1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
|
{-|
Module : GHC.Hs.Utils
Description : Generic helpers for the HsSyn type.
Copyright : (c) The University of Glasgow, 1992-2006
Here we collect a variety of helper functions that construct or
analyse HsSyn. All these functions deal with generic HsSyn; functions
which deal with the instantiated versions are located elsewhere:
Parameterised by Module
---------------- -------------
GhcPs/RdrName GHC.Parser.PostProcess
GhcRn/Name GHC.Rename.*
GhcTc/Id GHC.Tc.Utils.Zonk
The @mk*@ functions attempt to construct a not-completely-useless SrcSpan
from their components, compared with the @nl*@ functions which
just attach noSrcSpan to everything.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Hs.Utils(
-- * Terms
mkHsPar, mkHsApp, mkHsAppType, mkHsAppTypes, mkHsCaseAlt,
mkSimpleMatch, unguardedGRHSs, unguardedRHS,
mkMatchGroup, mkMatch, mkPrefixFunRhs, mkHsLam, mkHsIf,
mkHsWrap, mkLHsWrap, mkHsWrapCo, mkHsWrapCoR, mkLHsWrapCo,
mkHsDictLet, mkHsLams,
mkHsOpApp, mkHsDo, mkHsComp, mkHsWrapPat, mkHsWrapPatCo,
mkLHsPar, mkHsCmdWrap, mkLHsCmdWrap,
mkHsCmdIf,
nlHsTyApp, nlHsTyApps, nlHsVar, nl_HsVar, nlHsDataCon,
nlHsLit, nlHsApp, nlHsApps, nlHsSyntaxApps,
nlHsIntLit, nlHsVarApps,
nlHsDo, nlHsOpApp, nlHsLam, nlHsPar, nlHsIf, nlHsCase, nlList,
mkLHsTupleExpr, mkLHsVarTuple, missingTupArg,
typeToLHsType,
-- * Constructing general big tuples
-- $big_tuples
mkChunkified, chunkify,
-- * Bindings
mkFunBind, mkVarBind, mkHsVarBind, mkSimpleGeneratedFunBind, mkTopFunBind,
mkPatSynBind,
isInfixFunBind,
-- * Literals
mkHsIntegral, mkHsFractional, mkHsIsString, mkHsString, mkHsStringPrimLit,
-- * Patterns
mkNPat, mkNPlusKPat, nlVarPat, nlLitPat, nlConVarPat, nlConVarPatName, nlConPat,
nlConPatName, nlInfixConPat, nlNullaryConPat, nlWildConPat, nlWildPat,
nlWildPatName, nlTuplePat, mkParPat, nlParPat,
mkBigLHsVarTup, mkBigLHsTup, mkBigLHsVarPatTup, mkBigLHsPatTup,
-- * Types
mkHsAppTy, mkHsAppKindTy,
mkLHsSigType, mkLHsSigWcType, mkClassOpSigs, mkHsSigEnv,
nlHsAppTy, nlHsAppKindTy, nlHsTyVar, nlHsFunTy, nlHsParTy, nlHsTyConApp,
-- * Stmts
mkTransformStmt, mkTransformByStmt, mkBodyStmt,
mkPsBindStmt, mkRnBindStmt, mkTcBindStmt,
mkLastStmt,
emptyTransStmt, mkGroupUsingStmt, mkGroupByUsingStmt,
emptyRecStmt, emptyRecStmtName, emptyRecStmtId, mkRecStmt,
unitRecStmtTc,
-- * Template Haskell
mkUntypedSplice, mkTypedSplice,
mkHsQuasiQuote,
-- * Collecting binders
isUnliftedHsBind, isBangedHsBind,
collectLocalBinders, collectHsValBinders, collectHsBindListBinders,
collectHsIdBinders,
collectHsBindsBinders, collectHsBindBinders, collectMethodBinders,
collectPatBinders, collectPatsBinders,
collectLStmtsBinders, collectStmtsBinders,
collectLStmtBinders, collectStmtBinders,
CollectPass(..),
hsLTyClDeclBinders, hsTyClForeignBinders,
hsPatSynSelectors, getPatSynBinds,
hsForeignDeclsBinders, hsGroupBinders, hsDataFamInstBinders,
-- * Collecting implicit binders
lStmtsImplicits, hsValBindsImplicits, lPatImplicits
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs.Decls
import GHC.Hs.Binds
import GHC.Hs.Expr
import GHC.Hs.Pat
import GHC.Hs.Type
import GHC.Hs.Lit
import GHC.Hs.Extension
import GHC.Tc.Types.Evidence
import GHC.Types.Name.Reader
import GHC.Types.Var
import GHC.Core.TyCo.Rep
import GHC.Core.TyCon
import GHC.Core.Type ( appTyArgFlags, splitAppTys, tyConArgFlags, tyConAppNeedsKindSig )
import GHC.Builtin.Types ( unitTy )
import GHC.Tc.Utils.TcType
import GHC.Core.DataCon
import GHC.Core.ConLike
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Name.Set hiding ( unitFV )
