1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[PatSyntax]{Abstract Haskell syntax---patterns}
-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types]
-- in module GHC.Hs.PlaceHolder
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
module GHC.Hs.Pat (
Pat(..), InPat, OutPat, LPat,
ListPatTc(..),
HsConPatDetails, hsConPatArgs,
HsRecFields(..), HsRecField'(..), LHsRecField',
HsRecField, LHsRecField,
HsRecUpdField, LHsRecUpdField,
hsRecFields, hsRecFieldSel, hsRecFieldId, hsRecFieldsArgs,
hsRecUpdFieldId, hsRecUpdFieldOcc, hsRecUpdFieldRdr,
mkPrefixConPat, mkCharLitPat, mkNilPat,
isSimplePat,
looksLazyPatBind,
isBangedLPat,
patNeedsParens, parenthesizePat,
isIrrefutableHsPat,
collectEvVarsPat, collectEvVarsPats,
pprParendLPat, pprConArgs
) where
import GhcPrelude
import {-# SOURCE #-} GHC.Hs.Expr (SyntaxExpr, LHsExpr, HsSplice, pprLExpr, pprSplice)
-- friends:
import GHC.Hs.Binds
import GHC.Hs.Lit
import GHC.Hs.Extension
import GHC.Hs.Types
import TcEvidence
import BasicTypes
-- others:
import PprCore ( {- instance OutputableBndr TyVar -} )
import TysWiredIn
import Var
import RdrName ( RdrName )
import ConLike
import DataCon
import TyCon
import Outputable
import Type
import SrcLoc
import Bag -- collect ev vars from pats
import DynFlags( gopt, GeneralFlag(..) )
import Maybes
-- libraries:
import Data.Data hiding (TyCon,Fixity)
type InPat p = LPat p -- No 'Out' constructors
type OutPat p = LPat p -- No 'In' constructors
type LPat p = XRec p Pat
-- | Pattern
--
-- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnBang'
-- For details on above see note [Api annotations] in ApiAnnotation
data Pat p
= ------------ Simple patterns ---------------
WildPat (XWildPat p) -- ^ Wildcard Pattern
-- The sole reason for a type on a WildPat is to
-- support hsPatType :: Pat Id -> Type
-- AZ:TODO above comment needs to be updated
| VarPat (XVarPat p)
(Located (IdP p)) -- ^ Variable Pattern
-- See Note [Located RdrNames] in GHC.Hs.Expr
| LazyPat (XLazyPat p)
(LPat p) -- ^ Lazy Pattern
-- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnTilde'
-- For details on above see note [Api annotations] in ApiAnnotation
| AsPat (XAsPat p)
(Located (IdP p)) (LPat p) -- ^ As pattern
-- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnAt'
-- For details on above see note [Api annotations] in ApiAnnotation
| ParPat (XParPat p)
(LPat p) -- ^ Parenthesised pattern
-- See Note [Parens in HsSyn] in GHC.Hs.Expr
-- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'('@,
-- 'ApiAnnotation.AnnClose' @')'@
-- For details on above see note [Api annotations] in ApiAnnotation
| BangPat (XBangPat p)
(LPat p) -- ^ Bang pattern
-- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnBang'
-- For details on above see note [Api annotations] in ApiAnnotation
------------ Lists, tuples, arrays ---------------
| ListPat (XListPat p)
[LPat p]
-- For OverloadedLists a Just (ty,fn) gives
-- overall type of the pattern, and the toList
-- function to convert the scrutinee to a list value
-- ^ Syntactic List
--
-- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'['@,
-- 'ApiAnnotation.AnnClose' @']'@
-- For details on above see note [Api annotations] in ApiAnnotation
| TuplePat (XTuplePat p)
-- after typechecking, holds the types of the tuple components
[LPat p] -- Tuple sub-patterns
Boxity -- UnitPat is TuplePat []
-- You might think that the post typechecking Type was redundant,
-- because we can get the pattern type by getting the types of the
-- sub-patterns.
