1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, DeriveDataTypeable, ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module GHC.Hs.Extension
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE LambdaCase #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Abstract Haskell syntax for expressions.
module GHC.Hs.Expr where
#include "HsVersions.h"
-- friends:
import GHC.Prelude
import GHC.Hs.Decls
import GHC.Hs.Pat
import GHC.Hs.Lit
import GHC.Hs.Extension
import GHC.Hs.Type
import GHC.Hs.Binds
-- others:
import GHC.Tc.Types.Evidence
import GHC.Core
import GHC.Types.Id( Id )
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Basic
import GHC.Core.ConLike
import GHC.Types.SrcLoc
import GHC.Unit.Module (ModuleName)
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.FastString
import GHC.Core.Type
import GHC.Builtin.Types (mkTupleStr)
import GHC.Tc.Utils.TcType (TcType)
import {-# SOURCE #-} GHC.Tc.Types (TcLclEnv)
-- libraries:
import Data.Data hiding (Fixity(..))
import qualified Data.Data as Data (Fixity(..))
import qualified Data.Kind
import Data.Maybe (isJust)
import GHCi.RemoteTypes ( ForeignRef )
import qualified Language.Haskell.TH as TH (Q)
{-
************************************************************************
* *
\subsection{Expressions proper}
* *
************************************************************************
-}
-- * Expressions proper
-- | Located Haskell Expression
type LHsExpr p = XRec p (HsExpr p)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
-- in a list
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
-------------------------
-- | Post-Type checking Expression
--
-- PostTcExpr is an evidence expression attached to the syntax tree by the
-- type checker (c.f. postTcType).
type PostTcExpr = HsExpr GhcTc
-- | Post-Type checking Table
--
-- We use a PostTcTable where there are a bunch of pieces of evidence, more
-- than is convenient to keep individually.
type PostTcTable = [(Name, PostTcExpr)]
-------------------------
{- Note [NoSyntaxExpr]
~~~~~~~~~~~~~~~~~~~~~~
Syntax expressions can be missing (NoSyntaxExprRn or NoSyntaxExprTc)
for several reasons:
1. As described in Note [Rebindable if]
2. In order to suppress "not in scope: xyz" messages when a bit of
rebindable syntax does not apply. For example, when using an irrefutable
pattern in a BindStmt, we don't need a `fail` operator.
3. Rebindable syntax might just not make sense. For example, a BodyStmt
contains the syntax for `guard`, but that's used only in monad comprehensions.
If we had more of a whiz-bang type system, we might be able to rule this
case out statically.
-}
-- | Syntax Expression
--
-- SyntaxExpr is represents the function used in interpreting rebindable
-- syntax. In the parser, we have no information to supply; in the renamer,
-- we have the name of the function (but see
-- Note [Monad fail : Rebindable syntax, overloaded strings] for a wrinkle)
-- and in the type-checker we have a more elaborate structure 'SyntaxExprTc'.
--
-- In some contexts, rebindable syntax is not implemented, and so we have
-- constructors to represent that possibility in both the renamer and
-- typechecker instantiations.
--
-- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for
-- @(>>=)@, and then instantiated by the type checker with its type args
-- etc
type family SyntaxExpr p
-- Defining SyntaxExpr in two stages allows for better type inference, because
-- we can declare SyntaxExprGhc to be injective (and closed). Without injectivity,
-- noSyntaxExpr would be ambiguous.
type instance SyntaxExpr (GhcPass p) = SyntaxExprGhc p
type family SyntaxExprGhc (p :: Pass) = (r :: Data.Kind.Type) | r -> p where
SyntaxExprGhc 'Parsed = NoExtField
SyntaxExprGhc 'Renamed = SyntaxExprRn
SyntaxExprGhc 'Typechecked = SyntaxExprTc
-- | The function to use in rebindable syntax. See Note [NoSyntaxExpr].
data SyntaxExprRn = SyntaxExprRn (HsExpr GhcRn)
-- Why is the payload not just a Name?
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
| NoSyntaxExprRn
-- | An expression with wrappers, used for rebindable syntax
--
-- This should desugar to
--
-- > syn_res_wrap $ syn_expr (syn_arg_wraps[0] arg0)
-- > (syn_arg_wraps[1] arg1) ...
--
-- where the actual arguments come from elsewhere in the AST.
data SyntaxExprTc = SyntaxExprTc { syn_expr :: HsExpr GhcTc
, syn_arg_wraps :: [HsWrapper]
, syn_res_wrap :: HsWrapper }
| NoSyntaxExprTc -- See Note [NoSyntaxExpr]
-- | This is used for rebindable-syntax pieces that are too polymorphic
-- for tcSyntaxOp (trS_fmap and the mzip in ParStmt)
noExpr :: HsExpr (GhcPass p)
noExpr = HsLit noExtField (HsString (SourceText "noExpr") (fsLit "noExpr"))
noSyntaxExpr :: forall p. IsPass p => SyntaxExpr (GhcPass p)
-- Before renaming, and sometimes after
-- See Note [NoSyntaxExpr]
noSyntaxExpr = case ghcPass @p of
GhcPs -> noExtField
GhcRn -> NoSyntaxExprRn
GhcTc -> NoSyntaxExprTc
-- | Make a 'SyntaxExpr GhcRn' from an expression
-- Used only in getMonadFailOp.
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
mkSyntaxExpr :: HsExpr GhcRn -> SyntaxExprRn
mkSyntaxExpr = SyntaxExprRn
-- | Make a 'SyntaxExpr' from a 'Name' (the "rn" is because this is used in the
-- renamer).
mkRnSyntaxExpr :: Name -> SyntaxExprRn
mkRnSyntaxExpr name = SyntaxExprRn $ HsVar noExtField $ noLoc name
instance Outputable SyntaxExprRn where
ppr (SyntaxExprRn expr) = ppr expr
ppr NoSyntaxExprRn = text "<no syntax expr>"
instance Outputable SyntaxExprTc where
ppr (SyntaxExprTc { syn_expr = expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap })
= sdocOption sdocPrintExplicitCoercions $ \print_co ->
getPprDebug $ \debug ->
if debug || print_co
then ppr expr <> braces (pprWithCommas ppr arg_wraps)
<> braces (ppr res_wrap)
else ppr expr
ppr NoSyntaxExprTc = text "<no syntax expr>"
-- | Command Syntax Table (for Arrow syntax)
type CmdSyntaxTable p = [(Name, HsExpr p)]
-- See Note [CmdSyntaxTable]
{-
Note [CmdSyntaxTable]
~~~~~~~~~~~~~~~~~~~~~
Used only for arrow-syntax stuff (HsCmdTop), the CmdSyntaxTable keeps
track of the methods needed for a Cmd.
* Before the renamer, this list is an empty list
* After the renamer, it takes the form @[(std_name, HsVar actual_name)]@
For example, for the 'arr' method
* normal case: (GHC.Control.Arrow.arr, HsVar GHC.Control.Arrow.arr)
* with rebindable syntax: (GHC.Control.Arrow.arr, arr_22)
where @arr_22@ is whatever 'arr' is in scope
* After the type checker, it takes the form [(std_name, <expression>)]
where <expression> is the evidence for the method. This evidence is
instantiated with the class, but is still polymorphic in everything
else. For example, in the case of 'arr', the evidence has type
forall b c. (b->c) -> a b c
where 'a' is the ambient type of the arrow. This polymorphism is
important because the desugarer uses the same evidence at multiple
different types.
This is Less Cool than what we normally do for rebindable syntax, which is to
make fully-instantiated piece of evidence at every use site. The Cmd way
is Less Cool because
* The renamer has to predict which methods are needed.
See the tedious GHC.Rename.Expr.methodNamesCmd.
* The desugarer has to know the polymorphic type of the instantiated
method. This is checked by Inst.tcSyntaxName, but is less flexible
than the rest of rebindable syntax, where the type is less
pre-ordained. (And this flexibility is useful; for example we can
typecheck do-notation with (>>=) :: m1 a -> (a -> m2 b) -> m2 b.)
-}
-- | A Haskell expression.
data HsExpr p
= HsVar (XVar p)
(LIdP p) -- ^ Variable
-- See Note [Located RdrNames]
| HsUnboundVar (XUnboundVar p)
OccName -- ^ Unbound variable; also used for "holes"
-- (_ or _x).
-- Turned from HsVar to HsUnboundVar by the
-- renamer, when it finds an out-of-scope
-- variable or hole.
-- The (XUnboundVar p) field becomes Id
-- after typechecking
| HsConLikeOut (XConLikeOut p)
ConLike -- ^ After typechecker only; must be different
-- HsVar for pretty printing
| HsRecFld (XRecFld p)
(AmbiguousFieldOcc p) -- ^ Variable pointing to record selector
-- The parser produces HsVars
-- The renamer renames record-field selectors to HsRecFld
-- The typechecker preserves HsRecFld
| HsOverLabel (XOverLabel p)
(Maybe (IdP p)) FastString
-- ^ Overloaded label (Note [Overloaded labels] in GHC.OverloadedLabels)
-- @Just id@ means @RebindableSyntax@ is in use, and gives the id of the
-- in-scope 'fromLabel'.
-- NB: Not in use after typechecking
| HsIPVar (XIPVar p)
HsIPName -- ^ Implicit parameter (not in use after typechecking)
| HsOverLit (XOverLitE p)
(HsOverLit p) -- ^ Overloaded literals
| HsLit (XLitE p)
(HsLit p) -- ^ Simple (non-overloaded) literals
| HsLam (XLam p)
(MatchGroup p (LHsExpr p))
-- ^ Lambda abstraction. Currently always a single match
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsLamCase (XLamCase p) (MatchGroup p (LHsExpr p)) -- ^ Lambda-case
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsApp (XApp p) (LHsExpr p) (LHsExpr p) -- ^ Application
| HsAppType (XAppTypeE p) -- After typechecking: the type argument
(LHsExpr p)
(LHsWcType (NoGhcTc p)) -- ^ Visible type application
--
-- Explicit type argument; e.g f @Int x y
-- NB: Has wildcards, but no implicit quantification
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnAt',
-- | Operator applications:
-- NB Bracketed ops such as (+) come out as Vars.
-- NB We need an expr for the operator in an OpApp/Section since
-- the typechecker may need to apply the operator to a few types.
| OpApp (XOpApp p)
(LHsExpr p) -- left operand
(LHsExpr p) -- operator
(LHsExpr p) -- right operand
-- | Negation operator. Contains the negated expression and the name
-- of 'negate'
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnMinus'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| NegApp (XNegApp p)
(LHsExpr p)
(SyntaxExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsPar (XPar p)
(LHsExpr p) -- ^ Parenthesised expr; see Note [Parens in HsSyn]
| SectionL (XSectionL p)
(LHsExpr p) -- operand; see Note [Sections in HsSyn]
(LHsExpr p) -- operator
| SectionR (XSectionR p)
(LHsExpr p) -- operator; see Note [Sections in HsSyn]
(LHsExpr p) -- operand
-- | Used for explicit tuples and sections thereof
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
-- Note [ExplicitTuple]
| ExplicitTuple
(XExplicitTuple p)
[LHsTupArg p]
Boxity
-- | Used for unboxed sum types
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@,
-- 'GHC.Parser.Annotation.AnnVbar', 'GHC.Parser.Annotation.AnnClose' @'#)'@,
--
-- There will be multiple 'GHC.Parser.Annotation.AnnVbar', (1 - alternative) before
-- the expression, (arity - alternative) after it
| ExplicitSum
(XExplicitSum p)
ConTag -- Alternative (one-based)
Arity -- Sum arity
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCase (XCase p)
(LHsExpr p)
(MatchGroup p (LHsExpr p))
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsIf (XIf p) -- GhcPs: this is a Bool; False <=> do not use
-- rebindable syntax
(LHsExpr p) -- predicate
(LHsExpr p) -- then part
(LHsExpr p) -- else part
-- | Multi-way if
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf'
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsMultiIf (XMultiIf p) [LGRHS p (LHsExpr p)]
-- | let(rec)
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsLet (XLet p)
(LHsLocalBinds p)
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsDo (XDo p) -- Type of the whole expression
(HsStmtContext GhcRn) -- The parameterisation is unimportant
-- because in this context we never use
-- the PatGuard or ParStmt variant
(XRec p [ExprLStmt p]) -- "do":one or more stmts
-- | Syntactic list: [a,b,c,...]
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
-- See Note [Empty lists]
| ExplicitList
(XExplicitList p) -- Gives type of components of list
(Maybe (SyntaxExpr p))
-- For OverloadedLists, the fromListN witness
[LHsExpr p]
-- | Record construction
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| RecordCon
{ rcon_ext :: XRecordCon p
, rcon_con_name :: LIdP p -- The constructor name;
-- not used after type checking
, rcon_flds :: HsRecordBinds p } -- The fields
-- | Record update
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| RecordUpd
{ rupd_ext :: XRecordUpd p
, rupd_expr :: LHsExpr p
, rupd_flds :: [LHsRecUpdField p]
}
-- For a type family, the arg types are of the *instance* tycon,
-- not the family tycon
-- | Expression with an explicit type signature. @e :: type@
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| ExprWithTySig
(XExprWithTySig p)
(LHsExpr p)
(LHsSigWcType (NoGhcTc p))
-- | Arithmetic sequence
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnDotdot',
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| ArithSeq
(XArithSeq p)
(Maybe (SyntaxExpr p))
-- For OverloadedLists, the fromList witness
(ArithSeqInfo p)
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
-----------------------------------------------------------
-- MetaHaskell Extensions
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpenE','GHC.Parser.Annotation.AnnOpenEQ',
-- 'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnCloseQ'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsBracket (XBracket p) (HsBracket p)
-- See Note [Pending Splices]
| HsRnBracketOut
(XRnBracketOut p)
(HsBracket GhcRn) -- Output of the renamer is the *original* renamed
-- expression, plus
[PendingRnSplice] -- _renamed_ splices to be type checked
| HsTcBracketOut
(XTcBracketOut p)
(Maybe QuoteWrapper) -- The wrapper to apply type and dictionary argument
-- to the quote.
