1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-orphans #-} -- Outputable
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Abstract Haskell syntax for expressions.
module GHC.Hs.Expr
( module Language.Haskell.Syntax.Expr
, module GHC.Hs.Expr
) where
#include "HsVersions.h"
import Language.Haskell.Syntax.Expr
-- friends:
import GHC.Prelude
import GHC.Hs.Decls
import GHC.Hs.Pat
import GHC.Hs.Lit
import Language.Haskell.Syntax.Extension
import GHC.Hs.Extension
import GHC.Hs.Type
import GHC.Hs.Binds
import GHC.Parser.Annotation
-- others:
import GHC.Tc.Types.Evidence
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Types.SourceText
import GHC.Types.SrcLoc
import GHC.Types.Var( InvisTVBinder )
import GHC.Core.ConLike
import GHC.Unit.Module (ModuleName)
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Data.FastString
import GHC.Core.Type
import GHC.Builtin.Types (mkTupleStr)
import GHC.Tc.Utils.TcType (TcType)
import {-# SOURCE #-} GHC.Tc.Types (TcLclEnv)
-- libraries:
import Data.Data hiding (Fixity(..))
import qualified Data.Data as Data (Fixity(..))
import qualified Data.Kind
import Data.Maybe (isJust)
import Data.Void ( Void )
{- *********************************************************************
* *
Expressions proper
* *
********************************************************************* -}
-- | Post-Type checking Expression
--
-- PostTcExpr is an evidence expression attached to the syntax tree by the
-- type checker (c.f. postTcType).
type PostTcExpr = HsExpr GhcTc
-- | Post-Type checking Table
--
-- We use a PostTcTable where there are a bunch of pieces of evidence, more
-- than is convenient to keep individually.
type PostTcTable = [(Name, PostTcExpr)]
-------------------------
-- Defining SyntaxExpr in two stages allows for better type inference, because
-- we can declare SyntaxExprGhc to be injective (and closed). Without injectivity,
-- noSyntaxExpr would be ambiguous.
type instance SyntaxExpr (GhcPass p) = SyntaxExprGhc p
type family SyntaxExprGhc (p :: Pass) = (r :: Data.Kind.Type) | r -> p where
SyntaxExprGhc 'Parsed = NoExtField
SyntaxExprGhc 'Renamed = SyntaxExprRn
SyntaxExprGhc 'Typechecked = SyntaxExprTc
-- | The function to use in rebindable syntax. See Note [NoSyntaxExpr].
data SyntaxExprRn = SyntaxExprRn (HsExpr GhcRn)
-- Why is the payload not just a Name?
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
| NoSyntaxExprRn
-- | An expression with wrappers, used for rebindable syntax
--
-- This should desugar to
--
-- > syn_res_wrap $ syn_expr (syn_arg_wraps[0] arg0)
-- > (syn_arg_wraps[1] arg1) ...
--
-- where the actual arguments come from elsewhere in the AST.
data SyntaxExprTc = SyntaxExprTc { syn_expr :: HsExpr GhcTc
, syn_arg_wraps :: [HsWrapper]
, syn_res_wrap :: HsWrapper }
| NoSyntaxExprTc -- See Note [NoSyntaxExpr]
-- | This is used for rebindable-syntax pieces that are too polymorphic
-- for tcSyntaxOp (trS_fmap and the mzip in ParStmt)
noExpr :: HsExpr (GhcPass p)
noExpr = HsLit noComments (HsString (SourceText "noExpr") (fsLit "noExpr"))
noSyntaxExpr :: forall p. IsPass p => SyntaxExpr (GhcPass p)
-- Before renaming, and sometimes after
-- See Note [NoSyntaxExpr]
noSyntaxExpr = case ghcPass @p of
GhcPs -> noExtField
GhcRn -> NoSyntaxExprRn
GhcTc -> NoSyntaxExprTc
-- | Make a 'SyntaxExpr GhcRn' from an expression
-- Used only in getMonadFailOp.
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
mkSyntaxExpr :: HsExpr GhcRn -> SyntaxExprRn
mkSyntaxExpr = SyntaxExprRn
-- | Make a 'SyntaxExpr' from a 'Name' (the "rn" is because this is used in the
-- renamer).
mkRnSyntaxExpr :: Name -> SyntaxExprRn
mkRnSyntaxExpr name = SyntaxExprRn $ HsVar noExtField $ noLocA name
instance Outputable SyntaxExprRn where
ppr (SyntaxExprRn expr) = ppr expr
ppr NoSyntaxExprRn = text "<no syntax expr>"
instance Outputable SyntaxExprTc where
ppr (SyntaxExprTc { syn_expr = expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap })
= sdocOption sdocPrintExplicitCoercions $ \print_co ->
getPprDebug $ \debug ->
if debug || print_co
then ppr expr <> braces (pprWithCommas ppr arg_wraps)
<> braces (ppr res_wrap)
else ppr expr
ppr NoSyntaxExprTc = text "<no syntax expr>"
-- | Extra data fields for a 'RecordUpd', added by the type checker
data RecordUpdTc = RecordUpdTc
{ rupd_cons :: [ConLike]
-- Filled in by the type checker to the
-- _non-empty_ list of DataCons that have
-- all the upd'd fields
, rupd_in_tys :: [Type] -- Argument types of *input* record type
, rupd_out_tys :: [Type] -- and *output* record type
-- For a data family, these are the type args of the
-- /representation/ type constructor
, rupd_wrap :: HsWrapper -- See note [Record Update HsWrapper]
}
-- | HsWrap appears only in typechecker output
-- Invariant: The contained Expr is *NOT* itself an HsWrap.
-- See Note [Detecting forced eta expansion] in "GHC.HsToCore.Expr".
-- This invariant is maintained by 'GHC.Hs.Utils.mkHsWrap'.
-- hs_syn is something like HsExpr or HsCmd
data HsWrap hs_syn = HsWrap HsWrapper -- the wrapper
(hs_syn GhcTc) -- the thing that is wrapped
deriving instance (Data (hs_syn GhcTc), Typeable hs_syn) => Data (HsWrap hs_syn)
type instance HsDoRn (GhcPass _) = GhcRn
type instance HsBracketRn (GhcPass _) = GhcRn
type instance PendingRnSplice' (GhcPass _) = PendingRnSplice
type instance PendingTcSplice' (GhcPass _) = PendingTcSplice
-- ---------------------------------------------------------------------
{- Note [Constructor cannot occur]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some data constructors can't occur in certain phases; e.g. the output
of the type checker never has OverLabel. We signal this by setting
the extension field to Void. For example:
type instance XOverLabel GhcTc = Void
dsExpr (HsOverLabel x _) = absurd x
It would be better to omit the pattern match altogether, but we
could only do that if the extension field was strict (#18764)
-}
-- API Annotations types
data EpAnnHsCase = EpAnnHsCase
{ hsCaseAnnCase :: EpaLocation
, hsCaseAnnOf :: EpaLocation
, hsCaseAnnsRest :: [AddEpAnn]
} deriving Data
data EpAnnUnboundVar = EpAnnUnboundVar
{ hsUnboundBackquotes :: (EpaLocation, EpaLocation)
, hsUnboundHole :: EpaLocation
} deriving Data
type instance XVar (GhcPass _) = NoExtField
type instance XRecFld (GhcPass _) = NoExtField
type instance XLam (GhcPass _) = NoExtField
-- OverLabel not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XOverLabel GhcPs = EpAnnCO
type instance XOverLabel GhcRn = EpAnnCO
type instance XOverLabel GhcTc = Void -- See Note [Constructor cannot occur]
-- ---------------------------------------------------------------------
type instance XVar (GhcPass _) = NoExtField
type instance XUnboundVar GhcPs = EpAnn EpAnnUnboundVar
type instance XUnboundVar GhcRn = NoExtField
type instance XUnboundVar GhcTc = HoleExprRef
-- We really don't need the whole HoleExprRef; just the IORef EvTerm
-- would be enough. But then deriving a Data instance becomes impossible.