-- But it's essential
-- data T a where
-- T1 :: Int -> T Int
-- f :: (T a, a) -> Int
-- f (T1 x, z) = z
-- When desugaring, we must generate
-- f = /\a. \v::a. case v of (t::T a, w::a) ->
-- case t of (T1 (x::Int)) ->
-- Note the (w::a), NOT (w::Int), because we have not yet
-- refined 'a' to Int. So we must know that the second component
-- of the tuple is of type 'a' not Int. See selectMatchVar
-- (June 14: I'm not sure this comment is right; the sub-patterns
-- will be wrapped in CoPats, no?)
-- ^ Tuple sub-patterns
--
-- - 'ApiAnnotation.AnnKeywordId' :
-- 'ApiAnnotation.AnnOpen' @'('@ or @'(#'@,
-- 'ApiAnnotation.AnnClose' @')'@ or @'#)'@
| SumPat (XSumPat p) -- GHC.Hs.PlaceHolder before typechecker, filled in
-- afterwards with the types of the
-- alternative
(LPat p) -- Sum sub-pattern
ConTag -- Alternative (one-based)
Arity -- Arity (INVARIANT: ≥ 2)
-- ^ Anonymous sum pattern
--
-- - 'ApiAnnotation.AnnKeywordId' :
-- 'ApiAnnotation.AnnOpen' @'(#'@,
-- 'ApiAnnotation.AnnClose' @'#)'@
-- For details on above see note [Api annotations] in ApiAnnotation
------------ Constructor patterns ---------------
| ConPatIn (Located (IdP p))
(HsConPatDetails p)
-- ^ Constructor Pattern In
| ConPatOut {
pat_con :: Located ConLike,
pat_arg_tys :: [Type], -- The universal arg types, 1-1 with the universal
-- tyvars of the constructor/pattern synonym
-- Use (conLikeResTy pat_con pat_arg_tys) to get
-- the type of the pattern
pat_tvs :: [TyVar], -- Existentially bound type variables
-- in correctly-scoped order e.g. [k:*, x:k]
pat_dicts :: [EvVar], -- Ditto *coercion variables* and *dictionaries*
-- One reason for putting coercion variable here, I think,
-- is to ensure their kinds are zonked
pat_binds :: TcEvBinds, -- Bindings involving those dictionaries
pat_args :: HsConPatDetails p,
pat_wrap :: HsWrapper -- Extra wrapper to pass to the matcher
-- Only relevant for pattern-synonyms;
-- ignored for data cons
}
-- ^ Constructor Pattern Out
------------ View patterns ---------------
-- | - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnRarrow'
-- For details on above see note [Api annotations] in ApiAnnotation
| ViewPat (XViewPat p) -- The overall type of the pattern
-- (= the argument type of the view function)
-- for hsPatType.
(LHsExpr p)
(LPat p)
-- ^ View Pattern
------------ Pattern splices ---------------
-- | - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'$('@
-- 'ApiAnnotation.AnnClose' @')'@
-- For details on above see note [Api annotations] in ApiAnnotation
| SplicePat (XSplicePat p)
(HsSplice p) -- ^ Splice Pattern (Includes quasi-quotes)
------------ Literal and n+k patterns ---------------
| LitPat (XLitPat p)
(HsLit p) -- ^ Literal Pattern
-- Used for *non-overloaded* literal patterns:
-- Int#, Char#, Int, Char, String, etc.
| NPat -- Natural Pattern
-- Used for all overloaded literals,
-- including overloaded strings with -XOverloadedStrings
(XNPat p) -- Overall type of pattern. Might be
-- different than the literal's type
-- if (==) or negate changes the type
(Located (HsOverLit p)) -- ALWAYS positive
(Maybe (SyntaxExpr p)) -- Just (Name of 'negate') for
-- negative patterns, Nothing
-- otherwise
(SyntaxExpr p) -- Equality checker, of type t->t->Bool
-- ^ Natural Pattern
--
-- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnVal' @'+'@
-- For details on above see note [Api annotations] in ApiAnnotation
| NPlusKPat (XNPlusKPat p) -- Type of overall pattern
(Located (IdP p)) -- n+k pattern
(Located (HsOverLit p)) -- It'll always be an HsIntegral
(HsOverLit p) -- See Note [NPlusK patterns] in TcPat
-- NB: This could be (PostTc ...), but that induced a
-- a new hs-boot file. Not worth it.
