1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
{-# LANGUAGE AllowAmbiguousTypes #-} -- for pprIfTc, etc.
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE EmptyDataDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableSuperClasses #-} -- for IsPass; see Note [NoGhcTc]
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
module GHC.Hs.Extension where
-- This module captures the type families to precisely identify the extension
-- points for GHC.Hs syntax
import GHC.Prelude
import Data.Data hiding ( Fixity )
import Language.Haskell.Syntax.Extension
import GHC.Types.Name
import GHC.Types.Name.Reader
import GHC.Types.Var
import GHC.Utils.Outputable hiding ((<>))
import GHC.Types.SrcLoc (GenLocated(..), unLoc)
import GHC.Utils.Panic
import GHC.Parser.Annotation
{-
Note [IsPass]
~~~~~~~~~~~~~
One challenge with the Trees That Grow approach
is that we sometimes have different information in different passes.
For example, we have
type instance XViaStrategy GhcPs = LHsSigType GhcPs
type instance XViaStrategy GhcRn = LHsSigType GhcRn
type instance XViaStrategy GhcTc = Type
This means that printing a DerivStrategy (which contains an XViaStrategy)
might need to print a LHsSigType, or it might need to print a type. Yet we
want one Outputable instance for a DerivStrategy, instead of one per pass. We
could have a large constraint, including e.g. (Outputable (XViaStrategy p),
Outputable (XViaStrategy GhcTc)), and pass that around in every context where
we might output a DerivStrategy. But a simpler alternative is to pass a
witness to whichever pass we're in. When we pattern-match on that (GADT)
witness, we learn the pass identity and can then print away. To wit, we get
the definition of GhcPass and the functions isPass. These allow us to do away
with big constraints, passing around all manner of dictionaries we might or
might not use. It does mean that we have to manually use isPass when printing,
but these places are few.
See Note [NoGhcTc] about the superclass constraint to IsPass.
Note [NoGhcTc]
~~~~~~~~~~~~~~
An expression is parsed into HsExpr GhcPs, renamed into HsExpr GhcRn, and
then type-checked into HsExpr GhcTc. Not so for types! These get parsed
into HsType GhcPs, renamed into HsType GhcRn, and then type-checked into
Type. We never build an HsType GhcTc. Why do this? Because we need to be
able to compare type-checked types for equality, and we don't want to do
this with HsType.
This causes wrinkles within the AST, where we normally think that the whole
AST travels through the GhcPs --> GhcRn --> GhcTc pipeline as one. So we
have the NoGhcTc type family, which just replaces GhcTc with GhcRn, so that
user-written types can be preserved (as HsType GhcRn) even in e.g. HsExpr GhcTc.
For example, this is used in ExprWithTySig:
| ExprWithTySig
(XExprWithTySig p)
(LHsExpr p)
(LHsSigWcType (NoGhcTc p))
If we have (e :: ty), we still want to be able to print that (with the :: ty)
after type-checking. So we retain the LHsSigWcType GhcRn, even in an
HsExpr GhcTc. That's what NoGhcTc does.
When we're printing the type annotation, we need to know
(Outputable (LHsSigWcType GhcRn)), even though we've assumed only that
(OutputableBndrId GhcTc). We thus must be able to prove OutputableBndrId (NoGhcTc p)
from OutputableBndrId p. The extra constraints in OutputableBndrId and
the superclass constraints of IsPass allow this. Note that the superclass
constraint of IsPass is *recursive*: it asserts that IsPass (NoGhcTcPass p) holds.
For this to make sense, we need -XUndecidableSuperClasses and the other constraint,
saying that NoGhcTcPass is idempotent.
-}
-- See Note [XRec and Anno in the AST] in GHC.Parser.Annotation
type instance XRec (GhcPass p) a = GenLocated (Anno a) a
type instance Anno RdrName = SrcSpanAnnN
type instance Anno Name = SrcSpanAnnN
type instance Anno Id = SrcSpanAnnN
type IsSrcSpanAnn p a = ( Anno (IdGhcP p) ~ SrcSpanAnn' (ApiAnn' a),
IsPass p)
instance UnXRec (GhcPass p) where
unXRec = unLoc
instance MapXRec (GhcPass p) where
mapXRec = fmap
-- instance WrapXRec (GhcPass p) a where
-- wrapXRec = noLocA
{-
Note [NoExtCon and strict fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, any unused TTG extension constructor will generally look like the
following:
type instance XXHsDecl (GhcPass _) = NoExtCon
data HsDecl p
= ...
| XHsDecl !(XXHsDecl p)
The field of type `XXHsDecl p` is strict for a good reason: it allows the
pattern-match coverage checker to conclude that any matches against XHsDecl
are unreachable whenever `p ~ GhcPass _`. To see why this is the case, consider
the following function which consumes an HsDecl:
ex :: HsDecl GhcPs -> HsDecl GhcRn
...
ex (XHsDecl nec) = noExtCon nec
Because `p` equals GhcPs (i.e., GhcPass 'Parsed), XHsDecl's field has the type
NoExtCon. But since (1) the field is strict and (2) NoExtCon is an empty data
type, there is no possible way to reach the right-hand side of the XHsDecl
case. As a result, the coverage checker concludes that the XHsDecl case is
inaccessible, so it can be removed.
