summaryrefslogtreecommitdiff
path: root/compiler/GHC/Data/TrieMap.hs
blob: e2506e3d4c3b41e3e84d2cd500b651ffea661a7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
module GHC.Data.TrieMap(
   -- * Maps over 'Maybe' values
   MaybeMap,
   -- * Maps over 'List' values
   ListMap,
   -- * Maps over 'Literal's
   LiteralMap,
   -- * 'TrieMap' class
   TrieMap(..), insertTM, deleteTM,

   -- * Things helpful for adding additional Instances.
   (>.>), (|>), (|>>), XT,
   foldMaybe,
   -- * Map for leaf compression
   GenMap,
   lkG, xtG, mapG, fdG,
   xtList, lkList

 ) where

import GHC.Prelude

import GHC.Types.Literal
import GHC.Types.Unique.DFM
import GHC.Types.Unique( Unique )

import qualified Data.Map    as Map
import qualified Data.IntMap as IntMap
import GHC.Utils.Outputable
import Control.Monad( (>=>) )
import Data.Kind( Type )

{-
This module implements TrieMaps, which are finite mappings
whose key is a structured value like a CoreExpr or Type.

This file implements tries over general data structures.
Implementation for tries over Core Expressions/Types are
available in GHC.Core.Map.

The regular pattern for handling TrieMaps on data structures was first
described (to my knowledge) in Connelly and Morris's 1995 paper "A
generalization of the Trie Data Structure"; there is also an accessible
description of the idea in Okasaki's book "Purely Functional Data
Structures", Section 10.3.2

************************************************************************
*                                                                      *
                   The TrieMap class
*                                                                      *
************************************************************************
-}

type XT a = Maybe a -> Maybe a  -- How to alter a non-existent elt (Nothing)
                                --               or an existing elt (Just)

class TrieMap m where
   type Key m :: Type
   emptyTM  :: m a
   lookupTM :: forall b. Key m -> m b -> Maybe b
   alterTM  :: forall b. Key m -> XT b -> m b -> m b
   mapTM    :: (a->b) -> m a -> m b

   foldTM   :: (a -> b -> b) -> m a -> b -> b
      -- The unusual argument order here makes
      -- it easy to compose calls to foldTM;
      -- see for example fdE below

insertTM :: TrieMap m => Key m -> a -> m a -> m a
insertTM k v m = alterTM k (\_ -> Just v) m

deleteTM :: TrieMap m => Key m -> m a -> m a
deleteTM k m = alterTM k (\_ -> Nothing) m

----------------------
-- Recall that
--   Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c

(>.>) :: (a -> b) -> (b -> c) -> a -> c
-- Reverse function composition (do f first, then g)
infixr 1 >.>
(f >.> g) x = g (f x)
infixr 1 |>, |>>

(|>) :: a -> (a->b) -> b     -- Reverse application
x |> f = f x

----------------------
(|>>) :: TrieMap m2
      => (XT (m2 a) -> m1 (m2 a) -> m1 (m2 a))
      -> (m2 a -> m2 a)
      -> m1 (m2 a) -> m1 (m2 a)
(|>>) f g = f (Just . g . deMaybe)

deMaybe :: TrieMap m => Maybe (m a) -> m a
deMaybe Nothing  = emptyTM
deMaybe (Just m) = m

{-
************************************************************************
*                                                                      *
                   IntMaps
*                                                                      *
************************************************************************
-}

instance TrieMap IntMap.IntMap where
  type Key IntMap.IntMap = Int
  emptyTM = IntMap.empty
  lookupTM k m = IntMap.lookup k m
  alterTM = xtInt
  foldTM k m z = IntMap.foldr k z m
  mapTM f m = IntMap.map f m

xtInt :: Int -> XT a -> IntMap.IntMap a -> IntMap.IntMap a
xtInt k f m = IntMap.alter f k m

instance Ord k => TrieMap (Map.Map k) where
  type Key (Map.Map k) = k
  emptyTM = Map.empty
  lookupTM = Map.lookup
  alterTM k f m = Map.alter f k m
  foldTM k m z = Map.foldr k z m
  mapTM f m = Map.map f m