(SyntaxExpr p) -- (>=) function, of type t1->t2->Bool
(SyntaxExpr p) -- Name of '-' (see GHC.Rename.Env.lookupSyntaxName)
-- ^ n+k pattern
------------ Pattern type signatures ---------------
-- | - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'
-- For details on above see note [Api annotations] in ApiAnnotation
| SigPat (XSigPat p) -- After typechecker: Type
(LPat p) -- Pattern with a type signature
(LHsSigWcType (NoGhcTc p)) -- Signature can bind both
-- kind and type vars
-- ^ Pattern with a type signature
------------ Pattern coercions (translation only) ---------------
| CoPat (XCoPat p)
HsWrapper -- Coercion Pattern
-- If co :: t1 ~ t2, p :: t2,
-- then (CoPat co p) :: t1
(Pat p) -- Why not LPat? Ans: existing locn will do
Type -- Type of whole pattern, t1
-- During desugaring a (CoPat co pat) turns into a cast with 'co' on
-- the scrutinee, followed by a match on 'pat'
-- ^ Coercion Pattern
-- | Trees that Grow extension point for new constructors
| XPat
(XXPat p)
-- ---------------------------------------------------------------------
data ListPatTc
= ListPatTc
Type -- The type of the elements
(Maybe (Type, SyntaxExpr GhcTc)) -- For rebindable syntax
type instance XWildPat GhcPs = NoExtField
type instance XWildPat GhcRn = NoExtField
type instance XWildPat GhcTc = Type
type instance XVarPat (GhcPass _) = NoExtField
type instance XLazyPat (GhcPass _) = NoExtField
type instance XAsPat (GhcPass _) = NoExtField
type instance XParPat (GhcPass _) = NoExtField
type instance XBangPat (GhcPass _) = NoExtField
-- Note: XListPat cannot be extended when using GHC 8.0.2 as the bootstrap
-- compiler, as it triggers https://gitlab.haskell.org/ghc/ghc/issues/14396 for
-- `SyntaxExpr`
type instance XListPat GhcPs = NoExtField
type instance XListPat GhcRn = Maybe (SyntaxExpr GhcRn)
type instance XListPat GhcTc = ListPatTc
type instance XTuplePat GhcPs = NoExtField
type instance XTuplePat GhcRn = NoExtField
type instance XTuplePat GhcTc = [Type]
type instance XSumPat GhcPs = NoExtField
type instance XSumPat GhcRn = NoExtField
type instance XSumPat GhcTc = [Type]
type instance XViewPat GhcPs = NoExtField
type instance XViewPat GhcRn = NoExtField
type instance XViewPat GhcTc = Type
type instance XSplicePat (GhcPass _) = NoExtField
type instance XLitPat (GhcPass _) = NoExtField
type instance XNPat GhcPs = NoExtField
type instance XNPat GhcRn = NoExtField
type instance XNPat GhcTc = Type
type instance XNPlusKPat GhcPs = NoExtField
type instance XNPlusKPat GhcRn = NoExtField
type instance XNPlusKPat GhcTc = Type
type instance XSigPat GhcPs = NoExtField
type instance XSigPat GhcRn = NoExtField
type instance XSigPat GhcTc = Type
type instance XCoPat (GhcPass _) = NoExtField
type instance XXPat (GhcPass _) = NoExtCon
-- ---------------------------------------------------------------------
-- | Haskell Constructor Pattern Details
type HsConPatDetails p = HsConDetails (LPat p) (HsRecFields p (LPat p))
hsConPatArgs :: HsConPatDetails p -> [LPat p]
hsConPatArgs (PrefixCon ps) = ps
hsConPatArgs (RecCon fs) = map (hsRecFieldArg . unLoc) (rec_flds fs)
hsConPatArgs (InfixCon p1 p2) = [p1,p2]
-- | Haskell Record Fields
--
-- HsRecFields is used only for patterns and expressions (not data type
-- declarations)