(HsBracket GhcRn) -- Output of the type checker is the *original*
-- renamed expression, plus
[PendingTcSplice] -- _typechecked_ splices to be
-- pasted back in by the desugarer
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsSpliceE (XSpliceE p) (HsSplice p)
-----------------------------------------------------------
-- Arrow notation extension
-- | @proc@ notation for Arrows
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnProc',
-- 'GHC.Parser.Annotation.AnnRarrow'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsProc (XProc p)
(LPat p) -- arrow abstraction, proc
(LHsCmdTop p) -- body of the abstraction
-- always has an empty stack
---------------------------------------
-- static pointers extension
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnStatic',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsStatic (XStatic p) -- Free variables of the body
(LHsExpr p) -- Body
---------------------------------------
-- Haskell program coverage (Hpc) Support
| HsTick
(XTick p)
(Tickish (IdP p))
(LHsExpr p) -- sub-expression
| HsBinTick
(XBinTick p)
Int -- module-local tick number for True
Int -- module-local tick number for False
(LHsExpr p) -- sub-expression
---------------------------------------
-- Expressions annotated with pragmas, written as {-# ... #-}
| HsPragE (XPragE p) (HsPragE p) (LHsExpr p)
| XExpr !(XXExpr p)
-- Note [Trees that Grow] extension constructor for the
-- general idea, and Note [Rebindable syntax and HsExpansion]
-- for an example of how we use it.
-- | Extra data fields for a 'RecordCon', added by the type checker
data RecordConTc = RecordConTc
{ rcon_con_like :: ConLike -- The data constructor or pattern synonym
, rcon_con_expr :: PostTcExpr -- Instantiated constructor function
}
-- | Extra data fields for a 'RecordUpd', added by the type checker
data RecordUpdTc = RecordUpdTc
{ rupd_cons :: [ConLike]
-- Filled in by the type checker to the
-- _non-empty_ list of DataCons that have
-- all the upd'd fields
, rupd_in_tys :: [Type] -- Argument types of *input* record type
, rupd_out_tys :: [Type] -- and *output* record type
-- The original type can be reconstructed
-- with conLikeResTy
, rupd_wrap :: HsWrapper -- See note [Record Update HsWrapper]
}
-- | HsWrap appears only in typechecker output
-- Invariant: The contained Expr is *NOT* itself an HsWrap.
-- See Note [Detecting forced eta expansion] in "GHC.HsToCore.Expr".
-- This invariant is maintained by 'GHC.Hs.Utils.mkHsWrap'.
-- hs_syn is something like HsExpr or HsCmd
data HsWrap hs_syn = HsWrap HsWrapper -- the wrapper
(hs_syn GhcTc) -- the thing that is wrapped
deriving instance (Data (hs_syn GhcTc), Typeable hs_syn) => Data (HsWrap hs_syn)
-- ---------------------------------------------------------------------
type instance XVar (GhcPass _) = NoExtField
type instance XConLikeOut (GhcPass _) = NoExtField
type instance XRecFld (GhcPass _) = NoExtField
type instance XOverLabel (GhcPass _) = NoExtField
type instance XIPVar (GhcPass _) = NoExtField
type instance XOverLitE (GhcPass _) = NoExtField
type instance XLitE (GhcPass _) = NoExtField
type instance XLam (GhcPass _) = NoExtField
type instance XLamCase (GhcPass _) = NoExtField
type instance XApp (GhcPass _) = NoExtField
type instance XUnboundVar GhcPs = NoExtField
type instance XUnboundVar GhcRn = NoExtField
type instance XUnboundVar GhcTc = Id
type instance XAppTypeE GhcPs = NoExtField
type instance XAppTypeE GhcRn = NoExtField
type instance XAppTypeE GhcTc = Type
type instance XOpApp GhcPs = NoExtField
type instance XOpApp GhcRn = Fixity
type instance XOpApp GhcTc = Fixity
type instance XNegApp (GhcPass _) = NoExtField
type instance XPar (GhcPass _) = NoExtField
type instance XSectionL (GhcPass _) = NoExtField
type instance XSectionR (GhcPass _) = NoExtField
type instance XExplicitTuple (GhcPass _) = NoExtField
type instance XExplicitSum GhcPs = NoExtField
type instance XExplicitSum GhcRn = NoExtField
type instance XExplicitSum GhcTc = [Type]
type instance XCase (GhcPass _) = NoExtField
type instance XIf (GhcPass _) = NoExtField
type instance XMultiIf GhcPs = NoExtField
type instance XMultiIf GhcRn = NoExtField
type instance XMultiIf GhcTc = Type
type instance XLet (GhcPass _) = NoExtField
type instance XDo GhcPs = NoExtField
type instance XDo GhcRn = NoExtField
type instance XDo GhcTc = Type
type instance XExplicitList GhcPs = NoExtField
type instance XExplicitList GhcRn = NoExtField
type instance XExplicitList GhcTc = Type
type instance XRecordCon GhcPs = NoExtField
type instance XRecordCon GhcRn = NoExtField
type instance XRecordCon GhcTc = RecordConTc
type instance XRecordUpd GhcPs = NoExtField
type instance XRecordUpd GhcRn = NoExtField
type instance XRecordUpd GhcTc = RecordUpdTc
type instance XExprWithTySig (GhcPass _) = NoExtField
type instance XArithSeq GhcPs = NoExtField
type instance XArithSeq GhcRn = NoExtField
type instance XArithSeq GhcTc = PostTcExpr
type instance XBracket (GhcPass _) = NoExtField
type instance XRnBracketOut (GhcPass _) = NoExtField
type instance XTcBracketOut (GhcPass _) = NoExtField
type instance XSpliceE (GhcPass _) = NoExtField
type instance XProc (GhcPass _) = NoExtField
type instance XStatic GhcPs = NoExtField
type instance XStatic GhcRn = NameSet
type instance XStatic GhcTc = NameSet
type instance XTick (GhcPass _) = NoExtField
type instance XBinTick (GhcPass _) = NoExtField
type instance XPragE (GhcPass _) = NoExtField
type instance XXExpr GhcPs = NoExtCon
-- See Note [Rebindable syntax and HsExpansion] below
type instance XXExpr GhcRn = HsExpansion (HsExpr GhcRn)
(HsExpr GhcRn)
type instance XXExpr GhcTc = XXExprGhcTc
data XXExprGhcTc
= WrapExpr {-# UNPACK #-} !(HsWrap HsExpr)
| ExpansionExpr {-# UNPACK #-} !(HsExpansion (HsExpr GhcRn) (HsExpr GhcTc))
{-
Note [Rebindable syntax and HsExpansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We implement rebindable syntax (RS) support by performing a desugaring
in the renamer. We transform GhcPs expressions affected by RS into the
appropriate desugared form, but **annotated with the original expression**.
Let us consider a piece of code like:
{-# LANGUAGE RebindableSyntax #-}
ifThenElse :: Char -> () -> () -> ()
ifThenElse _ _ _ = ()
x = if 'a' then () else True
The parsed AST for the RHS of x would look something like (slightly simplified):
L locif (HsIf (L loca 'a') (L loctrue ()) (L locfalse True))
Upon seeing such an AST with RS on, we could transform it into a
mere function call, as per the RS rules, equivalent to the
following function application:
ifThenElse 'a' () True
which doesn't typecheck. But GHC would report an error about
not being able to match the third argument's type (Bool) with the
expected type: (), in the expression _as desugared_, i.e in
the aforementioned function application. But the user never
wrote a function application! This would be pretty bad.
To remedy this, instead of transforming the original HsIf
node into mere applications of 'ifThenElse', we keep the
original 'if' expression around too, using the TTG
XExpr extension point to allow GHC to construct an
'HsExpansion' value that will keep track of the original
expression in its first field, and the desugared one in the
second field. The resulting renamed AST would look like:
L locif (XExpr
(HsExpanded
(HsIf (L loca 'a')
(L loctrue ())
(L locfalse True)
)
(App (L generatedSrcSpan
(App (L generatedSrcSpan
(App (L generatedSrcSpan (Var ifThenElse))
(L loca 'a')
)
)
(L loctrue ())
)
)
(L locfalse True)
)
)
)
When comes the time to typecheck the program, we end up calling
tcMonoExpr on the AST above. If this expression gives rise to
a type error, then it will appear in a context line and GHC
will pretty-print it using the 'Outputable (HsExpansion a b)'
instance defined below, which *only prints the original
expression*. This is the gist of the idea, but is not quite
enough to recover the error messages that we had with the
SyntaxExpr-based, typechecking/desugaring-to-core time
implementation of rebindable syntax. The key idea is to decorate
some elements of the desugared expression so as to be able to
give them a special treatment when typechecking the desugared
expression, to print a different context line or skip one
altogether.
Whenever we 'setSrcSpan' a 'generatedSrcSpan', we update a field in
TcLclEnv called 'tcl_in_gen_code', setting it to True, which indicates that we
entered generated code, i.e code fabricated by the compiler when rebinding some
syntax. If someone tries to push some error context line while that field is set
to True, the pushing won't actually happen and the context line is just dropped.
Once we 'setSrcSpan' a real span (for an expression that was in the original
source code), we set 'tcl_in_gen_code' back to False, indicating that we
"emerged from the generated code tunnel", and that the expressions we will be
processing are relevant to report in context lines again.
You might wonder why we store a RealSrcSpan in addition to a Bool in
the TcLclEnv: could we not store a Maybe RealSrcSpan? The problem is
that we still generate constraints when processing generated code,
and a CtLoc must contain a RealSrcSpan -- otherwise, error messages
might appear without source locations. So we keep the RealSrcSpan of
the last location spotted that wasn't generated; it's as good as
we're going to get in generated code. Once we get to sub-trees that
are not generated, then we update the RealSrcSpan appropriately, and
set the tcl_in_gen_code Bool to False.
---
A general recipe to follow this approach for new constructs could go as follows:
- Remove any GhcRn-time SyntaxExpr extensions to the relevant constructor for your
construct, in HsExpr or related syntax data types.
- At renaming-time:
- take your original node of interest (HsIf above)
- rename its subexpressions (condition, true branch, false branch above)
- construct the suitable "rebound"-and-renamed result (ifThenElse call
above), where the 'SrcSpan' attached to any _fabricated node_ (the
HsVar/HsApp nodes, above) is set to 'generatedSrcSpan'
- take both the original node and that rebound-and-renamed result and wrap
them in an XExpr: XExpr (HsExpanded <original node> <desugared>)
- At typechecking-time:
- remove any logic that was previously dealing with your rebindable
construct, typically involving [tc]SyntaxOp, SyntaxExpr and friends.
- the XExpr (HsExpanded ... ...) case in tcExpr already makes sure that we
typecheck the desugared expression while reporting the original one in
errors
-}
-- See Note [Rebindable syntax and HsExpansion] just above.
data HsExpansion a b
= HsExpanded a b
deriving Data
-- | Build a "wrapped" 'HsExpansion' out of an extension constructor,
-- and the two components of the expansion: original and desugared
-- expressions.
--
-- See Note [Rebindable Syntax and HsExpansion] above for more details.
mkExpanded
:: (HsExpansion a b -> b) -- ^ XExpr, XCmd, ...
-> a -- ^ source expression ('GhcPs')
-> b -- ^ "desugared" expression
-- ('GhcRn')
-> b -- ^ suitably wrapped
-- 'HsExpansion'
mkExpanded xwrap a b = xwrap (HsExpanded a b)
-- | Just print the original expression (the @a@).
instance (Outputable a, Outputable b) => Outputable (HsExpansion a b) where
ppr (HsExpanded a b) = ifPprDebug (vcat [ppr a, ppr b]) (ppr a)
-- ---------------------------------------------------------------------
-- | A pragma, written as {-# ... #-}, that may appear within an expression.
data HsPragE p
= HsPragSCC (XSCC p)
SourceText -- Note [Pragma source text] in GHC.Types.Basic
StringLiteral -- "set cost centre" SCC pragma
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# GENERATED'@,
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnColon','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnMinus',
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnColon',
-- 'GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnClose' @'\#-}'@
| XHsPragE !(XXPragE p)
type instance XSCC (GhcPass _) = NoExtField
type instance XCoreAnn (GhcPass _) = NoExtField
type instance XXPragE (GhcPass _) = NoExtCon
-- | Located Haskell Tuple Argument
--
-- 'HsTupArg' is used for tuple sections
-- @(,a,)@ is represented by
-- @ExplicitTuple [Missing ty1, Present a, Missing ty3]@
-- Which in turn stands for @(\x:ty1 \y:ty2. (x,a,y))@
type LHsTupArg id = XRec id (HsTupArg id)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
-- | Haskell Tuple Argument
data HsTupArg id
= Present (XPresent id) (LHsExpr id) -- ^ The argument
| Missing (XMissing id) -- ^ The argument is missing, but this is its type
| XTupArg !(XXTupArg id) -- ^ Note [Trees that Grow] extension point
type instance XPresent (GhcPass _) = NoExtField
type instance XMissing GhcPs = NoExtField
type instance XMissing GhcRn = NoExtField
type instance XMissing GhcTc = Scaled Type
type instance XXTupArg (GhcPass _) = NoExtCon
tupArgPresent :: LHsTupArg (GhcPass p) -> Bool
tupArgPresent (L _ (Present {})) = True
tupArgPresent (L _ (Missing {})) = False
{-
Note [Parens in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~
HsPar (and ParPat in patterns, HsParTy in types) is used as follows
* HsPar is required; the pretty printer does not add parens.