-- Much, much easier just to define HoleExprRef with a Data instance and
-- store the whole structure.
type instance XRecFld (GhcPass _) = NoExtField
type instance XIPVar (GhcPass _) = EpAnnCO
type instance XOverLitE (GhcPass _) = EpAnnCO
type instance XLitE (GhcPass _) = EpAnnCO
type instance XLam (GhcPass _) = NoExtField
type instance XLamCase (GhcPass _) = EpAnn [AddEpAnn]
type instance XApp (GhcPass _) = EpAnnCO
type instance XAppTypeE GhcPs = SrcSpan -- Where the `@` lives
type instance XAppTypeE GhcRn = NoExtField
type instance XAppTypeE GhcTc = Type
-- OpApp not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XOpApp GhcPs = EpAnn [AddEpAnn]
type instance XOpApp GhcRn = Fixity
type instance XOpApp GhcTc = Void -- See Note [Constructor cannot occur]
-- SectionL, SectionR not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XSectionL GhcPs = EpAnnCO
type instance XSectionR GhcPs = EpAnnCO
type instance XSectionL GhcRn = EpAnnCO
type instance XSectionR GhcRn = EpAnnCO
type instance XSectionL GhcTc = Void -- See Note [Constructor cannot occur]
type instance XSectionR GhcTc = Void -- See Note [Constructor cannot occur]
type instance XNegApp GhcPs = EpAnn [AddEpAnn]
type instance XNegApp GhcRn = NoExtField
type instance XNegApp GhcTc = NoExtField
type instance XPar (GhcPass _) = EpAnn AnnParen
type instance XExplicitTuple GhcPs = EpAnn [AddEpAnn]
type instance XExplicitTuple GhcRn = NoExtField
type instance XExplicitTuple GhcTc = NoExtField
type instance XExplicitSum GhcPs = EpAnn AnnExplicitSum
type instance XExplicitSum GhcRn = NoExtField
type instance XExplicitSum GhcTc = [Type]
type instance XCase GhcPs = EpAnn EpAnnHsCase
type instance XCase GhcRn = NoExtField
type instance XCase GhcTc = NoExtField
type instance XIf GhcPs = EpAnn AnnsIf
type instance XIf GhcRn = NoExtField
type instance XIf GhcTc = NoExtField
type instance XMultiIf GhcPs = EpAnn [AddEpAnn]
type instance XMultiIf GhcRn = NoExtField
type instance XMultiIf GhcTc = Type
type instance XLet GhcPs = EpAnn AnnsLet
type instance XLet GhcRn = NoExtField
type instance XLet GhcTc = NoExtField
type instance XDo GhcPs = EpAnn AnnList
type instance XDo GhcRn = NoExtField
type instance XDo GhcTc = Type
type instance XExplicitList GhcPs = EpAnn AnnList
type instance XExplicitList GhcRn = NoExtField
type instance XExplicitList GhcTc = Type
-- GhcPs: ExplicitList includes all source-level
-- list literals, including overloaded ones
-- GhcRn and GhcTc: ExplicitList used only for list literals
-- that denote Haskell's built-in lists. Overloaded lists
-- have been expanded away in the renamer
-- See Note [Handling overloaded and rebindable constructs]
-- in GHC.Rename.Expr
type instance XRecordCon GhcPs = EpAnn [AddEpAnn]
type instance XRecordCon GhcRn = NoExtField
type instance XRecordCon GhcTc = PostTcExpr -- Instantiated constructor function
type instance XRecordUpd GhcPs = EpAnn [AddEpAnn]
type instance XRecordUpd GhcRn = NoExtField
type instance XRecordUpd GhcTc = RecordUpdTc
type instance XGetField GhcPs = EpAnnCO
type instance XGetField GhcRn = NoExtField
type instance XGetField GhcTc = Void
-- HsGetField is eliminated by the renamer. See [Handling overloaded
-- and rebindable constructs].
type instance XProjection GhcPs = EpAnn AnnProjection
type instance XProjection GhcRn = NoExtField
type instance XProjection GhcTc = Void
-- HsProjection is eliminated by the renamer. See [Handling overloaded
-- and rebindable constructs].
type instance XExprWithTySig GhcPs = EpAnn [AddEpAnn]
type instance XExprWithTySig GhcRn = NoExtField
type instance XExprWithTySig GhcTc = NoExtField
type instance XArithSeq GhcPs = EpAnn [AddEpAnn]
type instance XArithSeq GhcRn = NoExtField
type instance XArithSeq GhcTc = PostTcExpr
type instance XBracket (GhcPass _) = EpAnn [AddEpAnn]
type instance XRnBracketOut (GhcPass _) = NoExtField
type instance XTcBracketOut (GhcPass _) = NoExtField
type instance XSpliceE (GhcPass _) = EpAnnCO
type instance XProc (GhcPass _) = EpAnn [AddEpAnn]
type instance XStatic GhcPs = EpAnn [AddEpAnn]
type instance XStatic GhcRn = NameSet
type instance XStatic GhcTc = NameSet
type instance XTick (GhcPass _) = NoExtField
type instance XBinTick (GhcPass _) = NoExtField
type instance XPragE (GhcPass _) = NoExtField
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (body (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno (StmtLR GhcRn GhcRn (LocatedA (body GhcRn))) = SrcSpanAnnA
data AnnExplicitSum
= AnnExplicitSum {
aesOpen :: EpaLocation,
aesBarsBefore :: [EpaLocation],
aesBarsAfter :: [EpaLocation],
aesClose :: EpaLocation
} deriving Data
data AnnsLet
= AnnsLet {
alLet :: EpaLocation,
alIn :: EpaLocation
} deriving Data
data AnnFieldLabel
= AnnFieldLabel {
afDot :: Maybe EpaLocation
} deriving Data
data AnnProjection
= AnnProjection {
apOpen :: EpaLocation, -- ^ '('
apClose :: EpaLocation -- ^ ')'
} deriving Data
data AnnsIf
= AnnsIf {
aiIf :: EpaLocation,
aiThen :: EpaLocation,
aiElse :: EpaLocation,
aiThenSemi :: Maybe EpaLocation,
aiElseSemi :: Maybe EpaLocation
} deriving Data
-- ---------------------------------------------------------------------
type instance XSCC (GhcPass _) = EpAnn AnnPragma
type instance XXPragE (GhcPass _) = NoExtCon
type instance XCHsFieldLabel (GhcPass _) = EpAnn AnnFieldLabel
type instance XXHsFieldLabel (GhcPass _) = NoExtCon
type instance XPresent (GhcPass _) = EpAnn [AddEpAnn]
type instance XMissing GhcPs = EpAnn EpaLocation
type instance XMissing GhcRn = NoExtField
type instance XMissing GhcTc = Scaled Type
type instance XXTupArg (GhcPass _) = NoExtCon
tupArgPresent :: HsTupArg (GhcPass p) -> Bool
tupArgPresent (Present {}) = True
tupArgPresent (Missing {}) = False
{- *********************************************************************
* *
XXExpr: the extension constructor of HsExpr
* *
********************************************************************* -}
type instance XXExpr GhcPs = NoExtCon
type instance XXExpr GhcRn = HsExpansion (HsExpr GhcRn) (HsExpr GhcRn)
type instance XXExpr GhcTc = XXExprGhcTc
-- HsExpansion: see Note [Rebindable syntax and HsExpansion] below
data XXExprGhcTc
= WrapExpr -- Type and evidence application and abstractions
{-# UNPACK #-} !(HsWrap HsExpr)
| ExpansionExpr -- See Note [Rebindable syntax and HsExpansion] below
{-# UNPACK #-} !(HsExpansion (HsExpr GhcRn) (HsExpr GhcTc))
| ConLikeTc -- Result of typechecking a data-con
-- See Note [Typechecking data constructors] in
-- GHC.Tc.Gen.Head
-- The two arguments describe how to eta-expand
-- the data constructor when desugaring
ConLike [InvisTVBinder] [Scaled TcType]
{- *********************************************************************
* *
Pretty-printing expressions
* *
********************************************************************* -}
instance (OutputableBndrId p) => Outputable (HsExpr (GhcPass p)) where
ppr expr = pprExpr expr
-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: (OutputableBndrId p) => HsExpr (GhcPass p) -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr (HsPar {}) = True
-- applications don't display anything themselves
isQuietHsExpr (HsApp {}) = True
isQuietHsExpr (HsAppType {}) = True
isQuietHsExpr (OpApp {}) = True
isQuietHsExpr _ = False
pprBinds :: (OutputableBndrId idL, OutputableBndrId idR)
=> HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds b = pprDeeper (ppr b)
-----------------------
ppr_lexpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr :: forall p. (OutputableBndrId p)
=> HsExpr (GhcPass p) -> SDoc
ppr_expr (HsVar _ (L _ v)) = pprPrefixOcc v
ppr_expr (HsUnboundVar _ uv) = pprPrefixOcc uv
ppr_expr (HsRecFld _ f) = pprPrefixOcc f
ppr_expr (HsIPVar _ v) = ppr v
ppr_expr (HsOverLabel _ l) = char '#' <> ppr l
ppr_expr (HsLit _ lit) = ppr lit
ppr_expr (HsOverLit _ lit) = ppr lit
ppr_expr (HsPar _ e) = parens (ppr_lexpr e)
ppr_expr (HsPragE _ prag e) = sep [ppr prag, ppr_lexpr e]
ppr_expr e@(HsApp {}) = ppr_apps e []
ppr_expr e@(HsAppType {}) = ppr_apps e []
ppr_expr (OpApp _ e1 op e2)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_e1 = pprDebugParendExpr opPrec e1 -- In debug mode, add parens
pp_e2 = pprDebugParendExpr opPrec e2 -- to make precedence clear
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly pp_op
= hang pp_e1 2 (sep [pp_op, nest 2 pp_e2])
ppr_expr (NegApp _ e _) = char '-' <+> pprDebugParendExpr appPrec e
ppr_expr (SectionL _ expr op)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, text "x_ )"])
pp_infixly v = (sep [pp_expr, v])
ppr_expr (SectionR _ op expr)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, text "x_"])
4 (pp_expr <> rparen)
pp_infixly v = sep [v, pp_expr]
ppr_expr (ExplicitTuple _ exprs boxity)
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `Solo x`, not `(x)`
| [Present _ expr] <- exprs
, Boxed <- boxity
= hsep [text (mkTupleStr Boxed 1), ppr expr]
| otherwise
= tupleParens (boxityTupleSort boxity) (fcat (ppr_tup_args exprs))
where
ppr_tup_args [] = []
ppr_tup_args (Present _ e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es
ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es
punc (Present {} : _) = comma <> space
punc (Missing {} : _) = comma
punc (XTupArg {} : _) = comma <> space
punc [] = empty
ppr_expr (ExplicitSum _ alt arity expr)
= text "(#" <+> ppr_bars (alt - 1) <+> ppr expr <+> ppr_bars (arity - alt) <+> text "#)"
where
ppr_bars n = hsep (replicate n (char '|'))
ppr_expr (HsLam _ matches)
= pprMatches matches
ppr_expr (HsLamCase _ matches)
= sep [ sep [text "\\case"],
nest 2 (pprMatches matches) ]
ppr_expr (HsCase _ expr matches@(MG { mg_alts = L _ alts }))
= sep [ sep [text "case", nest 4 (ppr expr), text "of"],
pp_alts ]
where
pp_alts | null alts = text "{}"
| otherwise = nest 2 (pprMatches matches)
ppr_expr (HsIf _ e1 e2 e3)
= sep [hsep [text "if", nest 2 (ppr e1), text "then"],
nest 4 (ppr e2),
text "else",
nest 4 (ppr e3)]
ppr_expr (HsMultiIf _ alts)
= hang (text "if") 3 (vcat (map ppr_alt alts))
where ppr_alt (L _ (GRHS _ guards expr)) =
hang vbar 2 (ppr_one one_alt)
where
ppr_one [] = panic "ppr_exp HsMultiIf"
ppr_one (h:t) = hang h 2 (sep t)
one_alt = [ interpp'SP guards
, text "->" <+> pprDeeper (ppr expr) ]
ppr_alt (L _ (XGRHS x)) = ppr x
-- special case: let ... in let ...