(See Note [Strict argument type constraints] in GHC.HsToCore.Pmc.Solver for
more on how this works.)
Bottom line: if you add a TTG extension constructor that uses NoExtCon, make
sure that any uses of it as a field are strict.
-}
-- | Used as a data type index for the hsSyn AST; also serves
-- as a singleton type for Pass
data GhcPass (c :: Pass) where
GhcPs :: GhcPass 'Parsed
GhcRn :: GhcPass 'Renamed
GhcTc :: GhcPass 'Typechecked
-- This really should never be entered, but the data-deriving machinery
-- needs the instance to exist.
instance Typeable p => Data (GhcPass p) where
gunfold _ _ _ = panic "instance Data GhcPass"
toConstr _ = panic "instance Data GhcPass"
dataTypeOf _ = panic "instance Data GhcPass"
data Pass = Parsed | Renamed | Typechecked
deriving (Data)
-- Type synonyms as a shorthand for tagging
type GhcPs = GhcPass 'Parsed -- Output of parser
type GhcRn = GhcPass 'Renamed -- Output of renamer
type GhcTc = GhcPass 'Typechecked -- Output of typechecker
-- | Allows us to check what phase we're in at GHC's runtime.
-- For example, this class allows us to write
-- > f :: forall p. IsPass p => HsExpr (GhcPass p) -> blah
-- > f e = case ghcPass @p of
-- > GhcPs -> ... in this RHS we have HsExpr GhcPs...
-- > GhcRn -> ... in this RHS we have HsExpr GhcRn...
-- > GhcTc -> ... in this RHS we have HsExpr GhcTc...
-- which is very useful, for example, when pretty-printing.
-- See Note [IsPass].
class ( NoGhcTcPass (NoGhcTcPass p) ~ NoGhcTcPass p
, IsPass (NoGhcTcPass p)
) => IsPass p where
ghcPass :: GhcPass p
instance IsPass 'Parsed where
ghcPass = GhcPs
instance IsPass 'Renamed where
ghcPass = GhcRn
instance IsPass 'Typechecked where
ghcPass = GhcTc
type instance IdP (GhcPass p) = IdGhcP p
-- | Maps the "normal" id type for a given GHC pass
type family IdGhcP pass where
IdGhcP 'Parsed = RdrName
IdGhcP 'Renamed = Name
IdGhcP 'Typechecked = Id
-- | Marks that a field uses the GhcRn variant even when the pass
-- parameter is GhcTc. Useful for storing HsTypes in GHC.Hs.Exprs, say, because
-- HsType GhcTc should never occur.
-- See Note [NoGhcTc]
-- Breaking it up this way, GHC can figure out that the result is a GhcPass
type instance NoGhcTc (GhcPass pass) = GhcPass (NoGhcTcPass pass)
type family NoGhcTcPass (p :: Pass) :: Pass where
NoGhcTcPass 'Typechecked = 'Renamed
NoGhcTcPass other = other
-- |Constraint type to bundle up the requirement for 'OutputableBndr' on both
-- the @id@ and the 'NoGhcTc' of it. See Note [NoGhcTc].
type OutputableBndrId pass =
( OutputableBndr (IdGhcP pass)
, OutputableBndr (IdGhcP (NoGhcTcPass pass))
, Outputable (GenLocated (Anno (IdGhcP pass)) (IdGhcP pass))
, Outputable (GenLocated (Anno (IdGhcP (NoGhcTcPass pass))) (IdGhcP (NoGhcTcPass pass)))
, IsPass pass
)
-- useful helper functions:
pprIfPs :: forall p. IsPass p => (p ~ 'Parsed => SDoc) -> SDoc
pprIfPs pp = case ghcPass @p of GhcPs -> pp
_ -> empty
pprIfRn :: forall p. IsPass p => (p ~ 'Renamed => SDoc) -> SDoc
pprIfRn pp = case ghcPass @p of GhcRn -> pp
_ -> empty
pprIfTc :: forall p. IsPass p => (p ~ 'Typechecked => SDoc) -> SDoc
pprIfTc pp = case ghcPass @p of GhcTc -> pp
_ -> empty
|