* HsPars are respected when rearranging operator fixities.
So a * (b + c) means what it says (where the parens are an HsPar)
* For ParPat and HsParTy the pretty printer does add parens but this should be
a no-op for ParsedSource, based on the pretty printer round trip feature
introduced in
https://phabricator.haskell.org/rGHC499e43824bda967546ebf95ee33ec1f84a114a7c
* ParPat and HsParTy are pretty printed as '( .. )' regardless of whether or
not they are strictly necessary. This should be addressed when #13238 is
completed, to be treated the same as HsPar.
Note [Sections in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~
Sections should always appear wrapped in an HsPar, thus
HsPar (SectionR ...)
The parser parses sections in a wider variety of situations
(See Note [Parsing sections]), but the renamer checks for those
parens. This invariant makes pretty-printing easier; we don't need
a special case for adding the parens round sections.
Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
(if c then t else e)
as if it was an application (ifThenElse c t e). Why not?
Because we allow an 'if' to return *unboxed* results, thus
if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).
So we use NoSyntaxExpr to mean "use the old built-in typing rule".
A further complication is that, in the `deriving` code, we never want
to use rebindable syntax. So, even in GhcPs, we want to denote whether
to use rebindable syntax or not. This is done via the type instance
for XIf GhcPs.
Note [Record Update HsWrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a wrapper in RecordUpd which is used for the *required*
constraints for pattern synonyms. This wrapper is created in the
typechecking and is then directly used in the desugaring without
modification.
For example, if we have the record pattern synonym P,
pattern P :: (Show a) => a -> Maybe a
pattern P{x} = Just x
foo = (Just True) { x = False }
then `foo` desugars to something like
foo = case Just True of
P x -> P False
hence we need to provide the correct dictionaries to P's matcher on
the RHS so that we can build the expression.
Note [Located RdrNames]
~~~~~~~~~~~~~~~~~~~~~~~
A number of syntax elements have seemingly redundant locations attached to them.
This is deliberate, to allow transformations making use of the API Annotations
to easily correlate a Located Name in the RenamedSource with a Located RdrName
in the ParsedSource.
There are unfortunately enough differences between the ParsedSource and the
RenamedSource that the API Annotations cannot be used directly with
RenamedSource, so this allows a simple mapping to be used based on the location.
Note [ExplicitTuple]
~~~~~~~~~~~~~~~~~~~~
An ExplicitTuple is never just a data constructor like (,,,).
That is, the `[LHsTupArg p]` argument of `ExplicitTuple` has at least
one `Present` member (and is thus never empty).
A tuple data constructor like () or (,,,) is parsed as an `HsVar`, not an
`ExplicitTuple`, and stays that way. This is important for two reasons:
1. We don't need -XTupleSections for (,,,)
2. The type variables in (,,,) can be instantiated with visible type application.
That is,
(,,) :: forall a b c. a -> b -> c -> (a,b,c)
(True,,) :: forall {b} {c}. b -> c -> (Bool,b,c)
Note that the tuple section has *inferred* arguments, while the data
constructor has *specified* ones.
(See Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl
for background.)
Sadly, the grammar for this is actually ambiguous, and it's only thanks to the
preference of a shift in a shift/reduce conflict that the parser works as this
Note details. Search for a reference to this Note in GHC.Parser for further
explanation.
Note [Empty lists]
~~~~~~~~~~~~~~~~~~
An empty list could be considered either a data constructor (stored with
HsVar) or an ExplicitList. This Note describes how empty lists flow through the
various phases and why.
Parsing
-------
An empty list is parsed by the sysdcon nonterminal. It thus comes to life via
HsVar nilDataCon (defined in GHC.Builtin.Types). A freshly-parsed (HsExpr GhcPs) empty list
is never a ExplicitList.
Renaming
--------
If -XOverloadedLists is enabled, we must type-check the empty list as if it
were a call to fromListN. (This is true regardless of the setting of
-XRebindableSyntax.) This is very easy if the empty list is an ExplicitList,
but an annoying special case if it's an HsVar. So the renamer changes a
HsVar nilDataCon to an ExplicitList [], but only if -XOverloadedLists is on.
(Why not always? Read on, dear friend.) This happens in the HsVar case of rnExpr.
Type-checking
-------------
We want to accept an expression like [] @Int. To do this, we must infer that
[] :: forall a. [a]. This is easy if [] is a HsVar with the right DataCon inside.
However, the type-checking for explicit lists works differently: [x,y,z] is never
polymorphic. Instead, we unify the types of x, y, and z together, and use the
unified type as the argument to the cons and nil constructors. Thus, treating
[] as an empty ExplicitList in the type-checker would prevent [] @Int from working.
However, if -XOverloadedLists is on, then [] @Int really shouldn't be allowed:
it's just like fromListN 0 [] @Int. Since
fromListN :: forall list. IsList list => Int -> [Item list] -> list
that expression really should be rejected. Thus, the renamer's behaviour is
exactly what we want: treat [] as a datacon when -XNoOverloadedLists, and as
an empty ExplicitList when -XOverloadedLists.
See also #13680, which requested [] @Int to work.
-}
instance (OutputableBndrId p) => Outputable (HsExpr (GhcPass p)) where
ppr expr = pprExpr expr
-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: (OutputableBndrId p) => HsExpr (GhcPass p) -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr (HsPar {}) = True
-- applications don't display anything themselves
isQuietHsExpr (HsApp {}) = True
isQuietHsExpr (HsAppType {}) = True
isQuietHsExpr (OpApp {}) = True
isQuietHsExpr _ = False
pprBinds :: (OutputableBndrId idL, OutputableBndrId idR)
=> HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds b = pprDeeper (ppr b)
-----------------------
ppr_lexpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr :: forall p. (OutputableBndrId p)
=> HsExpr (GhcPass p) -> SDoc
ppr_expr (HsVar _ (L _ v)) = pprPrefixOcc v
ppr_expr (HsUnboundVar _ uv) = pprPrefixOcc uv
ppr_expr (HsConLikeOut _ c) = pprPrefixOcc c
ppr_expr (HsRecFld _ f) = pprPrefixOcc f
ppr_expr (HsIPVar _ v) = ppr v
ppr_expr (HsOverLabel _ _ l) = char '#' <> ppr l
ppr_expr (HsLit _ lit) = ppr lit
ppr_expr (HsOverLit _ lit) = ppr lit
ppr_expr (HsPar _ e) = parens (ppr_lexpr e)
ppr_expr (HsPragE _ prag e) = sep [ppr prag, ppr_lexpr e]
ppr_expr e@(HsApp {}) = ppr_apps e []
ppr_expr e@(HsAppType {}) = ppr_apps e []
ppr_expr (OpApp _ e1 op e2)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_e1 = pprDebugParendExpr opPrec e1 -- In debug mode, add parens
pp_e2 = pprDebugParendExpr opPrec e2 -- to make precedence clear
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly pp_op
= hang pp_e1 2 (sep [pp_op, nest 2 pp_e2])
ppr_expr (NegApp _ e _) = char '-' <+> pprDebugParendExpr appPrec e
ppr_expr (SectionL _ expr op)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, text "x_ )"])
pp_infixly v = (sep [pp_expr, v])
ppr_expr (SectionR _ op expr)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, text "x_"])
4 (pp_expr <> rparen)
pp_infixly v = sep [v, pp_expr]
ppr_expr (ExplicitTuple _ exprs boxity)
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `Solo x`, not `(x)`
| [L _ (Present _ expr)] <- exprs
, Boxed <- boxity
= hsep [text (mkTupleStr Boxed 1), ppr expr]
| otherwise
= tupleParens (boxityTupleSort boxity) (fcat (ppr_tup_args $ map unLoc exprs))
where
ppr_tup_args [] = []
ppr_tup_args (Present _ e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es
ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es
punc (Present {} : _) = comma <> space
punc (Missing {} : _) = comma
punc (XTupArg {} : _) = comma <> space
punc [] = empty
ppr_expr (ExplicitSum _ alt arity expr)
= text "(#" <+> ppr_bars (alt - 1) <+> ppr expr <+> ppr_bars (arity - alt) <+> text "#)"
where
ppr_bars n = hsep (replicate n (char '|'))
ppr_expr (HsLam _ matches)
= pprMatches matches
ppr_expr (HsLamCase _ matches)
= sep [ sep [text "\\case"],
nest 2 (pprMatches matches) ]
ppr_expr (HsCase _ expr matches@(MG { mg_alts = L _ [_] }))
= sep [ sep [text "case", nest 4 (ppr expr), ptext (sLit "of {")],
nest 2 (pprMatches matches) <+> char '}']
ppr_expr (HsCase _ expr matches)
= sep [ sep [text "case", nest 4 (ppr expr), ptext (sLit "of")],
nest 2 (pprMatches matches) ]
ppr_expr (HsIf _ e1 e2 e3)
= sep [hsep [text "if", nest 2 (ppr e1), ptext (sLit "then")],
nest 4 (ppr e2),
text "else",
nest 4 (ppr e3)]
ppr_expr (HsMultiIf _ alts)
= hang (text "if") 3 (vcat (map ppr_alt alts))
where ppr_alt (L _ (GRHS _ guards expr)) =
hang vbar 2 (ppr_one one_alt)
where
ppr_one [] = panic "ppr_exp HsMultiIf"
ppr_one (h:t) = hang h 2 (sep t)
one_alt = [ interpp'SP guards
, text "->" <+> pprDeeper (ppr expr) ]
ppr_alt (L _ (XGRHS x)) = ppr x
-- special case: let ... in let ...
ppr_expr (HsLet _ (L _ binds) expr@(L _ (HsLet _ _ _)))
= sep [hang (text "let") 2 (hsep [pprBinds binds, ptext (sLit "in")]),
ppr_lexpr expr]
ppr_expr (HsLet _ (L _ binds) expr)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr expr)]
ppr_expr (HsDo _ do_or_list_comp (L _ stmts)) = pprDo do_or_list_comp stmts
ppr_expr (ExplicitList _ _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon { rcon_con_name = con_id, rcon_flds = rbinds })
= hang (ppr con_id) 2 (ppr rbinds)
ppr_expr (RecordUpd { rupd_expr = L _ aexp, rupd_flds = rbinds })
= hang (ppr aexp) 2 (braces (fsep (punctuate comma (map ppr rbinds))))
ppr_expr (ExprWithTySig _ expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq _ _ info) = brackets (ppr info)
ppr_expr (HsSpliceE _ s) = pprSplice s
ppr_expr (HsBracket _ b) = pprHsBracket b
ppr_expr (HsRnBracketOut _ e []) = ppr e
ppr_expr (HsRnBracketOut _ e ps) = ppr e $$ text "pending(rn)" <+> ppr ps
ppr_expr (HsTcBracketOut _ _wrap e []) = ppr e
ppr_expr (HsTcBracketOut _ _wrap e ps) = ppr e $$ text "pending(tc)" <+> pprIfTc @p (ppr ps)
ppr_expr (HsProc _ pat (L _ (HsCmdTop _ cmd)))
= hsep [text "proc", ppr pat, ptext (sLit "->"), ppr cmd]
ppr_expr (HsStatic _ e)
= hsep [text "static", ppr e]
ppr_expr (HsTick _ tickish exp)
= pprTicks (ppr exp) $
ppr tickish <+> ppr_lexpr exp
ppr_expr (HsBinTick _ tickIdTrue tickIdFalse exp)
= pprTicks (ppr exp) $
hcat [text "bintick<",
ppr tickIdTrue,
text ",",
ppr tickIdFalse,
text ">(",
ppr exp, text ")"]
ppr_expr (XExpr x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
#endif
GhcRn -> ppr x
GhcTc -> case x of
WrapExpr (HsWrap co_fn e) -> pprHsWrapper co_fn
(\parens -> if parens then pprExpr e else pprExpr e)
ExpansionExpr e -> ppr e -- e is an HsExpansion, we print the original
-- expression (LHsExpr GhcPs), not the
-- desugared one (LHsExpr GhcT).
ppr_infix_expr :: forall p. (OutputableBndrId p) => HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (HsVar _ (L _ v)) = Just (pprInfixOcc v)
ppr_infix_expr (HsConLikeOut _ c) = Just (pprInfixOcc (conLikeName c))
ppr_infix_expr (HsRecFld _ f) = Just (pprInfixOcc f)
ppr_infix_expr (HsUnboundVar _ occ) = Just (pprInfixOcc occ)
ppr_infix_expr (XExpr x) = case (ghcPass @p, x) of
#if __GLASGOW_HASKELL__ <= 810
(GhcPs, _) -> Nothing
#endif
(GhcRn, HsExpanded a _) -> ppr_infix_expr a
(GhcTc, WrapExpr (HsWrap _ e)) -> ppr_infix_expr e
(GhcTc, ExpansionExpr (HsExpanded a _)) -> ppr_infix_expr a
ppr_infix_expr _ = Nothing
ppr_apps :: (OutputableBndrId p)
=> HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps (HsApp _ (L _ fun) arg) args
= ppr_apps fun (Left arg : args)
ppr_apps (HsAppType _ (L _ fun) arg) args
= ppr_apps fun (Right arg : args)
ppr_apps fun args = hang (ppr_expr fun) 2 (fsep (map pp args))
where
pp (Left arg) = ppr arg
-- pp (Right (LHsWcTypeX (HsWC { hswc_body = L _ arg })))
-- = char '@' <> pprHsType arg
pp (Right arg)
= text "@" <> ppr arg
pprExternalSrcLoc :: (StringLiteral,(Int,Int),(Int,Int)) -> SDoc
pprExternalSrcLoc (StringLiteral _ src,(n1,n2),(n3,n4))
= ppr (src,(n1,n2),(n3,n4))
{-
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendLExpr (but don't print double parens of course).
