOW_HASKELL__ < 811
import GHC.Base (unpackCString#,unpackNBytes#)
#endif
import GHC.Exts
import GHC.IO
-- | Gives the Modified UTF-8 encoded bytes corresponding to a 'FastString'
bytesFS, fastStringToByteString :: FastString -> ByteString
bytesFS = fastStringToByteString
{-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-}
fastStringToByteString f = SBS.fromShort $ fs_sbs f
fastStringToShortByteString :: FastString -> ShortByteString
fastStringToShortByteString = fs_sbs
fastZStringToByteString :: FastZString -> ByteString
fastZStringToByteString (FastZString bs) = bs
-- This will drop information if any character > '\xFF'
unsafeMkByteString :: String -> ByteString
unsafeMkByteString = BSC.pack
hashFastString :: FastString -> Int
hashFastString fs = hashStr $ fs_sbs fs
-- -----------------------------------------------------------------------------
newtype FastZString = FastZString ByteString
deriving NFData
hPutFZS :: Handle -> FastZString -> IO ()
hPutFZS handle (FastZString bs) = BS.hPut handle bs
zString :: FastZString -> String
zString (FastZString bs) =
inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen
lengthFZS :: FastZString -> Int
lengthFZS (FastZString bs) = BS.length bs
mkFastZStringString :: String -> FastZString
mkFastZStringString str = FastZString (BSC.pack str)
-- -----------------------------------------------------------------------------
{-| A 'FastString' is a UTF-8 encoded string together with a unique ID. All
'FastString's are stored in a global hashtable to support fast O(1)
comparison.
It is also associated with a lazy reference to the Z-encoding
of this string which is used by the compiler internally.
-}
data FastString = FastString {
uniq :: {-# UNPACK #-} !Int, -- unique id
n_chars :: {-# UNPACK #-} !Int, -- number of chars
fs_sbs :: {-# UNPACK #-} !ShortByteString,
fs_zenc :: FastZString
-- ^ Lazily computed Z-encoding of this string. See Note [Z-Encoding] in
-- GHC.Utils.Encoding.
--
-- Since 'FastString's are globally memoized this is computed at most
-- once for any given string.
}
instance Eq FastString where
f1 == f2 = uniq f1 == uniq f2
-- We don't provide any "Ord FastString" instance to force you to think about
-- which ordering you want:
-- * lexical: deterministic, O(n). Cf lexicalCompareFS and LexicalFastString.
-- * by unique: non-deterministic, O(1). Cf uniqCompareFS and NonDetFastString.
instance IsString FastString where
fromString = fsLit
instance Semi.Semigroup FastString where
(<>) = appendFS
instance Monoid FastString where
mempty = nilFS
mappend = (Semi.<>)
mconcat = concatFS
instance Show FastString where
show fs = show (unpackFS fs)
instance Data FastString where
-- don't traverse?
toConstr _ = abstractConstr "FastString"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "FastString"
instance NFData FastString where
rnf fs = seq fs ()
-- | Compare FastString lexically
--
-- If you don't care about the lexical ordering, use `uniqCompareFS` instead.
lexicalCompareFS :: FastString -> FastString -> Ordering
lexicalCompareFS fs1 fs2 =
if uniq fs1 == uniq fs2 then EQ else
utf8CompareShortByteString (fs_sbs fs1) (fs_sbs fs2)
-- perform a lexical comparison taking into account the Modified UTF-8
-- encoding we use (cf #18562)
-- | Compare FastString by their Unique (not lexically).
--
-- Much cheaper than `lexicalCompareFS` but non-deterministic!
uniqCompareFS :: FastString -> FastString -> Ordering
uniqCompareFS fs1 fs2 = compare (uniq fs1) (uniq fs2)
-- | Non-deterministic FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `uniqCompareFS` (i.e. which compares FastStrings on their Uniques). Hence it
-- is not deterministic from one run to the other.
newtype NonDetFastString
= NonDetFastString FastString
deriving (Eq,Data)
instance Ord NonDetFastString where
compare (NonDetFastString fs1) (NonDetFastString fs2) = uniqCompareFS fs1 fs2
instance Show NonDetFastString where
show (NonDetFastString fs) = show fs
-- | Lexical FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `lexicalCompareFS` (i.e. which compares FastStrings on their String
-- representation). Hence it is deterministic from one run to the other.
