1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-orphans #-} -- Outputable
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[PatSyntax]{Abstract Haskell syntax---patterns}
-}
module GHC.Hs.Pat (
Pat(..), LPat,
ApiAnnSumPat(..),
ConPatTc (..),
CoPat (..),
ListPatTc(..),
ConLikeP,
HsConPatDetails, hsConPatArgs,
HsRecFields(..), HsRecField'(..), LHsRecField',
HsRecField, LHsRecField,
HsRecUpdField, LHsRecUpdField,
hsRecFields, hsRecFieldSel, hsRecFieldId, hsRecFieldsArgs,
hsRecUpdFieldId, hsRecUpdFieldOcc, hsRecUpdFieldRdr,
mkPrefixConPat, mkCharLitPat, mkNilPat,
isSimplePat,
looksLazyPatBind,
isBangedLPat,
patNeedsParens, parenthesizePat,
isIrrefutableHsPat,
collectEvVarsPat, collectEvVarsPats,
pprParendLPat, pprConArgs,
pprLPat
) where
import GHC.Prelude
import Language.Haskell.Syntax.Pat
import Language.Haskell.Syntax.Expr (HsExpr, SyntaxExpr)
import {-# SOURCE #-} GHC.Hs.Expr (pprLExpr, pprSplice)
-- friends:
import GHC.Hs.Binds
import GHC.Hs.Lit
import Language.Haskell.Syntax.Extension
import GHC.Parser.Annotation
import GHC.Hs.Extension
import GHC.Hs.Type
import GHC.Tc.Types.Evidence
import GHC.Types.Basic
import GHC.Types.SourceText
-- others:
import GHC.Core.Ppr ( {- instance OutputableBndr TyVar -} )
import GHC.Builtin.Types
import GHC.Types.Var
import GHC.Types.Name.Reader ( RdrName )
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Utils.Outputable
import GHC.Core.Type
import GHC.Types.SrcLoc
import GHC.Data.Bag -- collect ev vars from pats
import GHC.Data.Maybe
import GHC.Types.Name (Name)
import GHC.Driver.Session
import qualified GHC.LanguageExtensions as LangExt
import Data.Data
data ListPatTc
= ListPatTc
Type -- The type of the elements
(Maybe (Type, SyntaxExpr GhcTc)) -- For rebindable syntax
type instance XWildPat GhcPs = NoExtField
type instance XWildPat GhcRn = NoExtField
type instance XWildPat GhcTc = Type
type instance XVarPat (GhcPass _) = NoExtField
type instance XLazyPat GhcPs = ApiAnn -- For '~'
type instance XLazyPat GhcRn = NoExtField
type instance XLazyPat GhcTc = NoExtField
type instance XAsPat GhcPs = ApiAnn -- For '@'
type instance XAsPat GhcRn = NoExtField
type instance XAsPat GhcTc = NoExtField
type instance XParPat (GhcPass _) = ApiAnn' AnnParen
type instance XBangPat GhcPs = ApiAnn -- For '!'
type instance XBangPat GhcRn = NoExtField
type instance XBangPat GhcTc = NoExtField
-- Note: XListPat cannot be extended when using GHC 8.0.2 as the bootstrap
-- compiler, as it triggers https://gitlab.haskell.org/ghc/ghc/issues/14396 for
-- `SyntaxExpr`
type instance XListPat GhcPs = ApiAnn' AnnList
type instance XListPat GhcRn = Maybe (SyntaxExpr GhcRn)
type instance XListPat GhcTc = ListPatTc
type instance XTuplePat GhcPs = ApiAnn
type instance XTuplePat GhcRn = NoExtField
type instance XTuplePat GhcTc = [Type]
type instance XSumPat GhcPs = ApiAnn' ApiAnnSumPat
type instance XSumPat GhcRn = NoExtField
type instance XSumPat GhcTc = [Type]
type instance XConPat GhcPs = ApiAnn
type instance XConPat GhcRn = NoExtField
type instance XConPat GhcTc = ConPatTc
type instance XViewPat GhcPs = ApiAnn
type instance XViewPat GhcRn = NoExtField
type instance XViewPat GhcTc = Type
type instance XSplicePat (GhcPass _) = NoExtField
type instance XLitPat (GhcPass _) = NoExtField
type instance XNPat GhcPs = ApiAnn