ppr_expr (HsLet _ binds expr@(L _ (HsLet _ _ _)))
= sep [hang (text "let") 2 (hsep [pprBinds binds, text "in"]),
ppr_lexpr expr]
ppr_expr (HsLet _ binds expr)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr expr)]
ppr_expr (HsDo _ do_or_list_comp (L _ stmts)) = pprDo do_or_list_comp stmts
ppr_expr (ExplicitList _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon { rcon_con = con, rcon_flds = rbinds })
= hang pp_con 2 (ppr rbinds)
where
-- con :: ConLikeP (GhcPass p)
-- so we need case analysis to know to print it
pp_con = case ghcPass @p of
GhcPs -> ppr con
GhcRn -> ppr con
GhcTc -> ppr con
ppr_expr (RecordUpd { rupd_expr = L _ aexp, rupd_flds = flds })
= case flds of
Left rbinds -> hang (ppr aexp) 2 (braces (fsep (punctuate comma (map ppr rbinds))))
Right pbinds -> hang (ppr aexp) 2 (braces (fsep (punctuate comma (map ppr pbinds))))
ppr_expr (HsGetField { gf_expr = L _ fexp, gf_field = field })
= ppr fexp <> dot <> ppr field
ppr_expr (HsProjection { proj_flds = flds }) = parens (hcat (dot : (punctuate dot (map ppr flds))))
ppr_expr (ExprWithTySig _ expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq _ _ info) = brackets (ppr info)
ppr_expr (HsSpliceE _ s) = pprSplice s
ppr_expr (HsBracket _ b) = pprHsBracket b
ppr_expr (HsRnBracketOut _ e []) = ppr e
ppr_expr (HsRnBracketOut _ e ps) = ppr e $$ text "pending(rn)" <+> ppr ps
ppr_expr (HsTcBracketOut _ _wrap e []) = ppr e
ppr_expr (HsTcBracketOut _ _wrap e ps) = ppr e $$ text "pending(tc)" <+> pprIfTc @p (ppr ps)
ppr_expr (HsProc _ pat (L _ (HsCmdTop _ cmd)))
= hsep [text "proc", ppr pat, text "->", ppr cmd]
ppr_expr (HsStatic _ e)
= hsep [text "static", ppr e]
ppr_expr (HsTick _ tickish exp)
= pprTicks (ppr exp) $
ppr tickish <+> ppr_lexpr exp
ppr_expr (HsBinTick _ tickIdTrue tickIdFalse exp)
= pprTicks (ppr exp) $
hcat [text "bintick<",
ppr tickIdTrue,
text ",",
ppr tickIdFalse,
text ">(",
ppr exp, text ")"]
ppr_expr (XExpr x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
#endif
GhcRn -> ppr x
GhcTc -> ppr x
instance Outputable XXExprGhcTc where
ppr (WrapExpr (HsWrap co_fn e))
= pprHsWrapper co_fn (\_parens -> pprExpr e)
ppr (ExpansionExpr e)
= ppr e -- e is an HsExpansion, we print the original
-- expression (LHsExpr GhcPs), not the
-- desugared one (LHsExpr GhcTc).
ppr (ConLikeTc con _ _) = pprPrefixOcc con
-- Used in error messages generated by
-- the pattern match overlap checker
ppr_infix_expr :: forall p. (OutputableBndrId p) => HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (HsVar _ (L _ v)) = Just (pprInfixOcc v)
ppr_infix_expr (HsRecFld _ f) = Just (pprInfixOcc f)
ppr_infix_expr (HsUnboundVar _ occ) = Just (pprInfixOcc occ)
ppr_infix_expr (XExpr x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 901
GhcPs -> Nothing
#endif
GhcRn -> ppr_infix_expr_rn x
GhcTc -> ppr_infix_expr_tc x
ppr_infix_expr _ = Nothing
ppr_infix_expr_rn :: HsExpansion (HsExpr GhcRn) (HsExpr GhcRn) -> Maybe SDoc
ppr_infix_expr_rn (HsExpanded a _) = ppr_infix_expr a
ppr_infix_expr_tc :: XXExprGhcTc -> Maybe SDoc
ppr_infix_expr_tc (WrapExpr (HsWrap _ e)) = ppr_infix_expr e
ppr_infix_expr_tc (ExpansionExpr (HsExpanded a _)) = ppr_infix_expr a
ppr_infix_expr_tc (ConLikeTc {}) = Nothing
ppr_apps :: (OutputableBndrId p)
=> HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps (HsApp _ (L _ fun) arg) args
= ppr_apps fun (Left arg : args)
ppr_apps (HsAppType _ (L _ fun) arg) args
= ppr_apps fun (Right arg : args)
ppr_apps fun args = hang (ppr_expr fun) 2 (fsep (map pp args))
where
pp (Left arg) = ppr arg
-- pp (Right (LHsWcTypeX (HsWC { hswc_body = L _ arg })))
-- = char '@' <> pprHsType arg
pp (Right arg)
= text "@" <> ppr arg
pprDebugParendExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr p expr
= getPprDebug $ \case
True -> pprParendLExpr p expr
False -> pprLExpr expr
pprParendLExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr p (L _ e) = pprParendExpr p e
pprParendExpr :: (OutputableBndrId p)
=> PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr p expr
| hsExprNeedsParens p expr = parens (pprExpr expr)
| otherwise = pprExpr expr
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
-- | @'hsExprNeedsParens' p e@ returns 'True' if the expression @e@ needs
-- parentheses under precedence @p@.