newtype LexicalFastString
= LexicalFastString FastString
deriving (Eq,Data)
instance Ord LexicalFastString where
compare (LexicalFastString fs1) (LexicalFastString fs2) = lexicalCompareFS fs1 fs2
instance Show LexicalFastString where
show (LexicalFastString fs) = show fs
-- -----------------------------------------------------------------------------
-- Construction
{-
Internally, the compiler will maintain a fast string symbol table, providing
sharing and fast comparison. Creation of new @FastString@s then covertly does a
lookup, re-using the @FastString@ if there was a hit.
The design of the FastString hash table allows for lockless concurrent reads
and updates to multiple buckets with low synchronization overhead.
See Note [Updating the FastString table] on how it's updated.
-}
data FastStringTable = FastStringTable
{-# UNPACK #-} !FastMutInt -- the unique ID counter shared with all buckets
{-# UNPACK #-} !FastMutInt -- number of computed z-encodings for all buckets
(Array# (IORef FastStringTableSegment)) -- concurrent segments
data FastStringTableSegment = FastStringTableSegment
{-# UNPACK #-} !(MVar ()) -- the lock for write in each segment
{-# UNPACK #-} !FastMutInt -- the number of elements
(MutableArray# RealWorld [FastString]) -- buckets in this segment
{-
Following parameters are determined based on:
* Benchmark based on testsuite/tests/utils/should_run/T14854.hs
* Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@:
on 2018-10-24, we have 13920 entries.
-}
segmentBits, numSegments, segmentMask, initialNumBuckets :: Int
segmentBits = 8
numSegments = 256 -- bit segmentBits
segmentMask = 0xff -- bit segmentBits - 1
initialNumBuckets = 64
hashToSegment# :: Int# -> Int#
hashToSegment# hash# = hash# `andI#` segmentMask#
where
!(I# segmentMask#) = segmentMask
hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# buckets# hash# =
(hash# `uncheckedIShiftRL#` segmentBits#) `remInt#` size#
where
!(I# segmentBits#) = segmentBits
size# = sizeofMutableArray# buckets#
maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment segmentRef = do
segment@(FastStringTableSegment lock counter old#) <- readIORef segmentRef
let oldSize# = sizeofMutableArray# old#
newSize# = oldSize# *# 2#
(I# n#) <- readFastMutInt counter
if isTrue# (n# <# newSize#) -- maximum load of 1
then return segment
else do
resizedSegment@(FastStringTableSegment _ _ new#) <- IO $ \s1# ->
case newArray# newSize# [] s1# of
(# s2#, arr# #) -> (# s2#, FastStringTableSegment lock counter arr# #)
forM_ [0 .. (I# oldSize#) - 1] $ \(I# i#) -> do
fsList <- IO $ readArray# old# i#
forM_ fsList $ \fs -> do
let -- Shall we store in hash value in FastString instead?
!(I# hash#) = hashFastString fs
idx# = hashToIndex# new# hash#
IO $ \s1# ->
case readArray# new# idx# s1# of
(# s2#, bucket #) -> case writeArray# new# idx# (fs: bucket) s2# of
s3# -> (# s3#, () #)
writeIORef segmentRef resizedSegment
return resizedSegment
{-# NOINLINE stringTable #-}
stringTable :: FastStringTable
stringTable = unsafePerformIO $ do
let !(I# numSegments#) = numSegments
!(I# initialNumBuckets#) = initialNumBuckets
loop a# i# s1#
| isTrue# (i# ==# numSegments#) = s1#
| otherwise = case newMVar () `unIO` s1# of
(# s2#, lock #) -> case newFastMutInt 0 `unIO` s2# of
(# s3#, counter #) -> case newArray# initialNumBuckets# [] s3# of
(# s4#, buckets# #) -> case newIORef
(FastStringTableSegment lock counter buckets#) `unIO` s4# of
(# s5#, segment #) -> case writeArray# a# i# segment s5# of
s6# -> loop a# (i# +# 1#) s6#
uid <- newFastMutInt 603979776 -- ord '$' * 0x01000000
n_zencs <- newFastMutInt 0
tab <- IO $ \s1# ->
case newArray# numSegments# (panic "string_table") s1# of
(# s2#, arr# #) -> case loop arr# 0# s2# of
s3# -> case unsafeFreezeArray# arr# s3# of
(# s4#, segments# #) ->
(# s4#, FastStringTable uid n_zencs segments# #)
-- use the support wired into the RTS to share this CAF among all images of
-- libHSghc
#if GHC_STAGE < 2
return tab
#else
sharedCAF tab getOrSetLibHSghcFastStringTable
-- from the RTS; thus we cannot use this mechanism when GHC_STAGE<2; the previous
-- RTS might not have this symbol
foreign import ccall unsafe "getOrSetLibHSghcFastStringTable"
getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a)
#endif
{-
We include the FastString table in the `sharedCAF` mechanism because we'd like
FastStrings created by a Core plugin to have the same uniques as corresponding
strings created by the host compiler itself. For example, this allows plugins
to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or
even re-invoke the parser.