For operator applications we don't add parens, because the operator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
-}
pprDebugParendExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr p expr
= getPprDebug $ \case
True -> pprParendLExpr p expr
False -> pprLExpr expr
pprParendLExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr p (L _ e) = pprParendExpr p e
pprParendExpr :: (OutputableBndrId p)
=> PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr p expr
| hsExprNeedsParens p expr = parens (pprExpr expr)
| otherwise = pprExpr expr
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
-- | @'hsExprNeedsParens' p e@ returns 'True' if the expression @e@ needs
-- parentheses under precedence @p@.
hsExprNeedsParens :: forall p. IsPass p => PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens p = go
where
go (HsVar{}) = False
go (HsUnboundVar{}) = False
go (HsConLikeOut{}) = False
go (HsIPVar{}) = False
go (HsOverLabel{}) = False
go (HsLit _ l) = hsLitNeedsParens p l
go (HsOverLit _ ol) = hsOverLitNeedsParens p ol
go (HsPar{}) = False
go (HsApp{}) = p >= appPrec
go (HsAppType {}) = p >= appPrec
go (OpApp{}) = p >= opPrec
go (NegApp{}) = p > topPrec
go (SectionL{}) = True
go (SectionR{}) = True
-- Special-case unary boxed tuple applications so that they are
-- parenthesized as `Identity (Solo x)`, not `Identity Solo x` (#18612)
-- See Note [One-tuples] in GHC.Builtin.Types
go (ExplicitTuple _ [L _ Present{}] Boxed)
= p >= appPrec
go (ExplicitTuple{}) = False
go (ExplicitSum{}) = False
go (HsLam{}) = p > topPrec
go (HsLamCase{}) = p > topPrec
go (HsCase{}) = p > topPrec
go (HsIf{}) = p > topPrec
go (HsMultiIf{}) = p > topPrec
go (HsLet{}) = p > topPrec
go (HsDo _ sc _)
| isComprehensionContext sc = False
| otherwise = p > topPrec
go (ExplicitList{}) = False
go (RecordUpd{}) = False
go (ExprWithTySig{}) = p >= sigPrec
go (ArithSeq{}) = False
go (HsPragE{}) = p >= appPrec
go (HsSpliceE{}) = False
go (HsBracket{}) = False
go (HsRnBracketOut{}) = False
go (HsTcBracketOut{}) = False
go (HsProc{}) = p > topPrec
go (HsStatic{}) = p >= appPrec
go (HsTick _ _ (L _ e)) = go e
go (HsBinTick _ _ _ (L _ e)) = go e
go (RecordCon{}) = False
go (HsRecFld{}) = False
go (XExpr x)
| GhcTc <- ghcPass @p
= case x of
WrapExpr (HsWrap _ e) -> go e
ExpansionExpr (HsExpanded a _) -> hsExprNeedsParens p a
| GhcRn <- ghcPass @p
= case x of HsExpanded a _ -> hsExprNeedsParens p a
#if __GLASGOW_HASKELL__ <= 900
| otherwise
= True
#endif
-- | @'parenthesizeHsExpr' p e@ checks if @'hsExprNeedsParens' p e@ is true,
-- and if so, surrounds @e@ with an 'HsPar'. Otherwise, it simply returns @e@.
parenthesizeHsExpr :: IsPass p => PprPrec -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
parenthesizeHsExpr p le@(L loc e)
| hsExprNeedsParens p e = L loc (HsPar noExtField le)
| otherwise = le
stripParensLHsExpr :: LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr (L _ (HsPar _ e)) = stripParensLHsExpr e
stripParensLHsExpr e = e
stripParensHsExpr :: HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr (HsPar _ (L _ e)) = stripParensHsExpr e
stripParensHsExpr e = e
isAtomicHsExpr :: forall p. IsPass p => HsExpr (GhcPass p) -> Bool
-- True of a single token
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsConLikeOut {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsOverLabel {}) = True
isAtomicHsExpr (HsUnboundVar {}) = True
isAtomicHsExpr (HsRecFld{}) = True
isAtomicHsExpr (XExpr x)
| GhcTc <- ghcPass @p = case x of
WrapExpr (HsWrap _ e) -> isAtomicHsExpr e
ExpansionExpr (HsExpanded a _) -> isAtomicHsExpr a
| GhcRn <- ghcPass @p = case x of
HsExpanded a _ -> isAtomicHsExpr a
isAtomicHsExpr _ = False
instance Outputable (HsPragE (GhcPass p)) where
ppr (HsPragSCC _ st (StringLiteral stl lbl)) =
pprWithSourceText st (text "{-# SCC")
-- no doublequotes if stl empty, for the case where the SCC was written
-- without quotes.
<+> pprWithSourceText stl (ftext lbl) <+> text "#-}"
{-
************************************************************************
* *
\subsection{Commands (in arrow abstractions)}
* *
************************************************************************
We re-use HsExpr to represent these.
-}
-- | Located Haskell Command (for arrow syntax)
type LHsCmd id = XRec id (HsCmd id)
-- | Haskell Command (e.g. a "statement" in an Arrow proc block)
data HsCmd id
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.Annlarrowtail',
-- 'GHC.Parser.Annotation.Annrarrowtail','GHC.Parser.Annotation.AnnLarrowtail',
-- 'GHC.Parser.Annotation.AnnRarrowtail'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
= HsCmdArrApp -- Arrow tail, or arrow application (f -< arg)
(XCmdArrApp id) -- type of the arrow expressions f,
-- of the form a t t', where arg :: t
(LHsExpr id) -- arrow expression, f
(LHsExpr id) -- input expression, arg
HsArrAppType -- higher-order (-<<) or first-order (-<)
Bool -- True => right-to-left (f -< arg)
-- False => left-to-right (arg >- f)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenB' @'(|'@,
-- 'GHC.Parser.Annotation.AnnCloseB' @'|)'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdArrForm -- Command formation, (| e cmd1 .. cmdn |)
(XCmdArrForm id)
(LHsExpr id) -- The operator.
-- After type-checking, a type abstraction to be
-- applied to the type of the local environment tuple
LexicalFixity -- Whether the operator appeared prefix or infix when
-- parsed.
(Maybe Fixity) -- fixity (filled in by the renamer), for forms that
-- were converted from OpApp's by the renamer
[LHsCmdTop id] -- argument commands
| HsCmdApp (XCmdApp id)
(LHsCmd id)
(LHsExpr id)
| HsCmdLam (XCmdLam id)
(MatchGroup id (LHsCmd id)) -- kappa
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdPar (XCmdPar id)
(LHsCmd id) -- parenthesised command
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdCase (XCmdCase id)
(LHsExpr id)
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdLamCase (XCmdLamCase id)
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdIf (XCmdIf id)
(SyntaxExpr id) -- cond function
(LHsExpr id) -- predicate
(LHsCmd id) -- then part
(LHsCmd id) -- else part
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdLet (XCmdLet id)
(LHsLocalBinds id) -- let(rec)
(LHsCmd id)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| HsCmdDo (XCmdDo id) -- Type of the whole expression
(XRec id [CmdLStmt id])
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| XCmd !(XXCmd id) -- Note [Trees that Grow] extension point
type instance XCmdArrApp GhcPs = NoExtField
type instance XCmdArrApp GhcRn = NoExtField
type instance XCmdArrApp GhcTc = Type
type instance XCmdArrForm (GhcPass _) = NoExtField
type instance XCmdApp (GhcPass _) = NoExtField
type instance XCmdLam (GhcPass _) = NoExtField
type instance XCmdPar (GhcPass _) = NoExtField
type instance XCmdCase (GhcPass _) = NoExtField
type instance XCmdLamCase (GhcPass _) = NoExtField
type instance XCmdIf (GhcPass _) = NoExtField
type instance XCmdLet (GhcPass _) = NoExtField
type instance XCmdDo GhcPs = NoExtField
type instance XCmdDo GhcRn = NoExtField
type instance XCmdDo GhcTc = Type
type instance XCmdWrap (GhcPass _) = NoExtField
type instance XXCmd GhcPs = NoExtCon
type instance XXCmd GhcRn = NoExtCon
type instance XXCmd GhcTc = HsWrap HsCmd
-- If cmd :: arg1 --> res
-- wrap :: arg1 "->" arg2
-- Then (XCmd (HsWrap wrap cmd)) :: arg2 --> res
-- | Haskell Array Application Type
data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp
deriving Data
{- | Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
-}
-- | Located Haskell Top-level Command
type LHsCmdTop p = XRec p (HsCmdTop p)
-- | Haskell Top-level Command
data HsCmdTop p
= HsCmdTop (XCmdTop p)
(LHsCmd p)
| XCmdTop !(XXCmdTop p) -- Note [Trees that Grow] extension point
data CmdTopTc
= CmdTopTc Type -- Nested tuple of inputs on the command's stack
Type -- return type of the command
(CmdSyntaxTable GhcTc) -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcPs = NoExtField
type instance XCmdTop GhcRn = CmdSyntaxTable GhcRn -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcTc = CmdTopTc
type instance XXCmdTop (GhcPass _) = NoExtCon
instance (OutputableBndrId p) => Outputable (HsCmd (GhcPass p)) where
ppr cmd = pprCmd cmd
-----------------------
-- pprCmd and pprLCmd call pprDeeper;
-- the underscore versions do not
pprLCmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
pprLCmd (L _ c) = pprCmd c
pprCmd :: (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
pprCmd c | isQuietHsCmd c = ppr_cmd c
| otherwise = pprDeeper (ppr_cmd c)
isQuietHsCmd :: HsCmd id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsCmd (HsCmdPar {}) = True
-- applications don't display anything themselves
isQuietHsCmd (HsCmdApp {}) = True
isQuietHsCmd _ = False
-----------------------
ppr_lcmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
ppr_lcmd c = ppr_cmd (unLoc c)
ppr_cmd :: forall p. (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
ppr_cmd (HsCmdPar _ c) = parens (ppr_lcmd c)
ppr_cmd (HsCmdApp _ c e)
= let (fun, args) = collect_args c [e] in
hang (ppr_lcmd fun) 2 (sep (map ppr args))
where
collect_args (L _ (HsCmdApp _ fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_cmd (HsCmdLam _ matches)
= pprMatches matches
ppr_cmd (HsCmdCase _ expr matches)
= sep [ sep [text "case", nest 4 (ppr expr), ptext (sLit "of")],
nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdLamCase _ matches)
= sep [ text "\\case", nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdIf _ _ e ct ce)
= sep [hsep [text "if", nest 2 (ppr e), ptext (sLit "then")],
nest 4 (ppr ct),
text "else",
nest 4 (ppr ce)]
-- special case: let ... in let ...