data HsRecFields p arg -- A bunch of record fields
-- { x = 3, y = True }
-- Used for both expressions and patterns
= HsRecFields { rec_flds :: [LHsRecField p arg],
rec_dotdot :: Maybe (Located Int) } -- Note [DotDot fields]
deriving (Functor, Foldable, Traversable)
-- Note [DotDot fields]
-- ~~~~~~~~~~~~~~~~~~~~
-- The rec_dotdot field means this:
-- Nothing => the normal case
-- Just n => the group uses ".." notation,
--
-- In the latter case:
--
-- *before* renamer: rec_flds are exactly the n user-written fields
--
-- *after* renamer: rec_flds includes *all* fields, with
-- the first 'n' being the user-written ones
-- and the remainder being 'filled in' implicitly
-- | Located Haskell Record Field
type LHsRecField' p arg = Located (HsRecField' p arg)
-- | Located Haskell Record Field
type LHsRecField p arg = Located (HsRecField p arg)
-- | Located Haskell Record Update Field
type LHsRecUpdField p = Located (HsRecUpdField p)
-- | Haskell Record Field
type HsRecField p arg = HsRecField' (FieldOcc p) arg
-- | Haskell Record Update Field
type HsRecUpdField p = HsRecField' (AmbiguousFieldOcc p) (LHsExpr p)
-- | Haskell Record Field
--
-- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnEqual',
--
-- For details on above see note [Api annotations] in ApiAnnotation
data HsRecField' id arg = HsRecField {
hsRecFieldLbl :: Located id,
hsRecFieldArg :: arg, -- ^ Filled in by renamer when punning
hsRecPun :: Bool -- ^ Note [Punning]
} deriving (Data, Functor, Foldable, Traversable)
-- Note [Punning]
-- ~~~~~~~~~~~~~~
-- If you write T { x, y = v+1 }, the HsRecFields will be
-- HsRecField x x True ...
-- HsRecField y (v+1) False ...
-- That is, for "punned" field x is expanded (in the renamer)
-- to x=x; but with a punning flag so we can detect it later
-- (e.g. when pretty printing)
--
-- If the original field was qualified, we un-qualify it, thus
-- T { A.x } means T { A.x = x }
-- Note [HsRecField and HsRecUpdField]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- A HsRecField (used for record construction and pattern matching)
-- contains an unambiguous occurrence of a field (i.e. a FieldOcc).
-- We can't just store the Name, because thanks to
-- DuplicateRecordFields this may not correspond to the label the user
-- wrote.
--
-- A HsRecUpdField (used for record update) contains a potentially
-- ambiguous occurrence of a field (an AmbiguousFieldOcc). The
-- renamer will fill in the selector function if it can, but if the
-- selector is ambiguous the renamer will defer to the typechecker.
-- After the typechecker, a unique selector will have been determined.
--
-- The renamer produces an Unambiguous result if it can, rather than
-- just doing the lookup in the typechecker, so that completely
-- unambiguous updates can be represented by 'DsMeta.repUpdFields'.
--
-- For example, suppose we have:
--
-- data S = MkS { x :: Int }
-- data T = MkT { x :: Int }
--
-- f z = (z { x = 3 }) :: S
--
-- The parsed HsRecUpdField corresponding to the record update will have:
--
-- hsRecFieldLbl = Unambiguous "x" noExtField :: AmbiguousFieldOcc RdrName
--
-- After the renamer, this will become:
--
-- hsRecFieldLbl = Ambiguous "x" noExtField :: AmbiguousFieldOcc Name
--
-- (note that the Unambiguous constructor is not type-correct here).