hsExprNeedsParens :: forall p. IsPass p => PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens prec = go
where
go :: HsExpr (GhcPass p) -> Bool
go (HsVar{}) = False
go (HsUnboundVar{}) = False
go (HsIPVar{}) = False
go (HsOverLabel{}) = False
go (HsLit _ l) = hsLitNeedsParens prec l
go (HsOverLit _ ol) = hsOverLitNeedsParens prec ol
go (HsPar{}) = False
go (HsApp{}) = prec >= appPrec
go (HsAppType {}) = prec >= appPrec
go (OpApp{}) = prec >= opPrec
go (NegApp{}) = prec > topPrec
go (SectionL{}) = True
go (SectionR{}) = True
-- Special-case unary boxed tuple applications so that they are
-- parenthesized as `Identity (Solo x)`, not `Identity Solo x` (#18612)
-- See Note [One-tuples] in GHC.Builtin.Types
go (ExplicitTuple _ [Present{}] Boxed)
= prec >= appPrec
go (ExplicitTuple{}) = False
go (ExplicitSum{}) = False
go (HsLam{}) = prec > topPrec
go (HsLamCase{}) = prec > topPrec
go (HsCase{}) = prec > topPrec
go (HsIf{}) = prec > topPrec
go (HsMultiIf{}) = prec > topPrec
go (HsLet{}) = prec > topPrec
go (HsDo _ sc _)
| isComprehensionContext sc = False
| otherwise = prec > topPrec
go (ExplicitList{}) = False
go (RecordUpd{}) = False
go (ExprWithTySig{}) = prec >= sigPrec
go (ArithSeq{}) = False
go (HsPragE{}) = prec >= appPrec
go (HsSpliceE{}) = False
go (HsBracket{}) = False
go (HsRnBracketOut{}) = False
go (HsTcBracketOut{}) = False
go (HsProc{}) = prec > topPrec
go (HsStatic{}) = prec >= appPrec
go (HsTick _ _ (L _ e)) = go e
go (HsBinTick _ _ _ (L _ e)) = go e
go (RecordCon{}) = False
go (HsRecFld{}) = False
go (HsProjection{}) = True
go (HsGetField{}) = False
go (XExpr x) = case ghcPass @p of
GhcTc -> go_x_tc x
GhcRn -> go_x_rn x
#if __GLASGOW_HASKELL__ <= 900
GhcPs -> True
#endif
go_x_tc :: XXExprGhcTc -> Bool
go_x_tc (WrapExpr (HsWrap _ e)) = hsExprNeedsParens prec e
go_x_tc (ExpansionExpr (HsExpanded a _)) = hsExprNeedsParens prec a
go_x_tc (ConLikeTc {}) = False
go_x_rn :: HsExpansion (HsExpr GhcRn) (HsExpr GhcRn) -> Bool
go_x_rn (HsExpanded a _) = hsExprNeedsParens prec a
-- | @'parenthesizeHsExpr' p e@ checks if @'hsExprNeedsParens' p e@ is true,
-- and if so, surrounds @e@ with an 'HsPar'. Otherwise, it simply returns @e@.
parenthesizeHsExpr :: IsPass p => PprPrec -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
parenthesizeHsExpr p le@(L loc e)
| hsExprNeedsParens p e = L loc (HsPar noAnn le)
| otherwise = le
stripParensLHsExpr :: LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr (L _ (HsPar _ e)) = stripParensLHsExpr e
stripParensLHsExpr e = e
stripParensHsExpr :: HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr (HsPar _ (L _ e)) = stripParensHsExpr e
stripParensHsExpr e = e
isAtomicHsExpr :: forall p. IsPass p => HsExpr (GhcPass p) -> Bool
-- True of a single token
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsOverLabel {}) = True
isAtomicHsExpr (HsUnboundVar {}) = True
isAtomicHsExpr (HsRecFld{}) = True
isAtomicHsExpr (XExpr x)
| GhcTc <- ghcPass @p = go_x_tc x
| GhcRn <- ghcPass @p = go_x_rn x
where
go_x_tc (WrapExpr (HsWrap _ e)) = isAtomicHsExpr e
go_x_tc (ExpansionExpr (HsExpanded a _)) = isAtomicHsExpr a
go_x_tc (ConLikeTc {}) = True
go_x_rn (HsExpanded a _) = isAtomicHsExpr a
isAtomicHsExpr _ = False
instance Outputable (HsPragE (GhcPass p)) where
ppr (HsPragSCC _ st (StringLiteral stl lbl _)) =
pprWithSourceText st (text "{-# SCC")
-- no doublequotes if stl empty, for the case where the SCC was written
-- without quotes.
<+> pprWithSourceText stl (ftext lbl) <+> text "#-}"
{- *********************************************************************
* *
HsExpansion and rebindable syntax
* *
********************************************************************* -}
{- Note [Rebindable syntax and HsExpansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We implement rebindable syntax (RS) support by performing a desugaring
in the renamer. We transform GhcPs expressions affected by RS into the
appropriate desugared form, but **annotated with the original expression**.
Let us consider a piece of code like:
{-# LANGUAGE RebindableSyntax #-}
ifThenElse :: Char -> () -> () -> ()
ifThenElse _ _ _ = ()
x = if 'a' then () else True
The parsed AST for the RHS of x would look something like (slightly simplified):
L locif (HsIf (L loca 'a') (L loctrue ()) (L locfalse True))
Upon seeing such an AST with RS on, we could transform it into a
mere function call, as per the RS rules, equivalent to the
following function application:
ifThenElse 'a' () True
which doesn't typecheck. But GHC would report an error about
not being able to match the third argument's type (Bool) with the
expected type: (), in the expression _as desugared_, i.e in
the aforementioned function application. But the user never
wrote a function application! This would be pretty bad.
To remedy this, instead of transforming the original HsIf
node into mere applications of 'ifThenElse', we keep the
original 'if' expression around too, using the TTG
XExpr extension point to allow GHC to construct an
'HsExpansion' value that will keep track of the original
expression in its first field, and the desugared one in the
second field. The resulting renamed AST would look like:
L locif (XExpr
(HsExpanded
(HsIf (L loca 'a')
(L loctrue ())
(L locfalse True)
)
(App (L generatedSrcSpan
(App (L generatedSrcSpan
(App (L generatedSrcSpan (Var ifThenElse))
(L loca 'a')
)
)
(L loctrue ())
)
)
(L locfalse True)
)
)
)
When comes the time to typecheck the program, we end up calling
tcMonoExpr on the AST above. If this expression gives rise to
a type error, then it will appear in a context line and GHC
will pretty-print it using the 'Outputable (HsExpansion a b)'
instance defined below, which *only prints the original
expression*. This is the gist of the idea, but is not quite
enough to recover the error messages that we had with the
SyntaxExpr-based, typechecking/desugaring-to-core time
implementation of rebindable syntax. The key idea is to decorate
some elements of the desugared expression so as to be able to
give them a special treatment when typechecking the desugared
expression, to print a different context line or skip one
altogether.
Whenever we 'setSrcSpan' a 'generatedSrcSpan', we update a field in
TcLclEnv called 'tcl_in_gen_code', setting it to True, which indicates that we
entered generated code, i.e code fabricated by the compiler when rebinding some
syntax. If someone tries to push some error context line while that field is set
to True, the pushing won't actually happen and the context line is just dropped.
Once we 'setSrcSpan' a real span (for an expression that was in the original
source code), we set 'tcl_in_gen_code' back to False, indicating that we
"emerged from the generated code tunnel", and that the expressions we will be
processing are relevant to report in context lines again.
You might wonder why TcLclEnv has both
tcl_loc :: RealSrcSpan
tcl_in_gen_code :: Bool
Could we not store a Maybe RealSrcSpan? The problem is that we still
generate constraints when processing generated code, and a CtLoc must
contain a RealSrcSpan -- otherwise, error messages might appear
without source locations. So tcl_loc keeps the RealSrcSpan of the last
location spotted that wasn't generated; it's as good as we're going to
get in generated code. Once we get to sub-trees that are not
generated, then we update the RealSrcSpan appropriately, and set the
tcl_in_gen_code Bool to False.
---
A general recipe to follow this approach for new constructs could go as follows:
- Remove any GhcRn-time SyntaxExpr extensions to the relevant constructor for your
construct, in HsExpr or related syntax data types.
- At renaming-time:
- take your original node of interest (HsIf above)
- rename its subexpressions (condition, true branch, false branch above)
- construct the suitable "rebound"-and-renamed result (ifThenElse call
above), where the 'SrcSpan' attached to any _fabricated node_ (the
HsVar/HsApp nodes, above) is set to 'generatedSrcSpan'
- take both the original node and that rebound-and-renamed result and wrap
them in an XExpr: XExpr (HsExpanded <original node> <desugared>)
- At typechecking-time:
- remove any logic that was previously dealing with your rebindable
construct, typically involving [tc]SyntaxOp, SyntaxExpr and friends.
- the XExpr (HsExpanded ... ...) case in tcExpr already makes sure that we
typecheck the desugared expression while reporting the original one in
errors
-}
{- Note [Overview of record dot syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the note that explains all the moving parts for record dot
syntax.
The language extensions @OverloadedRecordDot@ and
@OverloadedRecordUpdate@ (providing "record dot syntax") are
implemented using the techniques of Note [Rebindable syntax and
HsExpansion].
When OverloadedRecordDot is enabled:
- Field selection expressions
- e.g. foo.bar.baz
- Have abstract syntax HsGetField
- After renaming are XExpr (HsExpanded (HsGetField ...) (getField @"..."...)) expressions
- Field selector expressions e.g. (.x.y)
- Have abstract syntax HsProjection
- After renaming are XExpr (HsExpanded (HsProjection ...) ((getField @"...") . (getField @"...") . ...) expressions
When OverloadedRecordUpdate is enabled:
- Record update expressions
- e.g. a{foo.bar=1, quux="corge", baz}
- Have abstract syntax RecordUpd
- With rupd_flds containting a Right
- See Note [RecordDotSyntax field updates] (in Language.Haskell.Syntax.Expr)
- After renaming are XExpr (HsExpanded (RecordUpd ...) (setField@"..." ...) expressions
- Note that this is true for all record updates even for those that do not involve '.'