import GHC.Types.Name.Env
import GHC.Types.Basic
import GHC.Types.SrcLoc
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Data.Bag
import GHC.Utils.Outputable
import GHC.Settings.Constants
import Data.Either
import Data.Function
import Data.List
import Data.Proxy
{-
************************************************************************
* *
Some useful helpers for constructing syntax
* *
************************************************************************
These functions attempt to construct a not-completely-useless 'SrcSpan'
from their components, compared with the @nl*@ functions below which
just attach 'noSrcSpan' to everything.
-}
-- | @e => (e)@
mkHsPar :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkHsPar e = L (getLoc e) (HsPar noExtField e)
mkSimpleMatch :: HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)] -> Located (body (GhcPass p))
-> LMatch (GhcPass p) (Located (body (GhcPass p)))
mkSimpleMatch ctxt pats rhs
= L loc $
Match { m_ext = noExtField, m_ctxt = ctxt, m_pats = pats
, m_grhss = unguardedGRHSs rhs }
where
loc = case pats of
[] -> getLoc rhs
(pat:_) -> combineSrcSpans (getLoc pat) (getLoc rhs)
unguardedGRHSs :: Located (body (GhcPass p))
-> GRHSs (GhcPass p) (Located (body (GhcPass p)))
unguardedGRHSs rhs@(L loc _)
= GRHSs noExtField (unguardedRHS loc rhs) (noLoc emptyLocalBinds)
unguardedRHS :: SrcSpan -> Located (body (GhcPass p))
-> [LGRHS (GhcPass p) (Located (body (GhcPass p)))]
unguardedRHS loc rhs = [L loc (GRHS noExtField [] rhs)]
mkMatchGroup :: (XMG name (Located (body name)) ~ NoExtField)
=> Origin -> [LMatch name (Located (body name))]
-> MatchGroup name (Located (body name))
mkMatchGroup origin matches = MG { mg_ext = noExtField
, mg_alts = mkLocatedList matches
, mg_origin = origin }
mkLocatedList :: [Located a] -> Located [Located a]
mkLocatedList [] = noLoc []
mkLocatedList ms = L (combineLocs (head ms) (last ms)) ms
mkHsApp :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkHsApp e1 e2 = addCLoc e1 e2 (HsApp noExtField e1 e2)
mkHsAppType :: LHsExpr GhcRn -> LHsWcType GhcRn -> LHsExpr GhcRn
mkHsAppType e t = addCLoc e t_body (HsAppType noExtField e paren_wct)
where
t_body = hswc_body t
paren_wct = t { hswc_body = parenthesizeHsType appPrec t_body }
mkHsAppTypes :: LHsExpr GhcRn -> [LHsWcType GhcRn] -> LHsExpr GhcRn
mkHsAppTypes = foldl' mkHsAppType
mkHsLam :: IsPass p
=> (XMG (GhcPass p) (LHsExpr (GhcPass p)) ~ NoExtField)
=> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> LHsExpr (GhcPass p)
mkHsLam pats body = mkHsPar (L (getLoc body) (HsLam noExtField matches))
where
matches = mkMatchGroup Generated
[mkSimpleMatch LambdaExpr pats' body]
pats' = map (parenthesizePat appPrec) pats
mkHsLams :: [TyVar] -> [EvVar] -> LHsExpr GhcTc -> LHsExpr GhcTc
mkHsLams tyvars dicts expr = mkLHsWrap (mkWpTyLams tyvars
<.> mkWpLams dicts) expr
-- |A simple case alternative with a single pattern, no binds, no guards;
-- pre-typechecking
mkHsCaseAlt :: LPat (GhcPass p) -> (Located (body (GhcPass p)))
-> LMatch (GhcPass p) (Located (body (GhcPass p)))
mkHsCaseAlt pat expr
= mkSimpleMatch CaseAlt [pat] expr
nlHsTyApp :: Id -> [Type] -> LHsExpr GhcTc
nlHsTyApp fun_id tys
= noLoc (mkHsWrap (mkWpTyApps tys) (HsVar noExtField (noLoc fun_id)))
nlHsTyApps :: Id -> [Type] -> [LHsExpr GhcTc] -> LHsExpr GhcTc
nlHsTyApps fun_id tys xs = foldl' nlHsApp (nlHsTyApp fun_id tys) xs
--------- Adding parens ---------
-- | Wrap in parens if @'hsExprNeedsParens' appPrec@ says it needs them
-- So @f x@ becomes @(f x)@, but @3@ stays as @3@.