ppr_cmd (HsCmdLet _ (L _ binds) cmd@(L _ (HsCmdLet {})))
= sep [hang (text "let") 2 (hsep [pprBinds binds, ptext (sLit "in")]),
ppr_lcmd cmd]
ppr_cmd (HsCmdLet _ (L _ binds) cmd)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr cmd)]
ppr_cmd (HsCmdDo _ (L _ stmts)) = pprDo ArrowExpr stmts
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, larrowt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp False)
= hsep [ppr_lexpr arg, arrowt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, larrowtt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp False)
= hsep [ppr_lexpr arg, arrowtt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrForm _ (L _ (HsVar _ (L _ v))) _ (Just _) [arg1, arg2])
= hang (pprCmdArg (unLoc arg1)) 4 (sep [ pprInfixOcc v
, pprCmdArg (unLoc arg2)])
ppr_cmd (HsCmdArrForm _ (L _ (HsVar _ (L _ v))) Infix _ [arg1, arg2])
= hang (pprCmdArg (unLoc arg1)) 4 (sep [ pprInfixOcc v
, pprCmdArg (unLoc arg2)])
ppr_cmd (HsCmdArrForm _ (L _ (HsConLikeOut _ c)) _ (Just _) [arg1, arg2])
= hang (pprCmdArg (unLoc arg1)) 4 (sep [ pprInfixOcc (conLikeName c)
, pprCmdArg (unLoc arg2)])
ppr_cmd (HsCmdArrForm _ (L _ (HsConLikeOut _ c)) Infix _ [arg1, arg2])
= hang (pprCmdArg (unLoc arg1)) 4 (sep [ pprInfixOcc (conLikeName c)
, pprCmdArg (unLoc arg2)])
ppr_cmd (HsCmdArrForm _ op _ _ args)
= hang (text "(|" <+> ppr_lexpr op)
4 (sep (map (pprCmdArg.unLoc) args) <+> text "|)")
ppr_cmd (XCmd x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
GhcRn -> ppr x
#endif
GhcTc -> case x of
HsWrap w cmd -> pprHsWrapper w (\_ -> parens (ppr_cmd cmd))
pprCmdArg :: (OutputableBndrId p) => HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (HsCmdTop _ cmd)
= ppr_lcmd cmd
instance (OutputableBndrId p) => Outputable (HsCmdTop (GhcPass p)) where
ppr = pprCmdArg
{-
************************************************************************
* *
\subsection{Record binds}
* *
************************************************************************
-}
-- | Haskell Record Bindings
type HsRecordBinds p = HsRecFields p (LHsExpr p)
{-
************************************************************************
* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
* *
************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
-}
data MatchGroup p body
= MG { mg_ext :: XMG p body -- Post-typechecker, types of args and result
, mg_alts :: XRec p [LMatch p body] -- The alternatives
, mg_origin :: Origin }
-- The type is the type of the entire group
-- t1 -> ... -> tn -> tr
-- where there are n patterns
| XMatchGroup !(XXMatchGroup p body)
data MatchGroupTc
= MatchGroupTc
{ mg_arg_tys :: [Scaled Type] -- Types of the arguments, t1..tn
, mg_res_ty :: Type -- Type of the result, tr
} deriving Data
type instance XMG GhcPs b = NoExtField
type instance XMG GhcRn b = NoExtField
type instance XMG GhcTc b = MatchGroupTc
type instance XXMatchGroup (GhcPass _) b = NoExtCon
-- | Located Match
type LMatch id body = XRec id (Match id body)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a
-- list
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data Match p body
= Match {
m_ext :: XCMatch p body,
m_ctxt :: HsMatchContext (NoGhcTc p),
-- See note [m_ctxt in Match]
m_pats :: [LPat p], -- The patterns
m_grhss :: (GRHSs p body)
}
| XMatch !(XXMatch p body)
type instance XCMatch (GhcPass _) b = NoExtField
type instance XXMatch (GhcPass _) b = NoExtCon
instance (OutputableBndrId pr, Outputable body)
=> Outputable (Match (GhcPass pr) body) where
ppr = pprMatch
{-
Note [m_ctxt in Match]
~~~~~~~~~~~~~~~~~~~~~~
A Match can occur in a number of contexts, such as a FunBind, HsCase, HsLam and
so on.
In order to simplify tooling processing and pretty print output, the provenance
is captured in an HsMatchContext.
This is particularly important for the API Annotations for a multi-equation
FunBind.
The parser initially creates a FunBind with a single Match in it for
every function definition it sees.
These are then grouped together by getMonoBind into a single FunBind,
where all the Matches are combined.
In the process, all the original FunBind fun_id's bar one are
discarded, including the locations.
This causes a problem for source to source conversions via API
Annotations, so the original fun_ids and infix flags are preserved in
the Match, when it originates from a FunBind.
Example infix function definition requiring individual API Annotations
(&&& ) [] [] = []
xs &&& [] = xs
( &&& ) [] ys = ys
-}
isInfixMatch :: Match id body -> Bool
isInfixMatch match = case m_ctxt match of
FunRhs {mc_fixity = Infix} -> True
_ -> False
isEmptyMatchGroup :: MatchGroup (GhcPass p) body -> Bool
isEmptyMatchGroup (MG { mg_alts = ms }) = null $ unLoc ms
-- | Is there only one RHS in this list of matches?
isSingletonMatchGroup :: [LMatch (GhcPass p) body] -> Bool
isSingletonMatchGroup matches
| [L _ match] <- matches
, Match { m_grhss = GRHSs { grhssGRHSs = [_] } } <- match
= True
| otherwise
= False
matchGroupArity :: MatchGroup (GhcPass id) body -> Arity
-- Precondition: MatchGroup is non-empty
-- This is called before type checking, when mg_arg_tys is not set
matchGroupArity (MG { mg_alts = alts })
| L _ (alt1:_) <- alts = length (hsLMatchPats alt1)
| otherwise = panic "matchGroupArity"
hsLMatchPats :: LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats (L _ (Match { m_pats = pats })) = pats
-- | Guarded Right-Hand Sides
--
-- GRHSs are used both for pattern bindings and for Matches
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
-- 'GHC.Parser.Annotation.AnnRarrow','GHC.Parser.Annotation.AnnSemi'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data GRHSs p body
= GRHSs {
grhssExt :: XCGRHSs p body,
grhssGRHSs :: [LGRHS p body], -- ^ Guarded RHSs
grhssLocalBinds :: LHsLocalBinds p -- ^ The where clause
}
| XGRHSs !(XXGRHSs p body)
type instance XCGRHSs (GhcPass _) b = NoExtField
type instance XXGRHSs (GhcPass _) b = NoExtCon
-- | Located Guarded Right-Hand Side
type LGRHS id body = XRec id (GRHS id body)
-- | Guarded Right Hand Side.
data GRHS p body = GRHS (XCGRHS p body)
[GuardLStmt p] -- Guards
body -- Right hand side
| XGRHS !(XXGRHS p body)
type instance XCGRHS (GhcPass _) b = NoExtField
type instance XXGRHS (GhcPass _) b = NoExtCon
-- We know the list must have at least one @Match@ in it.
pprMatches :: (OutputableBndrId idR, Outputable body)
=> MatchGroup (GhcPass idR) body -> SDoc
pprMatches MG { mg_alts = matches }
= vcat (map pprMatch (map unLoc (unLoc matches)))
-- Don't print the type; it's only a place-holder before typechecking
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndrId idR, Outputable body)
=> MatchGroup (GhcPass idR) body -> SDoc
pprFunBind matches = pprMatches matches
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprPatBind :: forall bndr p body. (OutputableBndrId bndr,
OutputableBndrId p,
Outputable body)
=> LPat (GhcPass bndr) -> GRHSs (GhcPass p) body -> SDoc
pprPatBind pat (grhss)
= sep [ppr pat,
nest 2 (pprGRHSs (PatBindRhs :: HsMatchContext (GhcPass p)) grhss)]
pprMatch :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatch (Match { m_pats = pats, m_ctxt = ctxt, m_grhss = grhss })
= sep [ sep (herald : map (nest 2 . pprParendLPat appPrec) other_pats)
, nest 2 (pprGRHSs ctxt grhss) ]
where
(herald, other_pats)
= case ctxt of
FunRhs {mc_fun=L _ fun, mc_fixity=fixity, mc_strictness=strictness}
| SrcStrict <- strictness
-> ASSERT(null pats) -- A strict variable binding
(char '!'<>pprPrefixOcc fun, pats)
| Prefix <- fixity
-> (pprPrefixOcc fun, pats) -- f x y z = e
-- Not pprBndr; the AbsBinds will
-- have printed the signature
| otherwise
-> case pats of
(p1:p2:rest)
| null rest -> (pp_infix, []) -- x &&& y = e
| otherwise -> (parens pp_infix, rest) -- (x &&& y) z = e
where
pp_infix = pprParendLPat opPrec p1
<+> pprInfixOcc fun
<+> pprParendLPat opPrec p2
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
LambdaExpr -> (char '\\', pats)
_ -> case pats of
[] -> (empty, [])
[pat] -> (ppr pat, []) -- No parens around the single pat in a case
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
pprGRHSs :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs ctxt (GRHSs _ grhss (L _ binds))
= vcat (map (pprGRHS ctxt . unLoc) grhss)
-- Print the "where" even if the contents of the binds is empty. Only
-- EmptyLocalBinds means no "where" keyword
$$ ppUnless (eqEmptyLocalBinds binds)
(text "where" $$ nest 4 (pprBinds binds))
pprGRHS :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS ctxt (GRHS _ [] body)
= pp_rhs ctxt body
pprGRHS ctxt (GRHS _ guards body)
= sep [vbar <+> interpp'SP guards, pp_rhs ctxt body]
pp_rhs :: Outputable body => HsMatchContext passL -> body -> SDoc
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
{-
************************************************************************
* *
\subsection{Do stmts and list comprehensions}
* *
************************************************************************
-}
-- | Located @do@ block Statement
type LStmt id body = XRec id (StmtLR id id body)
-- | Located Statement with separate Left and Right id's
type LStmtLR idL idR body = XRec idL (StmtLR idL idR body)
-- | @do@ block Statement
type Stmt id body = StmtLR id id body
-- | Command Located Statement
type CmdLStmt id = LStmt id (LHsCmd id)
-- | Command Statement
type CmdStmt id = Stmt id (LHsCmd id)
-- | Expression Located Statement
type ExprLStmt id = LStmt id (LHsExpr id)
-- | Expression Statement
type ExprStmt id = Stmt id (LHsExpr id)
-- | Guard Located Statement
type GuardLStmt id = LStmt id (LHsExpr id)
-- | Guard Statement
type GuardStmt id = Stmt id (LHsExpr id)
-- | Ghci Located Statement
type GhciLStmt id = LStmt id (LHsExpr id)
-- | Ghci Statement
type GhciStmt id = Stmt id (LHsExpr id)
-- The SyntaxExprs in here are used *only* for do-notation and monad
-- comprehensions, which have rebindable syntax. Otherwise they are unused.
-- | API Annotations when in qualifier lists or guards
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnThen',
-- 'GHC.Parser.Annotation.AnnBy','GHC.Parser.Annotation.AnnBy',
-- 'GHC.Parser.Annotation.AnnGroup','GHC.Parser.Annotation.AnnUsing'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data StmtLR idL idR body -- body should always be (LHs**** idR)
= LastStmt -- Always the last Stmt in ListComp, MonadComp,
-- and (after the renamer, see GHC.Rename.Expr.checkLastStmt) DoExpr, MDoExpr
-- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff
(XLastStmt idL idR body)
body
(Maybe Bool) -- Whether return was stripped
-- Just True <=> return with a dollar was stripped by ApplicativeDo
-- Just False <=> return without a dollar was stripped by ApplicativeDo
-- Nothing <=> Nothing was stripped
(SyntaxExpr idR) -- The return operator
-- The return operator is used only for MonadComp
-- For ListComp we use the baked-in 'return'
-- For DoExpr, MDoExpr, we don't apply a 'return' at all
-- See Note [Monad Comprehensions]
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLarrow'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| BindStmt (XBindStmt idL idR body)
-- ^ Post renaming has optional fail and bind / (>>=) operator.
-- Post typechecking, also has multiplicity of the argument
-- and the result type of the function passed to bind;
-- that is, (P, S) in (>>=) :: Q -> (R # P -> S) -> T
-- See Note [The type of bind in Stmts]
(LPat idL)
body
-- | 'ApplicativeStmt' represents an applicative expression built with
-- '<$>' and '<*>'. It is generated by the renamer, and is desugared into the
-- appropriate applicative expression by the desugarer, but it is intended
-- to be invisible in error messages.
--
-- For full details, see Note [ApplicativeDo] in "GHC.Rename.Expr"
--
| ApplicativeStmt
(XApplicativeStmt idL idR body) -- Post typecheck, Type of the body
[ ( SyntaxExpr idR
, ApplicativeArg idL) ]
-- [(<$>, e1), (<*>, e2), ..., (<*>, en)]
(Maybe (SyntaxExpr idR)) -- 'join', if necessary
| BodyStmt (XBodyStmt idL idR body) -- Post typecheck, element type
-- of the RHS (used for arrows)
body -- See Note [BodyStmt]
(SyntaxExpr idR) -- The (>>) operator
(SyntaxExpr idR) -- The `guard` operator; used only in MonadComp
-- See notes [Monad Comprehensions]
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet'
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@,
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| LetStmt (XLetStmt idL idR body) (LHsLocalBindsLR idL idR)
-- ParStmts only occur in a list/monad comprehension
| ParStmt (XParStmt idL idR body) -- Post typecheck,
-- S in (>>=) :: Q -> (R -> S) -> T
[ParStmtBlock idL idR]
(HsExpr idR) -- Polymorphic `mzip` for monad comprehensions
(SyntaxExpr idR) -- The `>>=` operator
-- See notes [Monad Comprehensions]
-- After renaming, the ids are the binders
-- bound by the stmts and used after themp
| TransStmt {
trS_ext :: XTransStmt idL idR body, -- Post typecheck,
-- R in (>>=) :: Q -> (R -> S) -> T
trS_form :: TransForm,
trS_stmts :: [ExprLStmt idL], -- Stmts to the *left* of the 'group'
-- which generates the tuples to be grouped
trS_bndrs :: [(IdP idR, IdP idR)], -- See Note [TransStmt binder map]
trS_using :: LHsExpr idR,
trS_by :: Maybe (LHsExpr idR), -- "by e" (optional)
-- Invariant: if trS_form = GroupBy, then grp_by = Just e
trS_ret :: SyntaxExpr idR, -- The monomorphic 'return' function for
-- the inner monad comprehensions
trS_bind :: SyntaxExpr idR, -- The '(>>=)' operator
trS_fmap :: HsExpr idR -- The polymorphic 'fmap' function for desugaring
-- Only for 'group' forms
-- Just a simple HsExpr, because it's
-- too polymorphic for tcSyntaxOp
} -- See Note [Monad Comprehensions]
-- Recursive statement (see Note [How RecStmt works] below)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRec'
-- For details on above see note [Api annotations] in GHC.Parser.Annotation
| RecStmt
{ recS_ext :: XRecStmt idL idR body
, recS_stmts :: [LStmtLR idL idR body]
-- The next two fields are only valid after renaming
, recS_later_ids :: [IdP idR]
-- The ids are a subset of the variables bound by the
-- stmts that are used in stmts that follow the RecStmt
, recS_rec_ids :: [IdP idR]
-- Ditto, but these variables are the "recursive" ones,
-- that are used before they are bound in the stmts of
-- the RecStmt.