type instance XNPat GhcRn = ApiAnn
type instance XNPat GhcTc = Type
type instance XNPlusKPat GhcPs = ApiAnn
type instance XNPlusKPat GhcRn = NoExtField
type instance XNPlusKPat GhcTc = Type
type instance XSigPat GhcPs = ApiAnn
type instance XSigPat GhcRn = NoExtField
type instance XSigPat GhcTc = Type
type instance XXPat GhcPs = NoExtCon
type instance XXPat GhcRn = NoExtCon
type instance XXPat GhcTc = CoPat
-- After typechecking, we add one extra constructor: CoPat
type instance ConLikeP GhcPs = RdrName -- IdP GhcPs
type instance ConLikeP GhcRn = Name -- IdP GhcRn
type instance ConLikeP GhcTc = ConLike
type instance XHsRecField _ = ApiAnn
-- ---------------------------------------------------------------------
-- API Annotations types
data ApiAnnSumPat = ApiAnnSumPat
{ sumPatParens :: [AddEpAnn]
, sumPatVbarsBefore :: [AnnAnchor]
, sumPatVbarsAfter :: [AnnAnchor]
} deriving Data
-- ---------------------------------------------------------------------
-- | This is the extension field for ConPat, added after typechecking
-- It adds quite a few extra fields, to support elaboration of pattern matching.
data ConPatTc
= ConPatTc
{ -- | The universal arg types 1-1 with the universal
-- tyvars of the constructor/pattern synonym
-- Use (conLikeResTy pat_con cpt_arg_tys) to get
-- the type of the pattern
cpt_arg_tys :: [Type]
, -- | Existentially bound type variables
-- in correctly-scoped order e.g. [k:* x:k]
cpt_tvs :: [TyVar]
, -- | Ditto *coercion variables* and *dictionaries*
-- One reason for putting coercion variable here I think
-- is to ensure their kinds are zonked
cpt_dicts :: [EvVar]
, -- | Bindings involving those dictionaries
cpt_binds :: TcEvBinds
, -- ^ Extra wrapper to pass to the matcher
-- Only relevant for pattern-synonyms;
-- ignored for data cons
cpt_wrap :: HsWrapper
}
-- | Coercion Pattern (translation only)
--
-- During desugaring a (CoPat co pat) turns into a cast with 'co' on the
-- scrutinee, followed by a match on 'pat'.
data CoPat
= CoPat
{ -- | Coercion Pattern
-- If co :: t1 ~ t2, p :: t2,
-- then (CoPat co p) :: t1
co_cpt_wrap :: HsWrapper
, -- | Why not LPat? Ans: existing locn will do
co_pat_inner :: Pat GhcTc
, -- | Type of whole pattern, t1
co_pat_ty :: Type
}
hsRecFieldId :: HsRecField GhcTc arg -> Located Id
hsRecFieldId = hsRecFieldSel
hsRecUpdFieldRdr :: HsRecUpdField (GhcPass p) -> Located RdrName
hsRecUpdFieldRdr = fmap rdrNameAmbiguousFieldOcc . hsRecFieldLbl
hsRecUpdFieldId :: HsRecField' (AmbiguousFieldOcc GhcTc) arg -> Located Id
hsRecUpdFieldId = fmap extFieldOcc . hsRecUpdFieldOcc
hsRecUpdFieldOcc :: HsRecField' (AmbiguousFieldOcc GhcTc) arg -> LFieldOcc GhcTc
hsRecUpdFieldOcc = fmap unambiguousFieldOcc . hsRecFieldLbl
{-
************************************************************************
* *
* Printing patterns
* *
************************************************************************
-}
instance OutputableBndrId p => Outputable (Pat (GhcPass p)) where
ppr = pprPat
pprLPat :: (OutputableBndrId p) => LPat (GhcPass p) -> SDoc
pprLPat (L _ e) = pprPat e
-- | Print with type info if -dppr-debug is on
pprPatBndr :: OutputableBndr name => name -> SDoc
pprPatBndr var
= getPprDebug $ \case
True -> parens (pprBndr LambdaBind var) -- Could pass the site to pprPat
-- but is it worth it?