-- The typechecker will determine the particular selector:
--
-- hsRecFieldLbl = Unambiguous "x" $sel:x:MkS :: AmbiguousFieldOcc Id
--
-- See also Note [Disambiguating record fields] in TcExpr.
hsRecFields :: HsRecFields p arg -> [XCFieldOcc p]
hsRecFields rbinds = map (unLoc . hsRecFieldSel . unLoc) (rec_flds rbinds)
-- Probably won't typecheck at once, things have changed :/
hsRecFieldsArgs :: HsRecFields p arg -> [arg]
hsRecFieldsArgs rbinds = map (hsRecFieldArg . unLoc) (rec_flds rbinds)
hsRecFieldSel :: HsRecField pass arg -> Located (XCFieldOcc pass)
hsRecFieldSel = fmap extFieldOcc . hsRecFieldLbl
hsRecFieldId :: HsRecField GhcTc arg -> Located Id
hsRecFieldId = hsRecFieldSel
hsRecUpdFieldRdr :: HsRecUpdField (GhcPass p) -> Located RdrName
hsRecUpdFieldRdr = fmap rdrNameAmbiguousFieldOcc . hsRecFieldLbl
hsRecUpdFieldId :: HsRecField' (AmbiguousFieldOcc GhcTc) arg -> Located Id
hsRecUpdFieldId = fmap extFieldOcc . hsRecUpdFieldOcc
hsRecUpdFieldOcc :: HsRecField' (AmbiguousFieldOcc GhcTc) arg -> LFieldOcc GhcTc
hsRecUpdFieldOcc = fmap unambiguousFieldOcc . hsRecFieldLbl
{-
************************************************************************
* *
* Printing patterns
* *
************************************************************************
-}
instance OutputableBndrId p => Outputable (Pat (GhcPass p)) where
ppr = pprPat
pprPatBndr :: OutputableBndr name => name -> SDoc
pprPatBndr var -- Print with type info if -dppr-debug is on
= getPprStyle $ \ sty ->
if debugStyle sty then
parens (pprBndr LambdaBind var) -- Could pass the site to pprPat
-- but is it worth it?
else
pprPrefixOcc var
pprParendLPat :: (OutputableBndrId p)
=> PprPrec -> LPat (GhcPass p) -> SDoc
pprParendLPat p = pprParendPat p . unLoc
pprParendPat :: (OutputableBndrId p)
=> PprPrec -> Pat (GhcPass p) -> SDoc
pprParendPat p pat = sdocWithDynFlags $ \ dflags ->
if need_parens dflags pat
then parens (pprPat pat)
else pprPat pat
where
need_parens dflags pat
| CoPat {} <- pat = gopt Opt_PrintTypecheckerElaboration dflags
| otherwise = patNeedsParens p pat
-- For a CoPat we need parens if we are going to show it, which
-- we do if -fprint-typechecker-elaboration is on (c.f. pprHsWrapper)
-- But otherwise the CoPat is discarded, so it
-- is the pattern inside that matters. Sigh.
pprPat :: (OutputableBndrId p) => Pat (GhcPass p) -> SDoc
pprPat (VarPat _ lvar) = pprPatBndr (unLoc lvar)
pprPat (WildPat _) = char '_'
pprPat (LazyPat _ pat) = char '~' <> pprParendLPat appPrec pat
pprPat (BangPat _ pat) = char '!' <> pprParendLPat appPrec pat
pprPat (AsPat _ name pat) = hcat [pprPrefixOcc (unLoc name), char '@',
pprParendLPat appPrec pat]
pprPat (ViewPat _ expr pat) = hcat [pprLExpr expr, text " -> ", ppr pat]
pprPat (ParPat _ pat) = parens (ppr pat)
pprPat (LitPat _ s) = ppr s
pprPat (NPat _ l Nothing _) = ppr l
pprPat (NPat _ l (Just _) _) = char '-' <> ppr l
pprPat (NPlusKPat _ n k _ _ _) = hcat [ppr n, char '+', ppr k]
pprPat (SplicePat _ splice) = pprSplice splice
pprPat (CoPat _ co pat _) = pprHsWrapper co $ \parens
-> if parens
then pprParendPat appPrec pat
else pprPat pat
pprPat (SigPat _ pat ty) = ppr pat <+> dcolon <+> ppr ty
pprPat (ListPat _ pats) = brackets (interpp'SP pats)
pprPat (TuplePat _ pats bx)
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `Unit x`, not `(x)`
| [pat] <- pats
, Boxed <- bx
= hcat [text (mkTupleStr Boxed 1), pprParendLPat appPrec pat]
| otherwise