-- An Id can be in both groups
-- Both sets of Ids are (now) treated monomorphically
-- See Note [How RecStmt works] for why they are separate
-- Rebindable syntax
, recS_bind_fn :: SyntaxExpr idR -- The bind function
, recS_ret_fn :: SyntaxExpr idR -- The return function
, recS_mfix_fn :: SyntaxExpr idR -- The mfix function
}
| XStmtLR !(XXStmtLR idL idR body)
-- Extra fields available post typechecking for RecStmt.
data RecStmtTc =
RecStmtTc
{ recS_bind_ty :: Type -- S in (>>=) :: Q -> (R -> S) -> T
, recS_later_rets :: [PostTcExpr] -- (only used in the arrow version)
, recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1
-- with recS_later_ids and recS_rec_ids,
-- and are the expressions that should be
-- returned by the recursion.
-- They may not quite be the Ids themselves,
-- because the Id may be *polymorphic*, but
-- the returned thing has to be *monomorphic*,
-- so they may be type applications
, recS_ret_ty :: Type -- The type of
-- do { stmts; return (a,b,c) }
-- With rebindable syntax the type might not
-- be quite as simple as (m (tya, tyb, tyc)).
}
type instance XLastStmt (GhcPass _) (GhcPass _) b = NoExtField
type instance XBindStmt (GhcPass _) GhcPs b = NoExtField
type instance XBindStmt (GhcPass _) GhcRn b = XBindStmtRn
type instance XBindStmt (GhcPass _) GhcTc b = XBindStmtTc
data XBindStmtRn = XBindStmtRn
{ xbsrn_bindOp :: SyntaxExpr GhcRn
, xbsrn_failOp :: FailOperator GhcRn
}
data XBindStmtTc = XBindStmtTc
{ xbstc_bindOp :: SyntaxExpr GhcTc
, xbstc_boundResultType :: Type -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_boundResultMult :: Mult -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_failOp :: FailOperator GhcTc
}
type instance XApplicativeStmt (GhcPass _) GhcPs b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcRn b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcTc b = Type
type instance XBodyStmt (GhcPass _) GhcPs b = NoExtField
type instance XBodyStmt (GhcPass _) GhcRn b = NoExtField
type instance XBodyStmt (GhcPass _) GhcTc b = Type
type instance XLetStmt (GhcPass _) (GhcPass _) b = NoExtField
type instance XParStmt (GhcPass _) GhcPs b = NoExtField
type instance XParStmt (GhcPass _) GhcRn b = NoExtField
type instance XParStmt (GhcPass _) GhcTc b = Type
type instance XTransStmt (GhcPass _) GhcPs b = NoExtField
type instance XTransStmt (GhcPass _) GhcRn b = NoExtField
type instance XTransStmt (GhcPass _) GhcTc b = Type
type instance XRecStmt (GhcPass _) GhcPs b = NoExtField
type instance XRecStmt (GhcPass _) GhcRn b = NoExtField
type instance XRecStmt (GhcPass _) GhcTc b = RecStmtTc
type instance XXStmtLR (GhcPass _) (GhcPass _) b = NoExtCon
data TransForm -- The 'f' below is the 'using' function, 'e' is the by function
= ThenForm -- then f or then f by e (depending on trS_by)
| GroupForm -- then group using f or then group by e using f (depending on trS_by)
deriving Data
-- | Parenthesised Statement Block
data ParStmtBlock idL idR
= ParStmtBlock
(XParStmtBlock idL idR)
[ExprLStmt idL]
[IdP idR] -- The variables to be returned
(SyntaxExpr idR) -- The return operator
| XParStmtBlock !(XXParStmtBlock idL idR)
type instance XParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtCon
-- | The fail operator
--
-- This is used for `.. <-` "bind statments" in do notation, including
-- non-monadic "binds" in applicative.
--
-- The fail operator is 'Just expr' if it potentially fail monadically. if the
-- pattern match cannot fail, or shouldn't fail monadically (regular incomplete
-- pattern exception), it is 'Nothing'.
--
-- See Note [Monad fail : Rebindable syntax, overloaded strings] for the type of
-- expression in the 'Just' case, and why it is so.
--
-- See Note [Failing pattern matches in Stmts] for which contexts for
-- '@BindStmt@'s should use the monadic fail and which shouldn't.
type FailOperator id = Maybe (SyntaxExpr id)
-- | Applicative Argument
data ApplicativeArg idL
= ApplicativeArgOne -- A single statement (BindStmt or BodyStmt)
{ xarg_app_arg_one :: XApplicativeArgOne idL
-- ^ The fail operator, after renaming
--
-- The fail operator is needed if this is a BindStmt
-- where the pattern can fail. E.g.:
-- (Just a) <- stmt
-- The fail operator will be invoked if the pattern
-- match fails.
-- It is also used for guards in MonadComprehensions.
-- The fail operator is Nothing
-- if the pattern match can't fail
, app_arg_pattern :: LPat idL -- WildPat if it was a BodyStmt (see below)
, arg_expr :: LHsExpr idL
, is_body_stmt :: Bool
-- ^ True <=> was a BodyStmt,
-- False <=> was a BindStmt.
-- See Note [Applicative BodyStmt]
}
| ApplicativeArgMany -- do { stmts; return vars }
{ xarg_app_arg_many :: XApplicativeArgMany idL
, app_stmts :: [ExprLStmt idL] -- stmts
, final_expr :: HsExpr idL -- return (v1,..,vn), or just (v1,..,vn)
, bv_pattern :: LPat idL -- (v1,...,vn)
, stmt_context :: HsStmtContext GhcRn -- context of the do expression
-- used in pprArg
}
| XApplicativeArg !(XXApplicativeArg idL)
type instance XApplicativeArgOne GhcPs = NoExtField
type instance XApplicativeArgOne GhcRn = FailOperator GhcRn
type instance XApplicativeArgOne GhcTc = FailOperator GhcTc
type instance XApplicativeArgMany (GhcPass _) = NoExtField
type instance XXApplicativeArg (GhcPass _) = NoExtCon
{-
Note [The type of bind in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Stmts, notably BindStmt, keep the (>>=) bind operator.
We do NOT assume that it has type
(>>=) :: m a -> (a -> m b) -> m b
In some cases (see #303, #1537) it might have a more
exotic type, such as
(>>=) :: m i j a -> (a -> m j k b) -> m i k b
So we must be careful not to make assumptions about the type.
In particular, the monad may not be uniform throughout.
Note [TransStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a TransStmt behaves as follows:
* Before renaming: []
* After renaming:
[ (x27,x27), ..., (z35,z35) ]
These are the variables
bound by the stmts to the left of the 'group'
and used either in the 'by' clause,
or in the stmts following the 'group'
Each item is a pair of identical variables.
* After typechecking:
[ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
Each pair has the same unique, but different *types*.
Note [BodyStmt]
~~~~~~~~~~~~~~~
BodyStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E BooParStmtBlockl: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
A monad comprehension of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
E :: Bool
Translation: guard E >> ...
Array comprehensions are handled like list comprehensions.
Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt { recS_rec_ids = [a, c]
, recS_stmts = [ BindStmt b (return (a,c))
, LetStmt a = ...b...
, BindStmt c ec ]
, recS_later_ids = [a, b]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
Why do we need *both* rec_ids and later_ids? For monads they could be
combined into a single set of variables, but not for arrows. That
follows from the types of the respective feedback operators:
mfix :: MonadFix m => (a -> m a) -> m a
loop :: ArrowLoop a => a (b,d) (c,d) -> a b c
* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids
Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written
(v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
do { stmts
; return (v1,..vn, r1, ..., rm) })
where v1..vn are the later_ids
r1..rm are the rec_ids
Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require separate functions like 'return' and
'>>=' for desugaring. These functions are stored in the statements
used in monad comprehensions. For example, the 'return' of the 'LastStmt'
expression is used to lift the body of the monad comprehension:
[ body | stmts ]
=>
stmts >>= \bndrs -> return body
In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:
[ body | stmts, then f, rest ]
=>
f [ env | stmts ] >>= \bndrs -> [ body | rest ]
BodyStmts require the 'Control.Monad.guard' function for boolean
expressions:
[ body | exp, stmts ]
=>
guard exp >> [ body | stmts ]
Parallel statements require the 'Control.Monad.Zip.mzip' function:
[ body | stmts1 | stmts2 | .. ]
=>
mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body
In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.
Note [Applicative BodyStmt]
(#12143) For the purposes of ApplicativeDo, we treat any BodyStmt
as if it was a BindStmt with a wildcard pattern. For example,
do
x <- A
B
return x
is transformed as if it were
do
x <- A
_ <- B
return x
so it transforms to
(\(x,_) -> x) <$> A <*> B
But we have to remember when we treat a BodyStmt like a BindStmt,
because in error messages we want to emit the original syntax the user
wrote, not our internal representation. So ApplicativeArgOne has a
Bool flag that is True when the original statement was a BodyStmt, so
that we can pretty-print it correctly.
-}
instance (Outputable (StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))),
Outputable (XXParStmtBlock (GhcPass idL) (GhcPass idR)))
=> Outputable (ParStmtBlock (GhcPass idL) (GhcPass idR)) where
ppr (ParStmtBlock _ stmts _ _) = interpp'SP stmts
instance (OutputableBndrId pl, OutputableBndrId pr,
Outputable body)
=> Outputable (StmtLR (GhcPass pl) (GhcPass pr) body) where
ppr stmt = pprStmt stmt
pprStmt :: forall idL idR body . (OutputableBndrId idL,
OutputableBndrId idR,
Outputable body)
=> (StmtLR (GhcPass idL) (GhcPass idR) body) -> SDoc
pprStmt (LastStmt _ expr m_dollar_stripped _)
= whenPprDebug (text "[last]") <+>
(case m_dollar_stripped of
Just True -> text "return $"
Just False -> text "return"
Nothing -> empty) <+>
ppr expr
pprStmt (BindStmt _ pat expr) = hsep [ppr pat, larrow, ppr expr]
pprStmt (LetStmt _ (L _ binds)) = hsep [text "let", pprBinds binds]
pprStmt (BodyStmt _ expr _ _) = ppr expr
pprStmt (ParStmt _ stmtss _ _) = sep (punctuate (text " | ") (map ppr stmtss))
pprStmt (TransStmt { trS_stmts = stmts, trS_by = by
, trS_using = using, trS_form = form })
= sep $ punctuate comma (map ppr stmts ++ [pprTransStmt by using form])
pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids
, recS_later_ids = later_ids })
= text "rec" <+>
vcat [ ppr_do_stmts segment
, whenPprDebug (vcat [ text "rec_ids=" <> ppr rec_ids
, text "later_ids=" <> ppr later_ids])]
pprStmt (ApplicativeStmt _ args mb_join)
= getPprStyle $ \style ->
if userStyle style
then pp_for_user
else pp_debug
where
-- make all the Applicative stuff invisible in error messages by
-- flattening the whole ApplicativeStmt nest back to a sequence
-- of statements.
pp_for_user = vcat $ concatMap flattenArg args
-- ppr directly rather than transforming here, because we need to
-- inject a "return" which is hard when we're polymorphic in the id
-- type.