False -> pprPrefixOcc var
pprParendLPat :: (OutputableBndrId p)
=> PprPrec -> LPat (GhcPass p) -> SDoc
pprParendLPat p = pprParendPat p . unLoc
pprParendPat :: forall p. OutputableBndrId p
=> PprPrec
-> Pat (GhcPass p)
-> SDoc
pprParendPat p pat = sdocOption sdocPrintTypecheckerElaboration $ \ print_tc_elab ->
if need_parens print_tc_elab pat
then parens (pprPat pat)
else pprPat pat
where
need_parens print_tc_elab pat
| GhcTc <- ghcPass @p
, XPat ext <- pat
, CoPat {} <- ext
= print_tc_elab
| otherwise
= patNeedsParens p pat
-- For a CoPat we need parens if we are going to show it, which
-- we do if -fprint-typechecker-elaboration is on (c.f. pprHsWrapper)
-- But otherwise the CoPat is discarded, so it
-- is the pattern inside that matters. Sigh.
pprPat :: forall p. (OutputableBndrId p) => Pat (GhcPass p) -> SDoc
pprPat (VarPat _ lvar) = pprPatBndr (unLoc lvar)
pprPat (WildPat _) = char '_'
pprPat (LazyPat _ pat) = char '~' <> pprParendLPat appPrec pat
pprPat (BangPat _ pat) = char '!' <> pprParendLPat appPrec pat
pprPat (AsPat _ name pat) = hcat [pprPrefixOcc (unLoc name), char '@',
pprParendLPat appPrec pat]
pprPat (ViewPat _ expr pat) = hcat [pprLExpr expr, text " -> ", ppr pat]
pprPat (ParPat _ pat) = parens (ppr pat)
pprPat (LitPat _ s) = ppr s
pprPat (NPat _ l Nothing _) = ppr l
pprPat (NPat _ l (Just _) _) = char '-' <> ppr l
pprPat (NPlusKPat _ n k _ _ _) = hcat [ppr_n, char '+', ppr k]
where ppr_n = case ghcPass @p of
GhcPs -> ppr n
GhcRn -> ppr n
GhcTc -> ppr n
pprPat (SplicePat _ splice) = pprSplice splice
pprPat (SigPat _ pat ty) = ppr pat <+> dcolon <+> ppr ty
pprPat (ListPat _ pats) = brackets (interpp'SP pats)
pprPat (TuplePat _ pats bx)
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `Solo x`, not `(x)`
| [pat] <- pats
, Boxed <- bx
= hcat [text (mkTupleStr Boxed 1), pprParendLPat appPrec pat]
| otherwise
= tupleParens (boxityTupleSort bx) (pprWithCommas ppr pats)
pprPat (SumPat _ pat alt arity) = sumParens (pprAlternative ppr pat alt arity)
pprPat (ConPat { pat_con = con
, pat_args = details
, pat_con_ext = ext
}
)
= case ghcPass @p of
GhcPs -> pprUserCon (unLoc con) details
GhcRn -> pprUserCon (unLoc con) details
GhcTc -> sdocOption sdocPrintTypecheckerElaboration $ \case
False -> pprUserCon (unLoc con) details
True ->
-- Tiresome; in 'GHC.Tc.Gen.Bind.tcRhs' we print out a typechecked Pat in an
-- error message, and we want to make sure it prints nicely
ppr con
<> braces (sep [ hsep (map pprPatBndr (tvs ++ dicts))
, ppr binds ])
<+> pprConArgs details
where ConPatTc { cpt_tvs = tvs
, cpt_dicts = dicts
, cpt_binds = binds
} = ext
pprPat (XPat ext) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> noExtCon ext
GhcRn -> noExtCon ext
#endif
GhcTc -> pprHsWrapper co $ \parens ->
if parens
then pprParendPat appPrec pat
else pprPat pat
where CoPat co pat _ = ext
pprUserCon :: (OutputableBndr con, OutputableBndrId p,
Outputable (Anno (IdGhcP p)))
=> con -> HsConPatDetails (GhcPass p) -> SDoc
pprUserCon c (InfixCon p1 p2) = ppr p1 <+> pprInfixOcc c <+> ppr p2
pprUserCon c details = pprPrefixOcc c <+> pprConArgs details
pprConArgs :: (OutputableBndrId p,
Outputable (Anno (IdGhcP p)))
=> HsConPatDetails (GhcPass p) -> SDoc
pprConArgs (PrefixCon ts pats) = fsep (pprTyArgs ts : map (pprParendLPat appPrec) pats)
where pprTyArgs tyargs = fsep (map (\ty -> char '@' <> ppr ty) tyargs)
pprConArgs (InfixCon p1 p2) = sep [ pprParendLPat appPrec p1