In particular, the following little sanity test was failing in a plugin
prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not
be looked up /by the plugin/.
let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT"
putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts
`mkTcOcc` involves the lookup (or creation) of a FastString. Since the
plugin's FastString.string_table is empty, constructing the RdrName also
allocates new uniques for the FastStrings "GHC.NT.Type" and "NT". These
uniques are almost certainly unequal to the ones that the host compiler
originally assigned to those FastStrings. Thus the lookup fails since the
domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's
unique.
Maintaining synchronization of the two instances of this global is rather
difficult because of the uses of `unsafePerformIO` in this module. Not
synchronizing them risks breaking the rather major invariant that two
FastStrings with the same unique have the same string. Thus we use the
lower-level `sharedCAF` mechanism that relies on Globals.c.
-}
mkFastString# :: Addr# -> FastString
{-# INLINE mkFastString# #-}
mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr)
where ptr = Ptr a#
{- Note [Updating the FastString table]
We use a concurrent hashtable which contains multiple segments, each hash value
always maps to the same segment. Read is lock-free, write to the a segment
should acquire a lock for that segment to avoid race condition, writes to
different segments are independent.
The procedure goes like this:
1. Find out which segment to operate on based on the hash value
2. Read the relevant bucket and perform a look up of the string.
3. If it exists, return it.
4. Otherwise grab a unique ID, create a new FastString and atomically attempt
to update the relevant segment with this FastString:
* Resize the segment by doubling the number of buckets when the number of
FastStrings in this segment grows beyond the threshold.
* Double check that the string is not in the bucket. Another thread may have
inserted it while we were creating our string.
* Return the existing FastString if it exists. The one we preemptively
created will get GCed.
* Otherwise, insert and return the string we created.
-}
mkFastStringWith
:: (Int -> FastMutInt-> IO FastString) -> ShortByteString -> IO FastString
mkFastStringWith mk_fs sbs = do
FastStringTableSegment lock _ buckets# <- readIORef segmentRef
let idx# = hashToIndex# buckets# hash#
bucket <- IO $ readArray# buckets# idx#
res <- bucket_match bucket sbs
case res of
Just found -> return found
Nothing -> do
-- The withMVar below is not dupable. It can lead to deadlock if it is
-- only run partially and putMVar is not called after takeMVar.
noDuplicate
n <- get_uid
new_fs <- mk_fs n n_zencs
withMVar lock $ \_ -> insert new_fs
where
!(FastStringTable uid n_zencs segments#) = stringTable
get_uid = atomicFetchAddFastMut uid 1
!(I# hash#) = hashStr sbs
(# segmentRef #) = indexArray# segments# (hashToSegment# hash#)
insert fs = do
FastStringTableSegment _ counter buckets# <- maybeResizeSegment segmentRef
let idx# = hashToIndex# buckets# hash#
bucket <- IO $ readArray# buckets# idx#
res <- bucket_match bucket sbs
case res of
-- The FastString was added by another thread after previous read and
-- before we acquired the write lock.