flattenStmt :: ExprLStmt (GhcPass idL) -> [SDoc]
flattenStmt (L _ (ApplicativeStmt _ args _)) = concatMap flattenArg args
flattenStmt stmt = [ppr stmt]
flattenArg :: forall a . (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg (_, ApplicativeArgOne _ pat expr isBody)
| isBody = -- See Note [Applicative BodyStmt]
[ppr (BodyStmt (panic "pprStmt") expr noSyntaxExpr noSyntaxExpr
:: ExprStmt (GhcPass idL))]
| otherwise =
[ppr (BindStmt (panic "pprStmt") pat expr :: ExprStmt (GhcPass idL))]
flattenArg (_, ApplicativeArgMany _ stmts _ _ _) =
concatMap flattenStmt stmts
pp_debug =
let
ap_expr = sep (punctuate (text " |") (map pp_arg args))
in
whenPprDebug (if isJust mb_join then text "[join]" else empty) <+>
(if lengthAtLeast args 2 then parens else id) ap_expr
pp_arg :: (a, ApplicativeArg (GhcPass idL)) -> SDoc
pp_arg (_, applicativeArg) = ppr applicativeArg
instance (OutputableBndrId idL)
=> Outputable (ApplicativeArg (GhcPass idL)) where
ppr = pprArg
pprArg :: forall idL . (OutputableBndrId idL) => ApplicativeArg (GhcPass idL) -> SDoc
pprArg (ApplicativeArgOne _ pat expr isBody)
| isBody = -- See Note [Applicative BodyStmt]
ppr (BodyStmt (panic "pprStmt") expr noSyntaxExpr noSyntaxExpr
:: ExprStmt (GhcPass idL))
| otherwise =
ppr (BindStmt (panic "pprStmt") pat expr :: ExprStmt (GhcPass idL))
pprArg (ApplicativeArgMany _ stmts return pat ctxt) =
ppr pat <+>
text "<-" <+>
ppr (HsDo (panic "pprStmt") ctxt (noLoc
(stmts ++
[noLoc (LastStmt noExtField (noLoc return) Nothing noSyntaxExpr)]))
:: HsExpr (GhcPass idL))
pprTransformStmt :: (OutputableBndrId p)
=> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
-> Maybe (LHsExpr (GhcPass p)) -> SDoc
pprTransformStmt bndrs using by
= sep [ text "then" <+> whenPprDebug (braces (ppr bndrs))
, nest 2 (ppr using)
, nest 2 (pprBy by)]
pprTransStmt :: Outputable body => Maybe body -> body -> TransForm -> SDoc
pprTransStmt by using ThenForm
= sep [ text "then", nest 2 (ppr using), nest 2 (pprBy by)]
pprTransStmt by using GroupForm
= sep [ text "then group", nest 2 (pprBy by), nest 2 (ptext (sLit "using") <+> ppr using)]
pprBy :: Outputable body => Maybe body -> SDoc
pprBy Nothing = empty
pprBy (Just e) = text "by" <+> ppr e
pprDo :: (OutputableBndrId p, Outputable body)
=> HsStmtContext any -> [LStmt (GhcPass p) body] -> SDoc
pprDo (DoExpr m) stmts =
ppr_module_name_prefix m <> text "do" <+> ppr_do_stmts stmts
pprDo GhciStmtCtxt stmts = text "do" <+> ppr_do_stmts stmts
pprDo ArrowExpr stmts = text "do" <+> ppr_do_stmts stmts
pprDo (MDoExpr m) stmts =
ppr_module_name_prefix m <> text "mdo" <+> ppr_do_stmts stmts
pprDo ListComp stmts = brackets $ pprComp stmts
pprDo MonadComp stmts = brackets $ pprComp stmts
pprDo _ _ = panic "pprDo" -- PatGuard, ParStmtCxt
ppr_module_name_prefix :: Maybe ModuleName -> SDoc
ppr_module_name_prefix = \case
Nothing -> empty
Just module_name -> ppr module_name <> char '.'
ppr_do_stmts :: (OutputableBndrId idL, OutputableBndrId idR,
Outputable body)
=> [LStmtLR (GhcPass idL) (GhcPass idR) body] -> SDoc
-- Print a bunch of do stmts
ppr_do_stmts stmts = pprDeeperList vcat (map ppr stmts)
pprComp :: (OutputableBndrId p, Outputable body)
=> [LStmt (GhcPass p) body] -> SDoc
pprComp quals -- Prints: body | qual1, ..., qualn
| Just (initStmts, L _ (LastStmt _ body _ _)) <- snocView quals
= if null initStmts
-- If there are no statements in a list comprehension besides the last
-- one, we simply treat it like a normal list. This does arise
-- occasionally in code that GHC generates, e.g., in implementations of
-- 'range' for derived 'Ix' instances for product datatypes with exactly
-- one constructor (e.g., see #12583).
then ppr body
else hang (ppr body <+> vbar) 2 (pprQuals initStmts)
| otherwise
= pprPanic "pprComp" (pprQuals quals)
pprQuals :: (OutputableBndrId p, Outputable body)
=> [LStmt (GhcPass p) body] -> SDoc
-- Show list comprehension qualifiers separated by commas
pprQuals quals = interpp'SP quals
{-
************************************************************************
* *
Template Haskell quotation brackets
* *
************************************************************************
-}
-- | Haskell Splice
data HsSplice id
= HsTypedSplice -- $$z or $$(f 4)
(XTypedSplice id)
SpliceDecoration -- Whether $$( ) variant found, for pretty printing
(IdP id) -- A unique name to identify this splice point
(LHsExpr id) -- See Note [Pending Splices]
| HsUntypedSplice -- $z or $(f 4)
(XUntypedSplice id)
SpliceDecoration -- Whether $( ) variant found, for pretty printing
(IdP id) -- A unique name to identify this splice point
(LHsExpr id) -- See Note [Pending Splices]
| HsQuasiQuote -- See Note [Quasi-quote overview] in GHC.Tc.Gen.Splice
(XQuasiQuote id)
(IdP id) -- Splice point
(IdP id) -- Quoter
SrcSpan -- The span of the enclosed string
FastString -- The enclosed string
-- AZ:TODO: use XSplice instead of HsSpliced
| HsSpliced -- See Note [Delaying modFinalizers in untyped splices] in
-- GHC.Rename.Splice.
-- This is the result of splicing a splice. It is produced by
-- the renamer and consumed by the typechecker. It lives only
-- between the two.
(XSpliced id)
ThModFinalizers -- TH finalizers produced by the splice.
(HsSplicedThing id) -- The result of splicing
| XSplice !(XXSplice id) -- Note [Trees that Grow] extension point
newtype HsSplicedT = HsSplicedT DelayedSplice deriving (Data)
type instance XTypedSplice (GhcPass _) = NoExtField
type instance XUntypedSplice (GhcPass _) = NoExtField
type instance XQuasiQuote (GhcPass _) = NoExtField
type instance XSpliced (GhcPass _) = NoExtField
type instance XXSplice GhcPs = NoExtCon
type instance XXSplice GhcRn = NoExtCon
type instance XXSplice GhcTc = HsSplicedT
-- | A splice can appear with various decorations wrapped around it. This data
-- type captures explicitly how it was originally written, for use in the pretty
-- printer.
data SpliceDecoration
= DollarSplice -- ^ $splice or $$splice
| BareSplice -- ^ bare splice
deriving (Data, Eq, Show)
instance Outputable SpliceDecoration where
ppr x = text $ show x
isTypedSplice :: HsSplice id -> Bool
isTypedSplice (HsTypedSplice {}) = True
isTypedSplice _ = False -- Quasi-quotes are untyped splices
-- | Finalizers produced by a splice with
-- 'Language.Haskell.TH.Syntax.addModFinalizer'
--
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice. For how
-- this is used.
--
newtype ThModFinalizers = ThModFinalizers [ForeignRef (TH.Q ())]
-- A Data instance which ignores the argument of 'ThModFinalizers'.
instance Data ThModFinalizers where
gunfold _ z _ = z $ ThModFinalizers []
toConstr a = mkConstr (dataTypeOf a) "ThModFinalizers" [] Data.Prefix
dataTypeOf a = mkDataType "HsExpr.ThModFinalizers" [toConstr a]
-- See Note [Running typed splices in the zonker]
-- These are the arguments that are passed to `GHC.Tc.Gen.Splice.runTopSplice`
data DelayedSplice =
DelayedSplice
TcLclEnv -- The local environment to run the splice in
(LHsExpr GhcRn) -- The original renamed expression
TcType -- The result type of running the splice, unzonked
(LHsExpr GhcTc) -- The typechecked expression to run and splice in the result
-- A Data instance which ignores the argument of 'DelayedSplice'.
instance Data DelayedSplice where
gunfold _ _ _ = panic "DelayedSplice"
toConstr a = mkConstr (dataTypeOf a) "DelayedSplice" [] Data.Prefix
dataTypeOf a = mkDataType "HsExpr.DelayedSplice" [toConstr a]
-- | Haskell Spliced Thing
--
-- Values that can result from running a splice.
data HsSplicedThing id
= HsSplicedExpr (HsExpr id) -- ^ Haskell Spliced Expression
| HsSplicedTy (HsType id) -- ^ Haskell Spliced Type
| HsSplicedPat (Pat id) -- ^ Haskell Spliced Pattern
-- See Note [Pending Splices]
type SplicePointName = Name
-- | Pending Renamer Splice
data PendingRnSplice
= PendingRnSplice UntypedSpliceFlavour SplicePointName (LHsExpr GhcRn)
data UntypedSpliceFlavour
= UntypedExpSplice
| UntypedPatSplice
| UntypedTypeSplice
| UntypedDeclSplice
deriving Data
-- | Pending Type-checker Splice
data PendingTcSplice
= PendingTcSplice SplicePointName (LHsExpr GhcTc)
{-
Note [Pending Splices]
~~~~~~~~~~~~~~~~~~~~~~
When we rename an untyped bracket, we name and lift out all the nested
splices, so that when the typechecker hits the bracket, it can
typecheck those nested splices without having to walk over the untyped
bracket code. So for example
[| f $(g x) |]
looks like
HsBracket (HsApp (HsVar "f") (HsSpliceE _ (g x)))
which the renamer rewrites to
HsRnBracketOut (HsApp (HsVar f) (HsSpliceE sn (g x)))
[PendingRnSplice UntypedExpSplice sn (g x)]
* The 'sn' is the Name of the splice point, the SplicePointName
* The PendingRnExpSplice gives the splice that splice-point name maps to;
and the typechecker can now conveniently find these sub-expressions
* The other copy of the splice, in the second argument of HsSpliceE
in the renamed first arg of HsRnBracketOut
is used only for pretty printing
There are four varieties of pending splices generated by the renamer,
distinguished by their UntypedSpliceFlavour
* Pending expression splices (UntypedExpSplice), e.g.,
[|$(f x) + 2|]
UntypedExpSplice is also used for
* quasi-quotes, where the pending expression expands to
$(quoter "...blah...")
(see GHC.Rename.Splice.makePending, HsQuasiQuote case)
* cross-stage lifting, where the pending expression expands to
$(lift x)
(see GHC.Rename.Splice.checkCrossStageLifting)
* Pending pattern splices (UntypedPatSplice), e.g.,
[| \$(f x) -> x |]
* Pending type splices (UntypedTypeSplice), e.g.,
[| f :: $(g x) |]
* Pending declaration (UntypedDeclSplice), e.g.,
[| let $(f x) in ... |]
There is a fifth variety of pending splice, which is generated by the type
checker:
* Pending *typed* expression splices, (PendingTcSplice), e.g.,
[||1 + $$(f 2)||]
It would be possible to eliminate HsRnBracketOut and use HsBracketOut for the
output of the renamer. However, when pretty printing the output of the renamer,
e.g., in a type error message, we *do not* want to print out the pending
splices. In contrast, when pretty printing the output of the type checker, we
*do* want to print the pending splices. So splitting them up seems to make
sense, although I hate to add another constructor to HsExpr.
-}
instance OutputableBndrId p
=> Outputable (HsSplicedThing (GhcPass p)) where
ppr (HsSplicedExpr e) = ppr_expr e
ppr (HsSplicedTy t) = ppr t
ppr (HsSplicedPat p) = ppr p
instance (OutputableBndrId p) => Outputable (HsSplice (GhcPass p)) where
ppr s = pprSplice s
pprPendingSplice :: (OutputableBndrId p)
=> SplicePointName -> LHsExpr (GhcPass p) -> SDoc
pprPendingSplice n e = angleBrackets (ppr n <> comma <+> ppr (stripParensLHsExpr e))
pprSpliceDecl :: (OutputableBndrId p)
=> HsSplice (GhcPass p) -> SpliceExplicitFlag -> SDoc
pprSpliceDecl e@HsQuasiQuote{} _ = pprSplice e
pprSpliceDecl e ExplicitSplice = text "$" <> ppr_splice_decl e
pprSpliceDecl e ImplicitSplice = ppr_splice_decl e
ppr_splice_decl :: (OutputableBndrId p)
=> HsSplice (GhcPass p) -> SDoc
ppr_splice_decl (HsUntypedSplice _ _ n e) = ppr_splice empty n e empty
ppr_splice_decl e = pprSplice e
pprSplice :: forall p. (OutputableBndrId p) => HsSplice (GhcPass p) -> SDoc
pprSplice (HsTypedSplice _ DollarSplice n e)
= ppr_splice (text "$$") n e empty
pprSplice (HsTypedSplice _ BareSplice _ _ )
= panic "Bare typed splice" -- impossible
pprSplice (HsUntypedSplice _ DollarSplice n e)
= ppr_splice (text "$") n e empty
pprSplice (HsUntypedSplice _ BareSplice n e)
= ppr_splice empty n e empty
pprSplice (HsQuasiQuote _ n q _ s) = ppr_quasi n q s
pprSplice (HsSpliced _ _ thing) = ppr thing
pprSplice (XSplice x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> noExtCon x
GhcRn -> noExtCon x
#endif
GhcTc -> case x of
HsSplicedT _ -> text "Unevaluated typed splice"
ppr_quasi :: OutputableBndr p => p -> p -> FastString -> SDoc
ppr_quasi n quoter quote = whenPprDebug (brackets (ppr n)) <>
char '[' <> ppr quoter <> vbar <>
ppr quote <> text "|]"
ppr_splice :: (OutputableBndrId p)
=> SDoc -> (IdP (GhcPass p)) -> LHsExpr (GhcPass p) -> SDoc -> SDoc
ppr_splice herald n e trail
= herald <> whenPprDebug (brackets (ppr n)) <> ppr e <> trail
-- | Haskell Bracket
data HsBracket p
= ExpBr (XExpBr p) (LHsExpr p) -- [| expr |]
| PatBr (XPatBr p) (LPat p) -- [p| pat |]
| DecBrL (XDecBrL p) [LHsDecl p] -- [d| decls |]; result of parser
| DecBrG (XDecBrG p) (HsGroup p) -- [d| decls |]; result of renamer
| TypBr (XTypBr p) (LHsType p) -- [t| type |]
| VarBr (XVarBr p) Bool (IdP p) -- True: 'x, False: ''T
-- (The Bool flag is used only in pprHsBracket)
| TExpBr (XTExpBr p) (LHsExpr p) -- [|| expr ||]
| XBracket !(XXBracket p) -- Note [Trees that Grow] extension point
type instance XExpBr (GhcPass _) = NoExtField
type instance XPatBr (GhcPass _) = NoExtField
type instance XDecBrL (GhcPass _) = NoExtField
type instance XDecBrG (GhcPass _) = NoExtField
type instance XTypBr (GhcPass _) = NoExtField
type instance XVarBr (GhcPass _) = NoExtField
type instance XTExpBr (GhcPass _) = NoExtField
type instance XXBracket (GhcPass _) = NoExtCon
isTypedBracket :: HsBracket id -> Bool
isTypedBracket (TExpBr {}) = True
isTypedBracket _ = False
instance OutputableBndrId p
=> Outputable (HsBracket (GhcPass p)) where
ppr = pprHsBracket
pprHsBracket :: (OutputableBndrId p) => HsBracket (GhcPass p) -> SDoc
pprHsBracket (ExpBr _ e) = thBrackets empty (ppr e)
pprHsBracket (PatBr _ p) = thBrackets (char 'p') (ppr p)
pprHsBracket (DecBrG _ gp) = thBrackets (char 'd') (ppr gp)
pprHsBracket (DecBrL _ ds) = thBrackets (char 'd') (vcat (map ppr ds))
pprHsBracket (TypBr _ t) = thBrackets (char 't') (ppr t)
pprHsBracket (VarBr _ True n)
= char '\'' <> pprPrefixOcc n
pprHsBracket (VarBr _ False n)
= text "''" <> pprPrefixOcc n
pprHsBracket (TExpBr _ e) = thTyBrackets (ppr e)
thBrackets :: SDoc -> SDoc -> SDoc
thBrackets pp_kind pp_body = char '[' <> pp_kind <> vbar <+>
pp_body <+> text "|]"
thTyBrackets :: SDoc -> SDoc
thTyBrackets pp_body = text "[||" <+> pp_body <+> ptext (sLit "||]")
instance Outputable PendingRnSplice where
ppr (PendingRnSplice _ n e) = pprPendingSplice n e
instance Outputable PendingTcSplice where
ppr (PendingTcSplice n e) = pprPendingSplice n e
{-
************************************************************************
* *
\subsection{Enumerations and list comprehensions}
* *
************************************************************************
-}
-- | Arithmetic Sequence Information
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
-- AZ: Should ArithSeqInfo have a TTG extension?