, pprParendLPat appPrec p2 ]
pprConArgs (RecCon rpats) = ppr rpats
{-
************************************************************************
* *
* Building patterns
* *
************************************************************************
-}
mkPrefixConPat :: DataCon ->
[LPat GhcTc] -> [Type] -> LPat GhcTc
-- Make a vanilla Prefix constructor pattern
mkPrefixConPat dc pats tys
= noLocA $ ConPat { pat_con = noLocA (RealDataCon dc)
, pat_args = PrefixCon [] pats
, pat_con_ext = ConPatTc
{ cpt_tvs = []
, cpt_dicts = []
, cpt_binds = emptyTcEvBinds
, cpt_arg_tys = tys
, cpt_wrap = idHsWrapper
}
}
mkNilPat :: Type -> LPat GhcTc
mkNilPat ty = mkPrefixConPat nilDataCon [] [ty]
mkCharLitPat :: SourceText -> Char -> LPat GhcTc
mkCharLitPat src c = mkPrefixConPat charDataCon
[noLocA $ LitPat noExtField (HsCharPrim src c)] []
{-
************************************************************************
* *
* Predicates for checking things about pattern-lists in EquationInfo *
* *
************************************************************************
\subsection[Pat-list-predicates]{Look for interesting things in patterns}
Unlike in the Wadler chapter, where patterns are either ``variables''
or ``constructors,'' here we distinguish between:
\begin{description}
\item[unfailable:]
Patterns that cannot fail to match: variables, wildcards, and lazy
patterns.
These are the irrefutable patterns; the two other categories
are refutable patterns.
\item[constructor:]
A non-literal constructor pattern (see next category).
\item[literal patterns:]
At least the numeric ones may be overloaded.
\end{description}
A pattern is in {\em exactly one} of the above three categories; `as'
patterns are treated specially, of course.
The 1.3 report defines what ``irrefutable'' and ``failure-free'' patterns are.
-}
isBangedLPat :: LPat (GhcPass p) -> Bool
isBangedLPat = isBangedPat . unLoc
isBangedPat :: Pat (GhcPass p) -> Bool
isBangedPat (ParPat _ p) = isBangedLPat p
isBangedPat (BangPat {}) = True
isBangedPat _ = False
looksLazyPatBind :: HsBind (GhcPass p) -> Bool
-- Returns True of anything *except*
-- a StrictHsBind (as above) or
-- a VarPat
-- In particular, returns True of a pattern binding with a compound pattern, like (I# x)
-- Looks through AbsBinds
looksLazyPatBind (PatBind { pat_lhs = p })
= looksLazyLPat p
looksLazyPatBind (AbsBinds { abs_binds = binds })
= anyBag (looksLazyPatBind . unLoc) binds
looksLazyPatBind _
= False
looksLazyLPat :: LPat (GhcPass p) -> Bool
looksLazyLPat = looksLazyPat . unLoc
looksLazyPat :: Pat (GhcPass p) -> Bool
looksLazyPat (ParPat _ p) = looksLazyLPat p
looksLazyPat (AsPat _ _ p) = looksLazyLPat p
looksLazyPat (BangPat {}) = False
looksLazyPat (VarPat {}) = False
looksLazyPat (WildPat {}) = False
looksLazyPat _ = True
isIrrefutableHsPat :: forall p. (OutputableBndrId p)
=> DynFlags -> LPat (GhcPass p) -> Bool
-- (isIrrefutableHsPat p) is true if matching against p cannot fail,
-- in the sense of falling through to the next pattern.
-- (NB: this is not quite the same as the (silly) defn
-- in 3.17.2 of the Haskell 98 report.)
--
-- WARNING: isIrrefutableHsPat returns False if it's in doubt.
-- Specifically on a ConPatIn, which is what it sees for a
-- (LPat Name) in the renamer, it doesn't know the size of the
-- constructor family, so it returns False. Result: only
-- tuple patterns are considered irrefutable at the renamer stage.