When OverloadedRecordDot is enabled and RebindableSyntax is not
enabled the name 'getField' is resolved to GHC.Records.getField. When
OverloadedRecordDot is enabled and RebindableSyntax is enabled the
name 'getField' is whatever in-scope name that is.
When OverloadedRecordUpd is enabled and RebindableSyntax is not
enabled it is an error for now (temporary while we wait on native
setField support; see
https://gitlab.haskell.org/ghc/ghc/-/issues/16232). When
OverloadedRecordUpd is enabled and RebindableSyntax is enabled the
names 'getField' and 'setField' are whatever in-scope names they are.
-}
-- See Note [Rebindable syntax and HsExpansion] just above.
data HsExpansion a b
= HsExpanded a b
deriving Data
-- | Just print the original expression (the @a@).
instance (Outputable a, Outputable b) => Outputable (HsExpansion a b) where
ppr (HsExpanded a b) = ifPprDebug (vcat [ppr a, ppr b]) (ppr a)
{-
************************************************************************
* *
\subsection{Commands (in arrow abstractions)}
* *
************************************************************************
-}
type instance XCmdArrApp GhcPs = EpAnn AddEpAnn
type instance XCmdArrApp GhcRn = NoExtField
type instance XCmdArrApp GhcTc = Type
type instance XCmdArrForm GhcPs = EpAnn AnnList
type instance XCmdArrForm GhcRn = NoExtField
type instance XCmdArrForm GhcTc = NoExtField
type instance XCmdApp (GhcPass _) = EpAnnCO
type instance XCmdLam (GhcPass _) = NoExtField
type instance XCmdPar (GhcPass _) = EpAnn AnnParen
type instance XCmdCase GhcPs = EpAnn EpAnnHsCase
type instance XCmdCase GhcRn = NoExtField
type instance XCmdCase GhcTc = NoExtField
type instance XCmdLamCase (GhcPass _) = EpAnn [AddEpAnn]
type instance XCmdIf GhcPs = EpAnn AnnsIf
type instance XCmdIf GhcRn = NoExtField
type instance XCmdIf GhcTc = NoExtField
type instance XCmdLet GhcPs = EpAnn AnnsLet
type instance XCmdLet GhcRn = NoExtField
type instance XCmdLet GhcTc = NoExtField
type instance XCmdDo GhcPs = EpAnn AnnList
type instance XCmdDo GhcRn = NoExtField
type instance XCmdDo GhcTc = Type
type instance XCmdWrap (GhcPass _) = NoExtField
type instance XXCmd GhcPs = NoExtCon
type instance XXCmd GhcRn = NoExtCon
type instance XXCmd GhcTc = HsWrap HsCmd
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr))))]
= SrcSpanAnnL
-- If cmd :: arg1 --> res
-- wrap :: arg1 "->" arg2
-- Then (XCmd (HsWrap wrap cmd)) :: arg2 --> res
data CmdTopTc
= CmdTopTc Type -- Nested tuple of inputs on the command's stack
Type -- return type of the command
(CmdSyntaxTable GhcTc) -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcPs = NoExtField
type instance XCmdTop GhcRn = CmdSyntaxTable GhcRn -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcTc = CmdTopTc
type instance XXCmdTop (GhcPass _) = NoExtCon
instance (OutputableBndrId p) => Outputable (HsCmd (GhcPass p)) where
ppr cmd = pprCmd cmd
-----------------------
-- pprCmd and pprLCmd call pprDeeper;
-- the underscore versions do not
pprLCmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
pprLCmd (L _ c) = pprCmd c
pprCmd :: (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
pprCmd c | isQuietHsCmd c = ppr_cmd c
| otherwise = pprDeeper (ppr_cmd c)
isQuietHsCmd :: HsCmd id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsCmd (HsCmdPar {}) = True
-- applications don't display anything themselves
isQuietHsCmd (HsCmdApp {}) = True
isQuietHsCmd _ = False
-----------------------
ppr_lcmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
ppr_lcmd c = ppr_cmd (unLoc c)
ppr_cmd :: forall p. (OutputableBndrId p
) => HsCmd (GhcPass p) -> SDoc
ppr_cmd (HsCmdPar _ c) = parens (ppr_lcmd c)
ppr_cmd (HsCmdApp _ c e)
= let (fun, args) = collect_args c [e] in
hang (ppr_lcmd fun) 2 (sep (map ppr args))
where
collect_args (L _ (HsCmdApp _ fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_cmd (HsCmdLam _ matches)
= pprMatches matches
ppr_cmd (HsCmdCase _ expr matches)
= sep [ sep [text "case", nest 4 (ppr expr), text "of"],
nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdLamCase _ matches)
= sep [ text "\\case", nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdIf _ _ e ct ce)
= sep [hsep [text "if", nest 2 (ppr e), text "then"],
nest 4 (ppr ct),
text "else",
nest 4 (ppr ce)]
-- special case: let ... in let ...
ppr_cmd (HsCmdLet _ binds cmd@(L _ (HsCmdLet {})))
= sep [hang (text "let") 2 (hsep [pprBinds binds, text "in"]),
ppr_lcmd cmd]
ppr_cmd (HsCmdLet _ binds cmd)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr cmd)]
ppr_cmd (HsCmdDo _ (L _ stmts)) = pprDo ArrowExpr stmts
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, larrowt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp False)
= hsep [ppr_lexpr arg, arrowt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, larrowtt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp False)
= hsep [ppr_lexpr arg, arrowtt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrForm _ (L _ op) ps_fix rn_fix args)
| HsVar _ (L _ v) <- op
= ppr_cmd_infix v
| GhcTc <- ghcPass @p
, XExpr (ConLikeTc c _ _) <- op
= ppr_cmd_infix (conLikeName c)
| otherwise
= fall_through
where
fall_through = hang (text "(|" <+> ppr_expr op)
4 (sep (map (pprCmdArg.unLoc) args) <+> text "|)")
ppr_cmd_infix :: OutputableBndr v => v -> SDoc
ppr_cmd_infix v
| [arg1, arg2] <- args
, isJust rn_fix || ps_fix == Infix
= hang (pprCmdArg (unLoc arg1))
4 (sep [ pprInfixOcc v, pprCmdArg (unLoc arg2)])
| otherwise
= fall_through
ppr_cmd (XCmd x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
GhcRn -> ppr x
#endif
GhcTc -> case x of
HsWrap w cmd -> pprHsWrapper w (\_ -> parens (ppr_cmd cmd))
pprCmdArg :: (OutputableBndrId p) => HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (HsCmdTop _ cmd)
= ppr_lcmd cmd
instance (OutputableBndrId p) => Outputable (HsCmdTop (GhcPass p)) where
ppr = pprCmdArg
{-
************************************************************************
* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
* *
************************************************************************
-}
type instance XMG GhcPs b = NoExtField
type instance XMG GhcRn b = NoExtField
type instance XMG GhcTc b = MatchGroupTc
type instance XXMatchGroup (GhcPass _) b = NoExtCon
type instance XCMatch (GhcPass _) b = EpAnn [AddEpAnn]
type instance XXMatch (GhcPass _) b = NoExtCon
instance (OutputableBndrId pr, Outputable body)
=> Outputable (Match (GhcPass pr) body) where
ppr = pprMatch
isEmptyMatchGroup :: MatchGroup (GhcPass p) body -> Bool
isEmptyMatchGroup (MG { mg_alts = ms }) = null $ unLoc ms
-- | Is there only one RHS in this list of matches?
isSingletonMatchGroup :: [LMatch (GhcPass p) body] -> Bool
isSingletonMatchGroup matches
| [L _ match] <- matches
, Match { m_grhss = GRHSs { grhssGRHSs = [_] } } <- match
= True
| otherwise
= False
matchGroupArity :: MatchGroup (GhcPass id) body -> Arity
-- Precondition: MatchGroup is non-empty
-- This is called before type checking, when mg_arg_tys is not set
matchGroupArity (MG { mg_alts = alts })
| L _ (alt1:_) <- alts = length (hsLMatchPats alt1)
| otherwise = panic "matchGroupArity"
hsLMatchPats :: LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats (L _ (Match { m_pats = pats })) = pats
type instance XCGRHSs (GhcPass _) _ = NoExtField
type instance XXGRHSs (GhcPass _) _ = NoExtCon
data GrhsAnn
= GrhsAnn {
ga_vbar :: Maybe EpaLocation, -- TODO:AZ do we need this?
ga_sep :: AddEpAnn -- ^ Match separator location
} deriving (Data)
type instance XCGRHS (GhcPass _) _ = EpAnn GrhsAnn
-- Location of matchSeparator
-- TODO:AZ does this belong on the GRHS, or GRHSs?