= tupleParens (boxityTupleSort bx) (pprWithCommas ppr pats)
pprPat (SumPat _ pat alt arity) = sumParens (pprAlternative ppr pat alt arity)
pprPat (ConPatIn con details) = pprUserCon (unLoc con) details
pprPat (ConPatOut { pat_con = con
, pat_tvs = tvs
, pat_dicts = dicts
, pat_binds = binds
, pat_args = details })
= sdocWithDynFlags $ \dflags ->
-- Tiresome; in TcBinds.tcRhs we print out a
-- typechecked Pat in an error message,
-- and we want to make sure it prints nicely
if gopt Opt_PrintTypecheckerElaboration dflags then
ppr con
<> braces (sep [ hsep (map pprPatBndr (tvs ++ dicts))
, ppr binds])
<+> pprConArgs details
else pprUserCon (unLoc con) details
pprPat (XPat n) = noExtCon n
pprUserCon :: (OutputableBndr con, OutputableBndrId p)
=> con -> HsConPatDetails (GhcPass p) -> SDoc
pprUserCon c (InfixCon p1 p2) = ppr p1 <+> pprInfixOcc c <+> ppr p2
pprUserCon c details = pprPrefixOcc c <+> pprConArgs details
pprConArgs :: (OutputableBndrId p)
=> HsConPatDetails (GhcPass p) -> SDoc
pprConArgs (PrefixCon pats) = fsep (map (pprParendLPat appPrec) pats)
pprConArgs (InfixCon p1 p2) = sep [ pprParendLPat appPrec p1
, pprParendLPat appPrec p2 ]
pprConArgs (RecCon rpats) = ppr rpats
instance (Outputable arg)
=> Outputable (HsRecFields p arg) where
ppr (HsRecFields { rec_flds = flds, rec_dotdot = Nothing })
= braces (fsep (punctuate comma (map ppr flds)))
ppr (HsRecFields { rec_flds = flds, rec_dotdot = Just (unLoc -> n) })
= braces (fsep (punctuate comma (map ppr (take n flds) ++ [dotdot])))
where
dotdot = text ".." <+> whenPprDebug (ppr (drop n flds))
instance (Outputable p, Outputable arg)
=> Outputable (HsRecField' p arg) where
ppr (HsRecField { hsRecFieldLbl = f, hsRecFieldArg = arg,
hsRecPun = pun })
= ppr f <+> (ppUnless pun $ equals <+> ppr arg)
{-
************************************************************************
* *
* Building patterns
* *
************************************************************************
-}
mkPrefixConPat :: DataCon ->
[OutPat (GhcPass p)] -> [Type] -> OutPat (GhcPass p)
-- Make a vanilla Prefix constructor pattern
mkPrefixConPat dc pats tys
= noLoc $ ConPatOut { pat_con = noLoc (RealDataCon dc)
, pat_tvs = []
, pat_dicts = []
, pat_binds = emptyTcEvBinds
, pat_args = PrefixCon pats
, pat_arg_tys = tys
, pat_wrap = idHsWrapper }
mkNilPat :: Type -> OutPat (GhcPass p)
mkNilPat ty = mkPrefixConPat nilDataCon [] [ty]
mkCharLitPat :: SourceText -> Char -> OutPat (GhcPass p)
mkCharLitPat src c = mkPrefixConPat charDataCon
[noLoc $ LitPat noExtField (HsCharPrim src c)] []
{-
************************************************************************
* *
* Predicates for checking things about pattern-lists in EquationInfo *
* *
************************************************************************
\subsection[Pat-list-predicates]{Look for interesting things in patterns}
Unlike in the Wadler chapter, where patterns are either ``variables''
or ``constructors,'' here we distinguish between:
\begin{description}
\item[unfailable:]
Patterns that cannot fail to match: variables, wildcards, and lazy
patterns.
These are the irrefutable patterns; the two other categories
are refutable patterns.
\item[constructor:]
A non-literal constructor pattern (see next category).
\item[literal patterns:]
At least the numeric ones may be overloaded.
\end{description}
A pattern is in {\em exactly one} of the above three categories; `as'
patterns are treated specially, of course.