--
-- But if it returns True, the pattern is definitely irrefutable
isIrrefutableHsPat dflags =
isIrrefutableHsPat' (xopt LangExt.Strict dflags)
{-
Note [-XStrict and irrefutability]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When -XStrict is enabled the rules for irrefutability are slightly modified.
Specifically, the pattern in a program like
do ~(Just hi) <- expr
cannot be considered irrefutable. The ~ here merely disables the bang that
-XStrict would usually apply, rendering the program equivalent to the following
without -XStrict
do Just hi <- expr
To achieve make this pattern irrefutable with -XStrict the user would rather
need to write
do ~(~(Just hi)) <- expr
Failing to account for this resulted in #19027. To fix this isIrrefutableHsPat
takes care to check for two the irrefutability of the inner pattern when it
encounters a LazyPat and -XStrict is enabled.
See also Note [decideBangHood] in GHC.HsToCore.Utils.
-}
isIrrefutableHsPat' :: forall p. (OutputableBndrId p)
=> Bool -- ^ Are we in a @-XStrict@ context?
-- See Note [-XStrict and irrefutability]
-> LPat (GhcPass p) -> Bool
isIrrefutableHsPat' is_strict = goL
where
goL :: LPat (GhcPass p) -> Bool
goL = go . unLoc
go :: Pat (GhcPass p) -> Bool
go (WildPat {}) = True
go (VarPat {}) = True
go (LazyPat _ p')
| is_strict
= isIrrefutableHsPat' False p'
| otherwise = True
go (BangPat _ pat) = goL pat
go (ParPat _ pat) = goL pat
go (AsPat _ _ pat) = goL pat
go (ViewPat _ _ pat) = goL pat
go (SigPat _ pat _) = goL pat
go (TuplePat _ pats _) = all goL pats
go (SumPat {}) = False
-- See Note [Unboxed sum patterns aren't irrefutable]
go (ListPat {}) = False
go (ConPat
{ pat_con = con
, pat_args = details })
= case ghcPass @p of
GhcPs -> False -- Conservative
GhcRn -> False -- Conservative
GhcTc -> case con of
L _ (PatSynCon _pat) -> False -- Conservative
L _ (RealDataCon con) ->
isJust (tyConSingleDataCon_maybe (dataConTyCon con))
&& all goL (hsConPatArgs details)
go (LitPat {}) = False
go (NPat {}) = False
go (NPlusKPat {}) = False
-- We conservatively assume that no TH splices are irrefutable
-- since we cannot know until the splice is evaluated.
go (SplicePat {}) = False
go (XPat ext) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> noExtCon ext
GhcRn -> noExtCon ext
#endif
GhcTc -> go pat
where CoPat _ pat _ = ext
-- | Is the pattern any of combination of:
--
-- - (pat)
-- - pat :: Type
-- - ~pat
-- - !pat
-- - x (variable)
isSimplePat :: LPat (GhcPass x) -> Maybe (IdP (GhcPass x))
isSimplePat p = case unLoc p of
ParPat _ x -> isSimplePat x
SigPat _ x _ -> isSimplePat x
LazyPat _ x -> isSimplePat x
BangPat _ x -> isSimplePat x
VarPat _ x -> Just (unLoc x)
_ -> Nothing
{- Note [Unboxed sum patterns aren't irrefutable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlike unboxed tuples, unboxed sums are *not* irrefutable when used as
patterns. A simple example that demonstrates this is from #14228:
pattern Just' x = (# x | #)
pattern Nothing' = (# | () #)
foo x = case x of
Nothing' -> putStrLn "nothing"
Just' -> putStrLn "just"
In foo, the pattern Nothing' (that is, (# x | #)) is certainly not irrefutable,
as does not match an unboxed sum value of the same arity—namely, (# | y #)
(covered by Just'). In fact, no unboxed sum pattern is irrefutable, since the
minimum unboxed sum arity is 2.
Failing to mark unboxed sum patterns as non-irrefutable would cause the Just'
case in foo to be unreachable, as GHC would mistakenly believe that Nothing'
is the only thing that could possibly be matched!