type instance XXGRHS (GhcPass _) b = NoExtCon
pprMatches :: (OutputableBndrId idR, Outputable body)
=> MatchGroup (GhcPass idR) body -> SDoc
pprMatches MG { mg_alts = matches }
= vcat (map pprMatch (map unLoc (unLoc matches)))
-- Don't print the type; it's only a place-holder before typechecking
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndrId idR)
=> MatchGroup (GhcPass idR) (LHsExpr (GhcPass idR)) -> SDoc
pprFunBind matches = pprMatches matches
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprPatBind :: forall bndr p . (OutputableBndrId bndr,
OutputableBndrId p)
=> LPat (GhcPass bndr) -> GRHSs (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
pprPatBind pat grhss
= sep [ppr pat,
nest 2 (pprGRHSs (PatBindRhs :: HsMatchContext (GhcPass p)) grhss)]
pprMatch :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatch (Match { m_pats = pats, m_ctxt = ctxt, m_grhss = grhss })
= sep [ sep (herald : map (nest 2 . pprParendLPat appPrec) other_pats)
, nest 2 (pprGRHSs ctxt grhss) ]
where
(herald, other_pats)
= case ctxt of
FunRhs {mc_fun=L _ fun, mc_fixity=fixity, mc_strictness=strictness}
| SrcStrict <- strictness
-> assert (null pats) -- A strict variable binding
(char '!'<>pprPrefixOcc fun, pats)
| Prefix <- fixity
-> (pprPrefixOcc fun, pats) -- f x y z = e
-- Not pprBndr; the AbsBinds will
-- have printed the signature
| otherwise
-> case pats of
(p1:p2:rest)
| null rest -> (pp_infix, []) -- x &&& y = e
| otherwise -> (parens pp_infix, rest) -- (x &&& y) z = e
where
pp_infix = pprParendLPat opPrec p1
<+> pprInfixOcc fun
<+> pprParendLPat opPrec p2
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
LambdaExpr -> (char '\\', pats)
_ -> case pats of
[] -> (empty, [])
[pat] -> (ppr pat, []) -- No parens around the single pat in a case
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
pprGRHSs :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs ctxt (GRHSs _ grhss binds)
= vcat (map (pprGRHS ctxt . unLoc) grhss)
-- Print the "where" even if the contents of the binds is empty. Only
-- EmptyLocalBinds means no "where" keyword
$$ ppUnless (eqEmptyLocalBinds binds)
(text "where" $$ nest 4 (pprBinds binds))
pprGRHS :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS ctxt (GRHS _ [] body)
= pp_rhs ctxt body
pprGRHS ctxt (GRHS _ guards body)
= sep [vbar <+> interpp'SP guards, pp_rhs ctxt body]
pp_rhs :: Outputable body => HsMatchContext passL -> body -> SDoc
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
instance Outputable GrhsAnn where
ppr (GrhsAnn v s) = text "GrhsAnn" <+> ppr v <+> ppr s
{-
************************************************************************
* *
\subsection{Do stmts and list comprehensions}
* *
************************************************************************
-}
-- Extra fields available post typechecking for RecStmt.
data RecStmtTc =
RecStmtTc
{ recS_bind_ty :: Type -- S in (>>=) :: Q -> (R -> S) -> T
, recS_later_rets :: [PostTcExpr] -- (only used in the arrow version)
, recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1
-- with recS_later_ids and recS_rec_ids,
-- and are the expressions that should be
-- returned by the recursion.
-- They may not quite be the Ids themselves,
-- because the Id may be *polymorphic*, but
-- the returned thing has to be *monomorphic*,
-- so they may be type applications
, recS_ret_ty :: Type -- The type of
-- do { stmts; return (a,b,c) }
-- With rebindable syntax the type might not
-- be quite as simple as (m (tya, tyb, tyc)).
}
type instance XLastStmt (GhcPass _) (GhcPass _) b = NoExtField
type instance XBindStmt (GhcPass _) GhcPs b = EpAnn [AddEpAnn]
type instance XBindStmt (GhcPass _) GhcRn b = XBindStmtRn
type instance XBindStmt (GhcPass _) GhcTc b = XBindStmtTc
data XBindStmtRn = XBindStmtRn
{ xbsrn_bindOp :: SyntaxExpr GhcRn
, xbsrn_failOp :: FailOperator GhcRn
}
data XBindStmtTc = XBindStmtTc
{ xbstc_bindOp :: SyntaxExpr GhcTc
, xbstc_boundResultType :: Type -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_boundResultMult :: Mult -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_failOp :: FailOperator GhcTc
}
type instance XApplicativeStmt (GhcPass _) GhcPs b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcRn b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcTc b = Type
type instance XBodyStmt (GhcPass _) GhcPs b = NoExtField
type instance XBodyStmt (GhcPass _) GhcRn b = NoExtField
type instance XBodyStmt (GhcPass _) GhcTc b = Type
type instance XLetStmt (GhcPass _) (GhcPass _) b = EpAnn [AddEpAnn]
type instance XParStmt (GhcPass _) GhcPs b = NoExtField
type instance XParStmt (GhcPass _) GhcRn b = NoExtField
type instance XParStmt (GhcPass _) GhcTc b = Type
type instance XTransStmt (GhcPass _) GhcPs b = EpAnn [AddEpAnn]
type instance XTransStmt (GhcPass _) GhcRn b = NoExtField
type instance XTransStmt (GhcPass _) GhcTc b = Type
type instance XRecStmt (GhcPass _) GhcPs b = EpAnn AnnList
type instance XRecStmt (GhcPass _) GhcRn b = NoExtField
type instance XRecStmt (GhcPass _) GhcTc b = RecStmtTc
type instance XXStmtLR (GhcPass _) (GhcPass _) b = NoExtCon
type instance XParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtCon
type instance XApplicativeArgOne GhcPs = NoExtField
type instance XApplicativeArgOne GhcRn = FailOperator GhcRn
type instance XApplicativeArgOne GhcTc = FailOperator GhcTc
type instance XApplicativeArgMany (GhcPass _) = NoExtField
type instance XXApplicativeArg (GhcPass _) = NoExtCon
type instance ApplicativeArgStmCtxPass _ = GhcRn
instance (Outputable (StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))),
Outputable (XXParStmtBlock (GhcPass idL) (GhcPass idR)))
=> Outputable (ParStmtBlock (GhcPass idL) (GhcPass idR)) where
ppr (ParStmtBlock _ stmts _ _) = interpp'SP stmts
instance (OutputableBndrId pl, OutputableBndrId pr,
Anno (StmtLR (GhcPass pl) (GhcPass pr) body) ~ SrcSpanAnnA,
Outputable body)
=> Outputable (StmtLR (GhcPass pl) (GhcPass pr) body) where
ppr stmt = pprStmt stmt
pprStmt :: forall idL idR body . (OutputableBndrId idL,
OutputableBndrId idR,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA,
Outputable body)
=> (StmtLR (GhcPass idL) (GhcPass idR) body) -> SDoc
pprStmt (LastStmt _ expr m_dollar_stripped _)
= whenPprDebug (text "[last]") <+>
(case m_dollar_stripped of
Just True -> text "return $"
Just False -> text "return"
Nothing -> empty) <+>
ppr expr
pprStmt (BindStmt _ pat expr) = pprBindStmt pat expr
pprStmt (LetStmt _ binds) = hsep [text "let", pprBinds binds]
pprStmt (BodyStmt _ expr _ _) = ppr expr
pprStmt (ParStmt _ stmtss _ _) = sep (punctuate (text " | ") (map ppr stmtss))
pprStmt (TransStmt { trS_stmts = stmts, trS_by = by
, trS_using = using, trS_form = form })
= sep $ punctuate comma (map ppr stmts ++ [pprTransStmt by using form])
pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids
, recS_later_ids = later_ids })
= text "rec" <+>
vcat [ ppr_do_stmts (unLoc segment)
, whenPprDebug (vcat [ text "rec_ids=" <> ppr rec_ids
, text "later_ids=" <> ppr later_ids])]
pprStmt (ApplicativeStmt _ args mb_join)
= getPprStyle $ \style ->
if userStyle style
then pp_for_user
else pp_debug
where
-- make all the Applicative stuff invisible in error messages by
-- flattening the whole ApplicativeStmt nest back to a sequence
-- of statements.
pp_for_user = vcat $ concatMap flattenArg args
-- ppr directly rather than transforming here, because we need to
-- inject a "return" which is hard when we're polymorphic in the id
-- type.