The 1.3 report defines what ``irrefutable'' and ``failure-free'' patterns are.
-}
isBangedLPat :: LPat (GhcPass p) -> Bool
isBangedLPat = isBangedPat . unLoc
isBangedPat :: Pat (GhcPass p) -> Bool
isBangedPat (ParPat _ p) = isBangedLPat p
isBangedPat (BangPat {}) = True
isBangedPat _ = False
looksLazyPatBind :: HsBind (GhcPass p) -> Bool
-- Returns True of anything *except*
-- a StrictHsBind (as above) or
-- a VarPat
-- In particular, returns True of a pattern binding with a compound pattern, like (I# x)
-- Looks through AbsBinds
looksLazyPatBind (PatBind { pat_lhs = p })
= looksLazyLPat p
looksLazyPatBind (AbsBinds { abs_binds = binds })
= anyBag (looksLazyPatBind . unLoc) binds
looksLazyPatBind _
= False
looksLazyLPat :: LPat (GhcPass p) -> Bool
looksLazyLPat = looksLazyPat . unLoc
looksLazyPat :: Pat (GhcPass p) -> Bool
looksLazyPat (ParPat _ p) = looksLazyLPat p
looksLazyPat (AsPat _ _ p) = looksLazyLPat p
looksLazyPat (BangPat {}) = False
looksLazyPat (VarPat {}) = False
looksLazyPat (WildPat {}) = False
looksLazyPat _ = True
isIrrefutableHsPat :: (OutputableBndrId p) => LPat (GhcPass p) -> Bool
-- (isIrrefutableHsPat p) is true if matching against p cannot fail,
-- in the sense of falling through to the next pattern.
-- (NB: this is not quite the same as the (silly) defn
-- in 3.17.2 of the Haskell 98 report.)
--
-- WARNING: isIrrefutableHsPat returns False if it's in doubt.
-- Specifically on a ConPatIn, which is what it sees for a
-- (LPat Name) in the renamer, it doesn't know the size of the
-- constructor family, so it returns False. Result: only
-- tuple patterns are considered irrefutable at the renamer stage.
--
-- But if it returns True, the pattern is definitely irrefutable
isIrrefutableHsPat
= goL
where
goL = go . unLoc
go (WildPat {}) = True
go (VarPat {}) = True
go (LazyPat {}) = True
go (BangPat _ pat) = goL pat
go (CoPat _ _ pat _) = go pat
go (ParPat _ pat) = goL pat
go (AsPat _ _ pat) = goL pat
go (ViewPat _ _ pat) = goL pat
go (SigPat _ pat _) = goL pat
go (TuplePat _ pats _) = all goL pats
go (SumPat {}) = False
-- See Note [Unboxed sum patterns aren't irrefutable]
go (ListPat {}) = False
go (ConPatIn {}) = False -- Conservative
go (ConPatOut
{ pat_con = L _ (RealDataCon con)
, pat_args = details })
=
isJust (tyConSingleDataCon_maybe (dataConTyCon con))
-- NB: tyConSingleDataCon_maybe, *not* isProductTyCon, because
-- the latter is false of existentials. See #4439
&& all goL (hsConPatArgs details)
go (ConPatOut
{ pat_con = L _ (PatSynCon _pat) })
= False -- Conservative
go (LitPat {}) = False
go (NPat {}) = False
go (NPlusKPat {}) = False
-- We conservatively assume that no TH splices are irrefutable
-- since we cannot know until the splice is evaluated.
go (SplicePat {}) = False
go (XPat {}) = False
-- | Is the pattern any of combination of:
--
-- - (pat)
-- - pat :: Type
-- - ~pat
-- - !pat
-- - x (variable)
isSimplePat :: LPat (GhcPass x) -> Maybe (IdP (GhcPass x))
isSimplePat p = case unLoc p of
ParPat _ x -> isSimplePat x
SigPat _ x _ -> isSimplePat x
LazyPat _ x -> isSimplePat x
BangPat _ x -> isSimplePat x
VarPat _ x -> Just (unLoc x)
_ -> Nothing
{- Note [Unboxed sum patterns aren't irrefutable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlike unboxed tuples, unboxed sums are *not* irrefutable when used as
patterns. A simple example that demonstrates this is from #14228:
pattern Just' x = (# x | #)
pattern Nothing' = (# | () #)
foo x = case x of
Nothing' -> putStrLn "nothing"
Just' -> putStrLn "just"
In foo, the pattern Nothing' (that is, (# x | #)) is certainly not irrefutable,
as does not match an unboxed sum value of the same arity—namely, (# | y #)
(covered by Just'). In fact, no unboxed sum pattern is irrefutable, since the
minimum unboxed sum arity is 2.