Just found -> return found
Nothing -> do
IO $ \s1# ->
case writeArray# buckets# idx# (fs : bucket) s1# of
s2# -> (# s2#, () #)
_ <- atomicFetchAddFastMut counter 1
return fs
bucket_match :: [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match [] _ = return Nothing
bucket_match (fs@(FastString {fs_sbs=fs_sbs}) : ls) sbs
| fs_sbs == sbs = return (Just fs)
| otherwise = bucket_match ls sbs
mkFastStringBytes :: Ptr Word8 -> Int -> FastString
mkFastStringBytes !ptr !len =
-- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is
-- idempotent.
unsafeDupablePerformIO $ do
sbs <- newSBSFromPtr ptr len
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
newSBSFromPtr :: Ptr a -> Int -> IO ShortByteString
newSBSFromPtr (Ptr src#) (I# len#) =
IO $ \s ->
case newByteArray# len# s of { (# s, dst# #) ->
case copyAddrToByteArray# src# dst# 0# len# s of { s ->
case unsafeFreezeByteArray# dst# s of { (# s, ba# #) ->
(# s, SBS.SBS ba# #) }}}
-- | Create a 'FastString' by copying an existing 'ByteString'
mkFastStringByteString :: ByteString -> FastString
mkFastStringByteString bs =
let sbs = SBS.toShort bs in
inlinePerformIO $
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- | Create a 'FastString' from an existing 'ShortByteString' without
-- copying.
mkFastStringShortByteString :: ShortByteString -> FastString
mkFastStringShortByteString sbs =
inlinePerformIO $ mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- | Creates a UTF-8 encoded 'FastString' from a 'String'
mkFastString :: String -> FastString
mkFastString str =
inlinePerformIO $ do
sbs <- utf8EncodeShortByteString str
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@
mkFastStringByteList :: [Word8] -> FastString
mkFastStringByteList str = mkFastStringShortByteString (SBS.pack str)
-- | Creates a (lazy) Z-encoded 'FastString' from a 'ShortByteString' and
-- account the number of forced z-strings into the passed 'FastMutInt'.
mkZFastString :: FastMutInt -> ShortByteString -> FastZString
mkZFastString n_zencs sbs = unsafePerformIO $ do
_ <- atomicFetchAddFastMut n_zencs 1
return $ mkFastZStringString (zEncodeString (utf8DecodeShortByteString sbs))
mkNewFastStringShortByteString :: ShortByteString -> Int
-> FastMutInt -> IO FastString
mkNewFastStringShortByteString sbs uid n_zencs = do
let zstr = mkZFastString n_zencs sbs
chars <- countUTF8Chars sbs
return (FastString uid chars sbs zstr)
hashStr :: ShortByteString -> Int
-- produce a hash value between 0 & m (inclusive)
hashStr sbs@(SBS.SBS ba#) = loop 0# 0#
where
!(I# len#) = SBS.length sbs
loop h n =
if isTrue# (n ==# len#) then
I# h
else
let
-- DO NOT move this let binding! indexCharOffAddr# reads from the
-- pointer so we need to evaluate this based on the length check
-- above. Not doing this right caused #17909.
#if __GLASGOW_HASKELL__ >= 901
!c = int8ToInt# (indexInt8Array# ba# n)
#else
!c = indexInt8Array# ba# n
#endif
!h2 = (h *# 16777619#) `xorI#` c
in
loop h2 (n +# 1#)
-- -----------------------------------------------------------------------------
-- Operations
-- | Returns the length of the 'FastString' in characters
lengthFS :: FastString -> Int
lengthFS fs = n_chars fs
-- | Returns @True@ if the 'FastString' is empty
nullFS :: FastString -> Bool
nullFS fs = SBS.null $ fs_sbs fs
-- | Unpacks and decodes the FastString
unpackFS :: FastString -> String
unpackFS fs = utf8DecodeShortByteString $ fs_sbs fs
-- | Returns a Z-encoded version of a 'FastString'. This might be the
-- original, if it was already Z-encoded. The first time this
-- function is applied to a particular 'FastString', the results are
-- memoized.