flattenStmt :: ExprLStmt (GhcPass idL) -> [SDoc]
flattenStmt (L _ (ApplicativeStmt _ args _)) = concatMap flattenArg args
flattenStmt stmt = [ppr stmt]
flattenArg :: forall a . (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg (_, ApplicativeArgOne _ pat expr isBody)
| isBody = [ppr expr] -- See Note [Applicative BodyStmt]
| otherwise = [pprBindStmt pat expr]
flattenArg (_, ApplicativeArgMany _ stmts _ _ _) =
concatMap flattenStmt stmts
pp_debug =
let
ap_expr = sep (punctuate (text " |") (map pp_arg args))
in
whenPprDebug (if isJust mb_join then text "[join]" else empty) <+>
(if lengthAtLeast args 2 then parens else id) ap_expr
pp_arg :: (a, ApplicativeArg (GhcPass idL)) -> SDoc
pp_arg (_, applicativeArg) = ppr applicativeArg
pprBindStmt :: (Outputable pat, Outputable expr) => pat -> expr -> SDoc
pprBindStmt pat expr = hsep [ppr pat, larrow, ppr expr]
instance (OutputableBndrId idL)
=> Outputable (ApplicativeArg (GhcPass idL)) where
ppr = pprArg
pprArg :: forall idL . (OutputableBndrId idL) => ApplicativeArg (GhcPass idL) -> SDoc
pprArg (ApplicativeArgOne _ pat expr isBody)
| isBody = ppr expr -- See Note [Applicative BodyStmt]
| otherwise = pprBindStmt pat expr
pprArg (ApplicativeArgMany _ stmts return pat ctxt) =
ppr pat <+>
text "<-" <+>
pprDo ctxt (stmts ++
[noLocA (LastStmt noExtField (noLocA return) Nothing noSyntaxExpr)])
pprTransformStmt :: (OutputableBndrId p)
=> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
-> Maybe (LHsExpr (GhcPass p)) -> SDoc
pprTransformStmt bndrs using by
= sep [ text "then" <+> whenPprDebug (braces (ppr bndrs))
, nest 2 (ppr using)
, nest 2 (pprBy by)]
pprTransStmt :: Outputable body => Maybe body -> body -> TransForm -> SDoc
pprTransStmt by using ThenForm
= sep [ text "then", nest 2 (ppr using), nest 2 (pprBy by)]
pprTransStmt by using GroupForm
= sep [ text "then group", nest 2 (pprBy by), nest 2 (text "using" <+> ppr using)]
pprBy :: Outputable body => Maybe body -> SDoc
pprBy Nothing = empty
pprBy (Just e) = text "by" <+> ppr e
pprDo :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA
)
=> HsStmtContext any -> [LStmt (GhcPass p) body] -> SDoc
pprDo (DoExpr m) stmts =
ppr_module_name_prefix m <> text "do" <+> ppr_do_stmts stmts
pprDo GhciStmtCtxt stmts = text "do" <+> ppr_do_stmts stmts
pprDo ArrowExpr stmts = text "do" <+> ppr_do_stmts stmts
pprDo (MDoExpr m) stmts =
ppr_module_name_prefix m <> text "mdo" <+> ppr_do_stmts stmts
pprDo ListComp stmts = brackets $ pprComp stmts
pprDo MonadComp stmts = brackets $ pprComp stmts
pprDo _ _ = panic "pprDo" -- PatGuard, ParStmtCxt
ppr_module_name_prefix :: Maybe ModuleName -> SDoc
ppr_module_name_prefix = \case
Nothing -> empty
Just module_name -> ppr module_name <> char '.'
ppr_do_stmts :: (OutputableBndrId idL, OutputableBndrId idR,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA,
Outputable body)
=> [LStmtLR (GhcPass idL) (GhcPass idR) body] -> SDoc
-- Print a bunch of do stmts
ppr_do_stmts stmts = pprDeeperList vcat (map ppr stmts)
pprComp :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA)
=> [LStmt (GhcPass p) body] -> SDoc
pprComp quals -- Prints: body | qual1, ..., qualn
| Just (initStmts, L _ (LastStmt _ body _ _)) <- snocView quals
= if null initStmts
-- If there are no statements in a list comprehension besides the last
-- one, we simply treat it like a normal list. This does arise
-- occasionally in code that GHC generates, e.g., in implementations of
-- 'range' for derived 'Ix' instances for product datatypes with exactly
-- one constructor (e.g., see #12583).
then ppr body
else hang (ppr body <+> vbar) 2 (pprQuals initStmts)
| otherwise
= pprPanic "pprComp" (pprQuals quals)
pprQuals :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA)
=> [LStmt (GhcPass p) body] -> SDoc
-- Show list comprehension qualifiers separated by commas
pprQuals quals = interpp'SP quals
{-
************************************************************************
* *
Template Haskell quotation brackets
* *
************************************************************************
-}
newtype HsSplicedT = HsSplicedT DelayedSplice deriving (Data)
type instance XTypedSplice (GhcPass _) = EpAnn [AddEpAnn]
type instance XUntypedSplice (GhcPass _) = EpAnn [AddEpAnn]
type instance XQuasiQuote (GhcPass _) = NoExtField
type instance XSpliced (GhcPass _) = NoExtField
type instance XXSplice GhcPs = NoExtCon
type instance XXSplice GhcRn = NoExtCon
type instance XXSplice GhcTc = HsSplicedT
-- See Note [Running typed splices in the zonker]
-- These are the arguments that are passed to `GHC.Tc.Gen.Splice.runTopSplice`
data DelayedSplice =
DelayedSplice
TcLclEnv -- The local environment to run the splice in
(LHsExpr GhcRn) -- The original renamed expression
TcType -- The result type of running the splice, unzonked
(LHsExpr GhcTc) -- The typechecked expression to run and splice in the result
-- A Data instance which ignores the argument of 'DelayedSplice'.
instance Data DelayedSplice where
gunfold _ _ _ = panic "DelayedSplice"
toConstr a = mkConstr (dataTypeOf a) "DelayedSplice" [] Data.Prefix
dataTypeOf a = mkDataType "HsExpr.DelayedSplice" [toConstr a]
-- | Pending Renamer Splice
data PendingRnSplice
= PendingRnSplice UntypedSpliceFlavour SplicePointName (LHsExpr GhcRn)
-- | Pending Type-checker Splice
data PendingTcSplice
= PendingTcSplice SplicePointName (LHsExpr GhcTc)
{-
Note [Pending Splices]
~~~~~~~~~~~~~~~~~~~~~~
When we rename an untyped bracket, we name and lift out all the nested
splices, so that when the typechecker hits the bracket, it can
typecheck those nested splices without having to walk over the untyped
bracket code. So for example
[| f $(g x) |]
looks like
HsBracket (HsApp (HsVar "f") (HsSpliceE _ (g x)))
which the renamer rewrites to
HsRnBracketOut (HsApp (HsVar f) (HsSpliceE sn (g x)))
[PendingRnSplice UntypedExpSplice sn (g x)]
* The 'sn' is the Name of the splice point, the SplicePointName
* The PendingRnExpSplice gives the splice that splice-point name maps to;
and the typechecker can now conveniently find these sub-expressions
* The other copy of the splice, in the second argument of HsSpliceE
in the renamed first arg of HsRnBracketOut
is used only for pretty printing
There are four varieties of pending splices generated by the renamer,
distinguished by their UntypedSpliceFlavour
* Pending expression splices (UntypedExpSplice), e.g.,
[|$(f x) + 2|]
UntypedExpSplice is also used for
* quasi-quotes, where the pending expression expands to
$(quoter "...blah...")
(see GHC.Rename.Splice.makePending, HsQuasiQuote case)
* cross-stage lifting, where the pending expression expands to
$(lift x)
(see GHC.Rename.Splice.checkCrossStageLifting)
* Pending pattern splices (UntypedPatSplice), e.g.,
[| \$(f x) -> x |]
* Pending type splices (UntypedTypeSplice), e.g.,
[| f :: $(g x) |]
* Pending declaration (UntypedDeclSplice), e.g.,
[| let $(f x) in ... |]
There is a fifth variety of pending splice, which is generated by the type
checker:
* Pending *typed* expression splices, (PendingTcSplice), e.g.,
[||1 + $$(f 2)||]
It would be possible to eliminate HsRnBracketOut and use HsBracketOut for the
output of the renamer. However, when pretty printing the output of the renamer,
e.g., in a type error message, we *do not* want to print out the pending
splices. In contrast, when pretty printing the output of the type checker, we
*do* want to print the pending splices. So splitting them up seems to make
sense, although I hate to add another constructor to HsExpr.