Failing to mark unboxed sum patterns as non-irrefutable would cause the Just'
case in foo to be unreachable, as GHC would mistakenly believe that Nothing'
is the only thing that could possibly be matched!
-}
-- | @'patNeedsParens' p pat@ returns 'True' if the pattern @pat@ needs
-- parentheses under precedence @p@.
patNeedsParens :: PprPrec -> Pat p -> Bool
patNeedsParens p = go
where
go (NPlusKPat {}) = p > opPrec
go (SplicePat {}) = False
go (ConPatIn _ ds) = conPatNeedsParens p ds
go cp@(ConPatOut {}) = conPatNeedsParens p (pat_args cp)
go (SigPat {}) = p >= sigPrec
go (ViewPat {}) = True
go (CoPat _ _ p _) = go p
go (WildPat {}) = False
go (VarPat {}) = False
go (LazyPat {}) = False
go (BangPat {}) = False
go (ParPat {}) = False
go (AsPat {}) = False
go (TuplePat {}) = False
go (SumPat {}) = False
go (ListPat {}) = False
go (LitPat _ l) = hsLitNeedsParens p l
go (NPat _ lol _ _) = hsOverLitNeedsParens p (unLoc lol)
go (XPat {}) = True -- conservative default
-- | @'conPatNeedsParens' p cp@ returns 'True' if the constructor patterns @cp@
-- needs parentheses under precedence @p@.
conPatNeedsParens :: PprPrec -> HsConDetails a b -> Bool
conPatNeedsParens p = go
where
go (PrefixCon args) = p >= appPrec && not (null args)
go (InfixCon {}) = p >= opPrec
go (RecCon {}) = False
-- | @'parenthesizePat' p pat@ checks if @'patNeedsParens' p pat@ is true, and
-- if so, surrounds @pat@ with a 'ParPat'. Otherwise, it simply returns @pat@.
parenthesizePat :: PprPrec -> LPat (GhcPass p) -> LPat (GhcPass p)
parenthesizePat p lpat@(L loc pat)
| patNeedsParens p pat = L loc (ParPat noExtField lpat)
| otherwise = lpat
{-
% Collect all EvVars from all constructor patterns
-}
-- May need to add more cases
collectEvVarsPats :: [Pat GhcTc] -> Bag EvVar
collectEvVarsPats = unionManyBags . map collectEvVarsPat
collectEvVarsLPat :: LPat GhcTc -> Bag EvVar
collectEvVarsLPat = collectEvVarsPat . unLoc
collectEvVarsPat :: Pat GhcTc -> Bag EvVar
collectEvVarsPat pat =
case pat of
LazyPat _ p -> collectEvVarsLPat p
AsPat _ _ p -> collectEvVarsLPat p
ParPat _ p -> collectEvVarsLPat p
BangPat _ p -> collectEvVarsLPat p
ListPat _ ps -> unionManyBags $ map collectEvVarsLPat ps
TuplePat _ ps _ -> unionManyBags $ map collectEvVarsLPat ps
SumPat _ p _ _ -> collectEvVarsLPat p
ConPatOut {pat_dicts = dicts, pat_args = args}
-> unionBags (listToBag dicts)
$ unionManyBags
$ map collectEvVarsLPat
$ hsConPatArgs args
SigPat _ p _ -> collectEvVarsLPat p
CoPat _ _ p _ -> collectEvVarsPat p
ConPatIn _ _ -> panic "foldMapPatBag: ConPatIn"
_other_pat -> emptyBag
|