{-
Note [foldTM determinism]
~~~~~~~~~~~~~~~~~~~~~~~~~
We want foldTM to be deterministic, which is why we have an instance of
TrieMap for UniqDFM, but not for UniqFM. Here's an example of some things that
go wrong if foldTM is nondeterministic. Consider:

  f a b = return (a <> b)

Depending on the order that the typechecker generates constraints you
get either:

  f :: (Monad m, Monoid a) => a -> a -> m a

or:

  f :: (Monoid a, Monad m) => a -> a -> m a

The generated code will be different after desugaring as the dictionaries
will be bound in different orders, leading to potential ABI incompatibility.

One way to solve this would be to notice that the typeclasses could be
sorted alphabetically.

Unfortunately that doesn't quite work with this example:

  f a b = let x = a <> a; y = b <> b in x

where you infer:

  f :: (Monoid m, Monoid m1) => m1 -> m -> m1

or:

  f :: (Monoid m1, Monoid m) => m1 -> m -> m1

Here you could decide to take the order of the type variables in the type
according to depth first traversal and use it to order the constraints.

The real trouble starts when the user enables incoherent instances and
the compiler has to make an arbitrary choice. Consider:

  class T a b where
    go :: a -> b -> String

  instance (Show b) => T Int b where
    go a b = show a ++ show b

  instance (Show a) => T a Bool where
    go a b = show a ++ show b

  f = go 10 True

GHC is free to choose either dictionary to implement f, but for the sake of
determinism we'd like it to be consistent when compiling the same sources
with the same flags.

inert_dicts :: DictMap is implemented with a TrieMap. In getUnsolvedInerts it
gets converted to a bag of (Wanted) Cts using a fold. Then in
solve_simple_wanteds it's merged with other WantedConstraints. We want the
conversion to a bag to be deterministic. For that purpose we use UniqDFM
instead of UniqFM to implement the TrieMap.

See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for more details on how it's made
deterministic.
-}

instance TrieMap UniqDFM where
  type Key UniqDFM = Unique
  emptyTM = emptyUDFM
  lookupTM k m = lookupUDFM m k
  alterTM k f m = alterUDFM f m k
  foldTM k m z = foldUDFM k z m
  mapTM f m = mapUDFM f m

{-
************************************************************************
*                                                                      *
                   Maybes
*                                                                      *
************************************************************************

If              m is a map from k -> val
then (MaybeMap m) is a map from (Maybe k) -> val
-}

data MaybeMap m a = MM { mm_nothing  :: Maybe a, mm_just :: m a }

instance TrieMap m => TrieMap (MaybeMap m) where
   type Key (MaybeMap m) = Maybe (Key m)
   emptyTM  = MM { mm_nothing = Nothing, mm_just = emptyTM }
   lookupTM = lkMaybe lookupTM
   alterTM  = xtMaybe alterTM
   foldTM   = fdMaybe
   mapTM    = mapMb

mapMb :: TrieMap m => (a->b) -> MaybeMap m a -> MaybeMap m b
mapMb f (MM { mm_nothing = mn, mm_just = mj })
  = MM { mm_nothing = fmap f mn, mm_just = mapTM f mj }

lkMaybe :: (forall b. k -> m b -> Maybe b)
        -> Maybe k -> MaybeMap m a -> Maybe a
lkMaybe _  Nothing  = mm_nothing
lkMaybe lk (Just x) = mm_just >.> lk x

xtMaybe :: (forall b. k -> XT b -> m b -> m b)
        -> Maybe k -> XT a -> MaybeMap m a -> MaybeMap m a
xtMaybe _  Nothing  f m = m { mm_nothing  = f (mm_nothing m) }
xtMaybe tr (Just x) f m = m { mm_just = mm_just m |> tr x f }

fdMaybe :: TrieMap m => (a -> b -> b) -> MaybeMap m a -> b -> b
fdMaybe k m = foldMaybe k (mm_nothing m)
            . foldTM k (mm_just m)

{-
************************************************************************
*                                                                      *
                   Lists
*                                                                      *
************************************************************************
-}

data ListMap m a
  = LM { lm_nil  :: Maybe a
       , lm_cons :: m (ListMap m a) }

instance TrieMap m => TrieMap (ListMap m) where
   type Key (ListMap m) = [Key m]
   emptyTM  = LM { lm_nil = Nothing, lm_cons = emptyTM }
   lookupTM = lkList lookupTM
   alterTM  = xtList alterTM
   foldTM   = fdList
   mapTM    = mapList

instance (TrieMap m, Outputable a) => Outputable (ListMap m a) where
  ppr m = text "List elts" <+> ppr (foldTM (:) m [])

mapList :: TrieMap m => (a->b) -> ListMap m a -> ListMap m b
mapList f (LM { lm_nil = mnil, lm_cons = mcons })
  = LM { lm_nil = fmap f mnil, lm_cons = mapTM (mapTM f) mcons }

lkList :: TrieMap m => (forall b. k -> m b -> Maybe b)
        -> [k] -> ListMap m a -> Maybe a
lkList _  []     = lm_nil
lkList lk (x:xs) = lm_cons >.> lk x >=> lkList lk xs

xtList :: TrieMap m => (forall b. k -> XT b -> m b -> m b)
        -> [k] -> XT a -> ListMap m a -> ListMap m a
xtList _  []     f m = m { lm_nil  = f (lm_nil m) }
xtList tr (x:xs) f m = m { lm_cons = lm_cons m |> tr x |>> xtList tr xs f }

fdList :: forall m a b. TrieMap m
       => (a -> b -> b) -> ListMap m a -> b -> b
fdList k m = foldMaybe k          (lm_nil m)
           . foldTM    (fdList k) (lm_cons m)

foldMaybe :: (a -> b -> b) -> Maybe a -> b -> b
foldMaybe _ Nothing  b = b
foldMaybe k (Just a) b = k a b

{-
************************************************************************
*                                                                      *
                   Basic maps
*                                                                      *
************************************************************************
-}

type LiteralMap  a = Map.Map Literal a

{-
************************************************************************
*                                                                      *
                   GenMap
*                                                                      *
************************************************************************

Note [Compressed TrieMap]
~~~~~~~~~~~~~~~~~~~~~~~~~