--
zEncodeFS :: FastString -> FastZString
zEncodeFS fs = fs_zenc fs
appendFS :: FastString -> FastString -> FastString
appendFS fs1 fs2 = mkFastStringByteString
$ BS.append (bytesFS fs1) (bytesFS fs2)
concatFS :: [FastString] -> FastString
concatFS = mkFastStringShortByteString . mconcat . map fs_sbs
headFS :: FastString -> Char
headFS fs
| SBS.null $ fs_sbs fs = panic "headFS: Empty FastString"
headFS fs = head $ unpackFS fs
consFS :: Char -> FastString -> FastString
consFS c fs = mkFastString (c : unpackFS fs)
unconsFS :: FastString -> Maybe (Char, FastString)
unconsFS fs =
case unpackFS fs of
[] -> Nothing
(chr : str) -> Just (chr, mkFastString str)
uniqueOfFS :: FastString -> Int
uniqueOfFS fs = uniq fs
nilFS :: FastString
nilFS = mkFastString ""
isUnderscoreFS :: FastString -> Bool
isUnderscoreFS fs = fs == fsLit "_"
-- -----------------------------------------------------------------------------
-- Stats
getFastStringTable :: IO [[[FastString]]]
getFastStringTable =
forM [0 .. numSegments - 1] $ \(I# i#) -> do
let (# segmentRef #) = indexArray# segments# i#
FastStringTableSegment _ _ buckets# <- readIORef segmentRef
let bucketSize = I# (sizeofMutableArray# buckets#)
forM [0 .. bucketSize - 1] $ \(I# j#) ->
IO $ readArray# buckets# j#
where
!(FastStringTable _ _ segments#) = stringTable
getFastStringZEncCounter :: IO Int
getFastStringZEncCounter = readFastMutInt n_zencs
where
!(FastStringTable _ n_zencs _) = stringTable
-- -----------------------------------------------------------------------------
-- Outputting 'FastString's
-- |Outputs a 'FastString' with /no decoding at all/, that is, you
-- get the actual bytes in the 'FastString' written to the 'Handle'.
hPutFS :: Handle -> FastString -> IO ()
hPutFS handle fs = BS.hPut handle $ bytesFS fs
-- ToDo: we'll probably want an hPutFSLocal, or something, to output
-- in the current locale's encoding (for error messages and suchlike).
-- -----------------------------------------------------------------------------
-- PtrStrings, here for convenience only.
-- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars.
data PtrString = PtrString !(Ptr Word8) !Int
-- | Wrap an unboxed address into a 'PtrString'.
mkPtrString# :: Addr# -> PtrString
{-# INLINE mkPtrString# #-}
mkPtrString# a# = PtrString (Ptr a#) (ptrStrLength (Ptr a#))
-- | Encode a 'String' into a newly allocated 'PtrString' using Latin-1
-- encoding. The original string must not contain non-Latin-1 characters
-- (above codepoint @0xff@).
{-# INLINE mkPtrString #-}
mkPtrString :: String -> PtrString
mkPtrString s =
-- we don't use `unsafeDupablePerformIO` here to avoid potential memory leaks
-- and because someone might be using `eqAddr#` to check for string equality.
unsafePerformIO (do
let len = length s
p <- mallocBytes len
let
loop :: Int -> String -> IO ()
loop !_ [] = return ()
loop n (c:cs) = do
pokeByteOff p n (fromIntegral (ord c) :: Word8)
loop (1+n) cs
loop 0 s
return (PtrString p len)
)
-- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding.
-- This does not free the memory associated with 'PtrString'.
unpackPtrString :: PtrString -> String
unpackPtrString (PtrString (Ptr p#) (I# n#)) = unpackNBytes# p# n#
-- | Return the length of a 'PtrString'
lengthPS :: PtrString -> Int
lengthPS (PtrString _ n) = n
-- -----------------------------------------------------------------------------
-- under the carpet
#if !MIN_VERSION_GLASGOW_HASKELL(9,0,0,0)
foreign import ccall unsafe "strlen"
cstringLength# :: Addr# -> Int#
#endif
ptrStrLength :: Ptr Word8 -> Int
{-# INLINE ptrStrLength #-}
ptrStrLength (Ptr a) = I# (cstringLength# a)
{-# NOINLINE sLit #-}
sLit :: String -> PtrString
sLit x = mkPtrString x
{-# NOINLINE fsLit #-}
fsLit :: String -> FastString
fsLit x = mkFastString x
{-# RULES "slit"
forall x . sLit (unpackCString# x) = mkPtrString# x #-}
{-# RULES "fslit"
forall x . fsLit (unpackCString# x) = mkFastString# x #-}
|