-}
instance OutputableBndrId p
=> Outputable (HsSplicedThing (GhcPass p)) where
ppr (HsSplicedExpr e) = ppr_expr e
ppr (HsSplicedTy t) = ppr t
ppr (HsSplicedPat p) = ppr p
instance (OutputableBndrId p) => Outputable (HsSplice (GhcPass p)) where
ppr s = pprSplice s
pprPendingSplice :: (OutputableBndrId p)
=> SplicePointName -> LHsExpr (GhcPass p) -> SDoc
pprPendingSplice n e = angleBrackets (ppr n <> comma <+> ppr (stripParensLHsExpr e))
pprSpliceDecl :: (OutputableBndrId p)
=> HsSplice (GhcPass p) -> SpliceExplicitFlag -> SDoc
pprSpliceDecl e@HsQuasiQuote{} _ = pprSplice e
pprSpliceDecl e ExplicitSplice = text "$" <> ppr_splice_decl e
pprSpliceDecl e ImplicitSplice = ppr_splice_decl e
ppr_splice_decl :: (OutputableBndrId p)
=> HsSplice (GhcPass p) -> SDoc
ppr_splice_decl (HsUntypedSplice _ _ n e) = ppr_splice empty n e empty
ppr_splice_decl e = pprSplice e
pprSplice :: forall p. (OutputableBndrId p) => HsSplice (GhcPass p) -> SDoc
pprSplice (HsTypedSplice _ DollarSplice n e)
= ppr_splice (text "$$") n e empty
pprSplice (HsTypedSplice _ BareSplice _ _ )
= panic "Bare typed splice" -- impossible
pprSplice (HsUntypedSplice _ DollarSplice n e)
= ppr_splice (text "$") n e empty
pprSplice (HsUntypedSplice _ BareSplice n e)
= ppr_splice empty n e empty
pprSplice (HsQuasiQuote _ n q _ s) = ppr_quasi n q s
pprSplice (HsSpliced _ _ thing) = ppr thing
pprSplice (XSplice x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> noExtCon x
GhcRn -> noExtCon x
#endif
GhcTc -> case x of
HsSplicedT _ -> text "Unevaluated typed splice"
ppr_quasi :: OutputableBndr p => p -> p -> FastString -> SDoc
ppr_quasi n quoter quote = whenPprDebug (brackets (ppr n)) <>
char '[' <> ppr quoter <> vbar <>
ppr quote <> text "|]"
ppr_splice :: (OutputableBndrId p)
=> SDoc -> (IdP (GhcPass p)) -> LHsExpr (GhcPass p) -> SDoc -> SDoc
ppr_splice herald n e trail
= herald <> whenPprDebug (brackets (ppr n)) <> ppr e <> trail
type instance XExpBr (GhcPass _) = NoExtField
type instance XPatBr (GhcPass _) = NoExtField
type instance XDecBrL (GhcPass _) = NoExtField
type instance XDecBrG (GhcPass _) = NoExtField
type instance XTypBr (GhcPass _) = NoExtField
type instance XVarBr (GhcPass _) = NoExtField
type instance XTExpBr (GhcPass _) = NoExtField
type instance XXBracket (GhcPass _) = NoExtCon
instance OutputableBndrId p
=> Outputable (HsBracket (GhcPass p)) where
ppr = pprHsBracket
pprHsBracket :: (OutputableBndrId p) => HsBracket (GhcPass p) -> SDoc
pprHsBracket (ExpBr _ e) = thBrackets empty (ppr e)
pprHsBracket (PatBr _ p) = thBrackets (char 'p') (ppr p)
pprHsBracket (DecBrG _ gp) = thBrackets (char 'd') (ppr gp)
pprHsBracket (DecBrL _ ds) = thBrackets (char 'd') (vcat (map ppr ds))
pprHsBracket (TypBr _ t) = thBrackets (char 't') (ppr t)
pprHsBracket (VarBr _ True n)
= char '\'' <> pprPrefixOcc (unLoc n)
pprHsBracket (VarBr _ False n)
= text "''" <> pprPrefixOcc (unLoc n)
pprHsBracket (TExpBr _ e) = thTyBrackets (ppr e)
thBrackets :: SDoc -> SDoc -> SDoc
thBrackets pp_kind pp_body = char '[' <> pp_kind <> vbar <+>
pp_body <+> text "|]"
thTyBrackets :: SDoc -> SDoc
thTyBrackets pp_body = text "[||" <+> pp_body <+> text "||]"
instance Outputable PendingRnSplice where
ppr (PendingRnSplice _ n e) = pprPendingSplice n e
instance Outputable PendingTcSplice where
ppr (PendingTcSplice n e) = pprPendingSplice n e
{-
************************************************************************
* *
\subsection{Enumerations and list comprehensions}
* *
************************************************************************
-}
instance OutputableBndrId p
=> Outputable (ArithSeqInfo (GhcPass p)) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot :: SDoc
pp_dotdot = text " .. "
{-
************************************************************************
* *
\subsection{HsMatchCtxt}
* *
************************************************************************
-}
instance OutputableBndrId p => Outputable (HsMatchContext (GhcPass p)) where
ppr m@(FunRhs{}) = text "FunRhs" <+> ppr (mc_fun m) <+> ppr (mc_fixity m)
ppr LambdaExpr = text "LambdaExpr"
ppr CaseAlt = text "CaseAlt"
ppr IfAlt = text "IfAlt"
ppr ProcExpr = text "ProcExpr"
ppr PatBindRhs = text "PatBindRhs"
ppr PatBindGuards = text "PatBindGuards"
ppr RecUpd = text "RecUpd"
ppr (StmtCtxt _) = text "StmtCtxt _"
ppr ThPatSplice = text "ThPatSplice"
ppr ThPatQuote = text "ThPatQuote"
ppr PatSyn = text "PatSyn"
-----------------
instance OutputableBndrId p
=> Outputable (HsStmtContext (GhcPass p)) where
ppr = pprStmtContext
-- Used to generate the string for a *runtime* error message
matchContextErrString :: OutputableBndrId p
=> HsMatchContext (GhcPass p) -> SDoc
matchContextErrString (FunRhs{mc_fun=L _ fun}) = text "function" <+> ppr fun
matchContextErrString CaseAlt = text "case"
matchContextErrString IfAlt = text "multi-way if"
matchContextErrString PatBindRhs = text "pattern binding"
matchContextErrString PatBindGuards = text "pattern binding guards"
matchContextErrString RecUpd = text "record update"
matchContextErrString LambdaExpr = text "lambda"
matchContextErrString ProcExpr = text "proc"
matchContextErrString ThPatSplice = panic "matchContextErrString" -- Not used at runtime
matchContextErrString ThPatQuote = panic "matchContextErrString" -- Not used at runtime
matchContextErrString PatSyn = panic "matchContextErrString" -- Not used at runtime
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (TransStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = text "pattern guard"
matchContextErrString (StmtCtxt GhciStmtCtxt) = text "interactive GHCi command"
matchContextErrString (StmtCtxt (DoExpr m)) = prependQualified m (text "'do' block")
matchContextErrString (StmtCtxt ArrowExpr) = text "'do' block"
matchContextErrString (StmtCtxt (MDoExpr m)) = prependQualified m (text "'mdo' block")
matchContextErrString (StmtCtxt ListComp) = text "list comprehension"
matchContextErrString (StmtCtxt MonadComp) = text "monad comprehension"
pprMatchInCtxt :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatchInCtxt match = hang (text "In" <+> pprMatchContext (m_ctxt match)
<> colon)
4 (pprMatch match)
pprStmtInCtxt :: (OutputableBndrId idL,
OutputableBndrId idR,
Outputable body,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA)
=> HsStmtContext (GhcPass idL)
-> StmtLR (GhcPass idL) (GhcPass idR) body
-> SDoc
pprStmtInCtxt ctxt (LastStmt _ e _ _)
| isComprehensionContext ctxt -- For [ e | .. ], do not mutter about "stmts"
= hang (text "In the expression:") 2 (ppr e)
pprStmtInCtxt ctxt stmt
= hang (text "In a stmt of" <+> pprAStmtContext ctxt <> colon)
2 (ppr_stmt stmt)
where
-- For Group and Transform Stmts, don't print the nested stmts!
ppr_stmt (TransStmt { trS_by = by, trS_using = using
, trS_form = form }) = pprTransStmt by using form
ppr_stmt stmt = pprStmt stmt
{-
************************************************************************
* *
\subsection{Anno instances}
* *
************************************************************************
-}
type instance Anno (HsExpr (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsExpr (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno (HsCmd (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr))))]
= SrcSpanAnnL
type instance Anno (HsCmdTop (GhcPass p)) = SrcSpan
type instance Anno [LocatedA (Match (GhcPass p) (LocatedA (HsExpr (GhcPass p))))] = SrcSpanAnnL
type instance Anno [LocatedA (Match (GhcPass p) (LocatedA (HsCmd (GhcPass p))))] = SrcSpanAnnL
type instance Anno (Match (GhcPass p) (LocatedA (HsExpr (GhcPass p)))) = SrcSpanAnnA
type instance Anno (Match (GhcPass p) (LocatedA (HsCmd (GhcPass p)))) = SrcSpanAnnA
type instance Anno (GRHS (GhcPass p) (LocatedA (HsExpr (GhcPass p)))) = SrcSpan
type instance Anno (GRHS (GhcPass p) (LocatedA (HsCmd (GhcPass p)))) = SrcSpan
type instance Anno (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsExpr (GhcPass pr)))) = SrcSpanAnnA
type instance Anno (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr)))) = SrcSpanAnnA
type instance Anno (HsSplice (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsExpr (GhcPass pr))))] = SrcSpanAnnL
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr))))] = SrcSpanAnnL
instance (Anno a ~ SrcSpanAnn' (EpAnn an))
=> WrapXRec (GhcPass p) a where
wrapXRec = noLocA
|