The GenMap constructor augments TrieMaps with leaf compression.  This helps
solve the performance problem detailed in #9960: suppose we have a handful
H of entries in a TrieMap, each with a very large key, size K. If you fold over
such a TrieMap you'd expect time O(H). That would certainly be true of an
association list! But with TrieMap we actually have to navigate down a long
singleton structure to get to the elements, so it takes time O(K*H).  This
can really hurt on many type-level computation benchmarks:
see for example T9872d.

The point of a TrieMap is that you need to navigate to the point where only one
key remains, and then things should be fast.  So the point of a SingletonMap
is that, once we are down to a single (key,value) pair, we stop and
just use SingletonMap.

'EmptyMap' provides an even more basic (but essential) optimization: if there is
nothing in the map, don't bother building out the (possibly infinite) recursive
TrieMap structure!

Compressed triemaps are heavily used by GHC.Core.Map. So we have to mark some things
as INLINEABLE to permit specialization.
-}

data GenMap m a
   = EmptyMap
   | SingletonMap (Key m) a
   | MultiMap (m a)

instance (Outputable a, Outputable (m a)) => Outputable (GenMap m a) where
  ppr EmptyMap = text "Empty map"
  ppr (SingletonMap _ v) = text "Singleton map" <+> ppr v
  ppr (MultiMap m) = ppr m

-- TODO undecidable instance
instance (Eq (Key m), TrieMap m) => TrieMap (GenMap m) where
   type Key (GenMap m) = Key m
   emptyTM  = EmptyMap
   lookupTM = lkG
   alterTM  = xtG
   foldTM   = fdG
   mapTM    = mapG

--We want to be able to specialize these functions when defining eg
--tries over (GenMap CoreExpr) which requires INLINEABLE

{-# INLINEABLE lkG #-}
lkG :: (Eq (Key m), TrieMap m) => Key m -> GenMap m a -> Maybe a
lkG _ EmptyMap                         = Nothing
lkG k (SingletonMap k' v') | k == k'   = Just v'
                           | otherwise = Nothing
lkG k (MultiMap m)                     = lookupTM k m

{-# INLINEABLE xtG #-}
xtG :: (Eq (Key m), TrieMap m) => Key m -> XT a -> GenMap m a -> GenMap m a
xtG k f EmptyMap
    = case f Nothing of
        Just v  -> SingletonMap k v
        Nothing -> EmptyMap
xtG k f m@(SingletonMap k' v')
    | k' == k
    -- The new key matches the (single) key already in the tree.  Hence,
    -- apply @f@ to @Just v'@ and build a singleton or empty map depending
    -- on the 'Just'/'Nothing' response respectively.
    = case f (Just v') of
        Just v'' -> SingletonMap k' v''
        Nothing  -> EmptyMap
    | otherwise
    -- We've hit a singleton tree for a different key than the one we are
    -- searching for. Hence apply @f@ to @Nothing@. If result is @Nothing@ then
    -- we can just return the old map. If not, we need a map with *two*
    -- entries. The easiest way to do that is to insert two items into an empty
    -- map of type @m a@.
    = case f Nothing of
        Nothing  -> m
        Just v   -> emptyTM |> alterTM k' (const (Just v'))
                           >.> alterTM k  (const (Just v))
                           >.> MultiMap
xtG k f (MultiMap m) = MultiMap (alterTM k f m)

{-# INLINEABLE mapG #-}
mapG :: TrieMap m => (a -> b) -> GenMap m a -> GenMap m b
mapG _ EmptyMap = EmptyMap
mapG f (SingletonMap k v) = SingletonMap k (f v)
mapG f (MultiMap m) = MultiMap (mapTM f m)

{-# INLINEABLE fdG #-}
fdG :: TrieMap m => (a -> b -> b) -> GenMap m a -> b -> b
fdG _ EmptyMap = \z -> z
fdG k (SingletonMap _ v) = \z -> k v z
fdG k (MultiMap m) = foldTM k m