-}
-- | @'patNeedsParens' p pat@ returns 'True' if the pattern @pat@ needs
-- parentheses under precedence @p@.
patNeedsParens :: forall p. IsPass p => PprPrec -> Pat (GhcPass p) -> Bool
patNeedsParens p = go
where
go :: Pat (GhcPass p) -> Bool
go (NPlusKPat {}) = p > opPrec
go (SplicePat {}) = False
go (ConPat { pat_args = ds })
= conPatNeedsParens p ds
go (SigPat {}) = p >= sigPrec
go (ViewPat {}) = True
go (XPat ext) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 901
GhcPs -> noExtCon ext
GhcRn -> noExtCon ext
#endif
GhcTc -> go inner
where CoPat _ inner _ = ext
go (WildPat {}) = False
go (VarPat {}) = False
go (LazyPat {}) = False
go (BangPat {}) = False
go (ParPat {}) = False
go (AsPat {}) = False
-- Special-case unary boxed tuple applications so that they are
-- parenthesized as `Identity (Solo x)`, not `Identity Solo x` (#18612)
-- See Note [One-tuples] in GHC.Builtin.Types
go (TuplePat _ [_] Boxed)
= p >= appPrec
go (TuplePat{}) = False
go (SumPat {}) = False
go (ListPat {}) = False
go (LitPat _ l) = hsLitNeedsParens p l
go (NPat _ lol _ _) = hsOverLitNeedsParens p (unLoc lol)
-- | @'conPatNeedsParens' p cp@ returns 'True' if the constructor patterns @cp@
-- needs parentheses under precedence @p@.
conPatNeedsParens :: PprPrec -> HsConDetails t a b -> Bool
conPatNeedsParens p = go
where
go (PrefixCon ts args) = p >= appPrec && (not (null args) || not (null ts))
go (InfixCon {}) = p >= opPrec -- type args should be empty in this case
go (RecCon {}) = False
-- | @'parenthesizePat' p pat@ checks if @'patNeedsParens' p pat@ is true, and
-- if so, surrounds @pat@ with a 'ParPat'. Otherwise, it simply returns @pat@.
parenthesizePat :: IsPass p
=> PprPrec
-> LPat (GhcPass p)
-> LPat (GhcPass p)
parenthesizePat p lpat@(L loc pat)
| patNeedsParens p pat = L loc (ParPat noAnn lpat)
| otherwise = lpat
{-
% Collect all EvVars from all constructor patterns
-}
-- May need to add more cases
collectEvVarsPats :: [Pat GhcTc] -> Bag EvVar
collectEvVarsPats = unionManyBags . map collectEvVarsPat
collectEvVarsLPat :: LPat GhcTc -> Bag EvVar
collectEvVarsLPat = collectEvVarsPat . unLoc
collectEvVarsPat :: Pat GhcTc -> Bag EvVar
collectEvVarsPat pat =
case pat of
LazyPat _ p -> collectEvVarsLPat p
AsPat _ _ p -> collectEvVarsLPat p
ParPat _ p -> collectEvVarsLPat p
BangPat _ p -> collectEvVarsLPat p
ListPat _ ps -> unionManyBags $ map collectEvVarsLPat ps
TuplePat _ ps _ -> unionManyBags $ map collectEvVarsLPat ps
SumPat _ p _ _ -> collectEvVarsLPat p
ConPat
{ pat_args = args
, pat_con_ext = ConPatTc
{ cpt_dicts = dicts
}
}
-> unionBags (listToBag dicts)
$ unionManyBags
$ map collectEvVarsLPat
$ hsConPatArgs args
SigPat _ p _ -> collectEvVarsLPat p
XPat (CoPat _ p _) -> collectEvVarsPat p
_other_pat -> emptyBag
{-
************************************************************************
* *
\subsection{Anno instances}
* *
************************************************************************
-}
type instance Anno (Pat (GhcPass p)) = SrcSpanAnnA
type instance Anno (HsOverLit (GhcPass p)) = SrcSpan
type instance Anno ConLike = SrcSpanAnnN
type instance Anno (HsRecField' p arg) = SrcSpanAnnA
type instance Anno (HsRecField' (GhcPass p) (LocatedA (HsExpr (GhcPass p)))) = SrcSpanAnnA
type instance Anno (HsRecField (GhcPass p) arg) = SrcSpanAnnA
-- type instance Anno (HsRecUpdField p) = SrcSpanAnnA
type instance Anno (HsRecField' (AmbiguousFieldOcc p) (LocatedA (HsExpr p))) = SrcSpanAnnA
type instance Anno (AmbiguousFieldOcc GhcTc) = SrcSpanAnnA
|