instance OutputableBndrId p
=> Outputable (ArithSeqInfo (GhcPass p)) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot :: SDoc
pp_dotdot = text " .. "
{-
************************************************************************
* *
\subsection{HsMatchCtxt}
* *
************************************************************************
-}
-- | Haskell Match Context
--
-- Context of a pattern match. This is more subtle than it would seem. See Note
-- [Varieties of pattern matches].
data HsMatchContext p
= FunRhs { mc_fun :: LIdP p -- ^ function binder of @f@
, mc_fixity :: LexicalFixity -- ^ fixing of @f@
, mc_strictness :: SrcStrictness -- ^ was @f@ banged?
-- See Note [FunBind vs PatBind]
}
-- ^A pattern matching on an argument of a
-- function binding
| LambdaExpr -- ^Patterns of a lambda
| CaseAlt -- ^Patterns and guards on a case alternative
| IfAlt -- ^Guards of a multi-way if alternative
| ProcExpr -- ^Patterns of a proc
| PatBindRhs -- ^A pattern binding eg [y] <- e = e
| PatBindGuards -- ^Guards of pattern bindings, e.g.,
-- (Just b) | Just _ <- x = e
-- | otherwise = e'
| RecUpd -- ^Record update [used only in GHC.HsToCore.Expr to
-- tell matchWrapper what sort of
-- runtime error message to generate]
| StmtCtxt (HsStmtContext p) -- ^Pattern of a do-stmt, list comprehension,
-- pattern guard, etc
| ThPatSplice -- ^A Template Haskell pattern splice
| ThPatQuote -- ^A Template Haskell pattern quotation [p| (a,b) |]
| PatSyn -- ^A pattern synonym declaration
instance OutputableBndrId p => Outputable (HsMatchContext (GhcPass p)) where
ppr m@(FunRhs{}) = text "FunRhs" <+> ppr (mc_fun m) <+> ppr (mc_fixity m)
ppr LambdaExpr = text "LambdaExpr"
ppr CaseAlt = text "CaseAlt"
ppr IfAlt = text "IfAlt"
ppr ProcExpr = text "ProcExpr"
ppr PatBindRhs = text "PatBindRhs"
ppr PatBindGuards = text "PatBindGuards"
ppr RecUpd = text "RecUpd"
ppr (StmtCtxt _) = text "StmtCtxt _"
ppr ThPatSplice = text "ThPatSplice"
ppr ThPatQuote = text "ThPatQuote"
ppr PatSyn = text "PatSyn"
isPatSynCtxt :: HsMatchContext p -> Bool
isPatSynCtxt ctxt =
case ctxt of
PatSyn -> True
_ -> False
-- | Haskell Statement Context.
data HsStmtContext p
= ListComp
| MonadComp
| DoExpr (Maybe ModuleName) -- ^[ModuleName.]do { ... }
| MDoExpr (Maybe ModuleName) -- ^[ModuleName.]mdo { ... } ie recursive do-expression
| ArrowExpr -- ^do-notation in an arrow-command context
| GhciStmtCtxt -- ^A command-line Stmt in GHCi pat <- rhs
| PatGuard (HsMatchContext p) -- ^Pattern guard for specified thing
| ParStmtCtxt (HsStmtContext p) -- ^A branch of a parallel stmt
| TransStmtCtxt (HsStmtContext p) -- ^A branch of a transform stmt
qualifiedDoModuleName_maybe :: HsStmtContext p -> Maybe ModuleName
qualifiedDoModuleName_maybe ctxt = case ctxt of
DoExpr m -> m
MDoExpr m -> m
_ -> Nothing
isComprehensionContext :: HsStmtContext id -> Bool
-- Uses comprehension syntax [ e | quals ]
isComprehensionContext ListComp = True
isComprehensionContext MonadComp = True
isComprehensionContext (ParStmtCtxt c) = isComprehensionContext c
isComprehensionContext (TransStmtCtxt c) = isComprehensionContext c
isComprehensionContext _ = False
-- | Is this a monadic context?
isMonadStmtContext :: HsStmtContext id -> Bool
isMonadStmtContext MonadComp = True
isMonadStmtContext DoExpr{} = True
isMonadStmtContext MDoExpr{} = True
isMonadStmtContext GhciStmtCtxt = True
isMonadStmtContext (ParStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext (TransStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext _ = False -- ListComp, PatGuard, ArrowExpr
isMonadCompContext :: HsStmtContext id -> Bool
isMonadCompContext MonadComp = True
isMonadCompContext _ = False
matchSeparator :: HsMatchContext p -> SDoc
matchSeparator (FunRhs {}) = text "="
matchSeparator CaseAlt = text "->"
matchSeparator IfAlt = text "->"
matchSeparator LambdaExpr = text "->"
matchSeparator ProcExpr = text "->"
matchSeparator PatBindRhs = text "="
matchSeparator PatBindGuards = text "="
matchSeparator (StmtCtxt _) = text "<-"
matchSeparator RecUpd = text "=" -- This can be printed by the pattern
-- match checker trace
matchSeparator ThPatSplice = panic "unused"
matchSeparator ThPatQuote = panic "unused"
matchSeparator PatSyn = panic "unused"
pprMatchContext :: (Outputable (IdP p), UnXRec p)
=> HsMatchContext p -> SDoc
pprMatchContext ctxt
| want_an ctxt = text "an" <+> pprMatchContextNoun ctxt
| otherwise = text "a" <+> pprMatchContextNoun ctxt
where
want_an (FunRhs {}) = True -- Use "an" in front
want_an ProcExpr = True
want_an _ = False
pprMatchContextNoun :: forall p. (Outputable (IdP p), UnXRec p)
=> HsMatchContext p -> SDoc
pprMatchContextNoun (FunRhs {mc_fun=fun})
= text "equation for"
<+> quotes (ppr (unXRec @p fun))
pprMatchContextNoun CaseAlt = text "case alternative"
pprMatchContextNoun IfAlt = text "multi-way if alternative"
pprMatchContextNoun RecUpd = text "record-update construct"
pprMatchContextNoun ThPatSplice = text "Template Haskell pattern splice"
pprMatchContextNoun ThPatQuote = text "Template Haskell pattern quotation"
pprMatchContextNoun PatBindRhs = text "pattern binding"
pprMatchContextNoun PatBindGuards = text "pattern binding guards"
pprMatchContextNoun LambdaExpr = text "lambda abstraction"
pprMatchContextNoun ProcExpr = text "arrow abstraction"
pprMatchContextNoun (StmtCtxt ctxt) = text "pattern binding in"
$$ pprAStmtContext ctxt
pprMatchContextNoun PatSyn = text "pattern synonym declaration"
-----------------
pprAStmtContext, pprStmtContext :: (Outputable (IdP p), UnXRec p)
=> HsStmtContext p -> SDoc
pprAStmtContext ctxt = article <+> pprStmtContext ctxt
where
pp_an = text "an"
pp_a = text "a"
article = case ctxt of
MDoExpr Nothing -> pp_an
GhciStmtCtxt -> pp_an
_ -> pp_a
-----------------
pprStmtContext GhciStmtCtxt = text "interactive GHCi command"
pprStmtContext (DoExpr m) = prependQualified m (text "'do' block")
pprStmtContext (MDoExpr m) = prependQualified m (text "'mdo' block")
pprStmtContext ArrowExpr = text "'do' block in an arrow command"
pprStmtContext ListComp = text "list comprehension"
pprStmtContext MonadComp = text "monad comprehension"
pprStmtContext (PatGuard ctxt) = text "pattern guard for" $$ pprMatchContext ctxt
-- Drop the inner contexts when reporting errors, else we get
-- Unexpected transform statement
-- in a transformed branch of
-- transformed branch of
-- transformed branch of monad comprehension
pprStmtContext (ParStmtCtxt c) =
ifPprDebug (sep [text "parallel branch of", pprAStmtContext c])
(pprStmtContext c)
pprStmtContext (TransStmtCtxt c) =
ifPprDebug (sep [text "transformed branch of", pprAStmtContext c])
(pprStmtContext c)
prependQualified :: Maybe ModuleName -> SDoc -> SDoc
prependQualified Nothing t = t
prependQualified (Just _) t = text "qualified" <+> t
instance OutputableBndrId p
=> Outputable (HsStmtContext (GhcPass p)) where
ppr = pprStmtContext
-- Used to generate the string for a *runtime* error message
matchContextErrString :: OutputableBndrId p
=> HsMatchContext (GhcPass p) -> SDoc
matchContextErrString (FunRhs{mc_fun=L _ fun}) = text "function" <+> ppr fun
matchContextErrString CaseAlt = text "case"
matchContextErrString IfAlt = text "multi-way if"
matchContextErrString PatBindRhs = text "pattern binding"
matchContextErrString PatBindGuards = text "pattern binding guards"
matchContextErrString RecUpd = text "record update"
matchContextErrString LambdaExpr = text "lambda"
matchContextErrString ProcExpr = text "proc"
matchContextErrString ThPatSplice = panic "matchContextErrString" -- Not used at runtime
matchContextErrString ThPatQuote = panic "matchContextErrString" -- Not used at runtime
matchContextErrString PatSyn = panic "matchContextErrString" -- Not used at runtime
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (TransStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = text "pattern guard"
matchContextErrString (StmtCtxt GhciStmtCtxt) = text "interactive GHCi command"
matchContextErrString (StmtCtxt (DoExpr m)) = prependQualified m (text "'do' block")
matchContextErrString (StmtCtxt ArrowExpr) = text "'do' block"
matchContextErrString (StmtCtxt (MDoExpr m)) = prependQualified m (text "'mdo' block")
matchContextErrString (StmtCtxt ListComp) = text "list comprehension"
matchContextErrString (StmtCtxt MonadComp) = text "monad comprehension"
pprMatchInCtxt :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatchInCtxt match = hang (text "In" <+> pprMatchContext (m_ctxt match)
<> colon)
4 (pprMatch match)
pprStmtInCtxt :: (OutputableBndrId idL,
OutputableBndrId idR,
Outputable body)
=> HsStmtContext (GhcPass idL)
-> StmtLR (GhcPass idL) (GhcPass idR) body
-> SDoc
pprStmtInCtxt ctxt (LastStmt _ e _ _)
| isComprehensionContext ctxt -- For [ e | .. ], do not mutter about "stmts"
= hang (text "In the expression:") 2 (ppr e)
pprStmtInCtxt ctxt stmt
= hang (text "In a stmt of" <+> pprAStmtContext ctxt <> colon)
2 (ppr_stmt stmt)
where
-- For Group and Transform Stmts, don't print the nested stmts!
ppr_stmt (TransStmt { trS_by = by, trS_using = using
, trS_form = form }) = pprTransStmt by using form
ppr_stmt stmt = pprStmt stmt
|