mkLHsPar :: IsPass id => LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkLHsPar le@(L loc e)
| hsExprNeedsParens appPrec e = L loc (HsPar noExtField le)
| otherwise = le
mkParPat :: IsPass p => LPat (GhcPass p) -> LPat (GhcPass p)
mkParPat lp@(L loc p)
| patNeedsParens appPrec p = L loc (ParPat noExtField lp)
| otherwise = lp
nlParPat :: LPat (GhcPass name) -> LPat (GhcPass name)
nlParPat p = noLoc (ParPat noExtField p)
-------------------------------
-- These are the bits of syntax that contain rebindable names
-- See GHC.Rename.Env.lookupSyntax
mkHsIntegral :: IntegralLit -> HsOverLit GhcPs
mkHsFractional :: FractionalLit -> HsOverLit GhcPs
mkHsIsString :: SourceText -> FastString -> HsOverLit GhcPs
mkHsDo :: HsStmtContext GhcRn -> [ExprLStmt GhcPs] -> HsExpr GhcPs
mkHsComp :: HsStmtContext GhcRn -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> HsExpr GhcPs
mkNPat :: Located (HsOverLit GhcPs) -> Maybe (SyntaxExpr GhcPs)
-> Pat GhcPs
mkNPlusKPat :: Located RdrName -> Located (HsOverLit GhcPs) -> Pat GhcPs
-- NB: The following functions all use noSyntaxExpr: the generated expressions
-- will not work with rebindable syntax if used after the renamer
mkLastStmt :: IsPass idR => Located (bodyR (GhcPass idR))
-> StmtLR (GhcPass idL) (GhcPass idR) (Located (bodyR (GhcPass idR)))
mkBodyStmt :: Located (bodyR GhcPs)
-> StmtLR (GhcPass idL) GhcPs (Located (bodyR GhcPs))
mkPsBindStmt :: LPat GhcPs -> Located (bodyR GhcPs)
-> StmtLR GhcPs GhcPs (Located (bodyR GhcPs))
mkRnBindStmt :: LPat GhcRn -> Located (bodyR GhcRn)
-> StmtLR GhcRn GhcRn (Located (bodyR GhcRn))
mkTcBindStmt :: LPat GhcTc -> Located (bodyR GhcTc)
-> StmtLR GhcTc GhcTc (Located (bodyR GhcTc))
emptyRecStmt :: StmtLR (GhcPass idL) GhcPs bodyR
emptyRecStmtName :: StmtLR GhcRn GhcRn bodyR
emptyRecStmtId :: StmtLR GhcTc GhcTc bodyR
mkRecStmt :: [LStmtLR (GhcPass idL) GhcPs bodyR]
-> StmtLR (GhcPass idL) GhcPs bodyR
mkHsIntegral i = OverLit noExtField (HsIntegral i) noExpr
mkHsFractional f = OverLit noExtField (HsFractional f) noExpr
mkHsIsString src s = OverLit noExtField (HsIsString src s) noExpr
mkHsDo ctxt stmts = HsDo noExtField ctxt (mkLocatedList stmts)
mkHsComp ctxt stmts expr = mkHsDo ctxt (stmts ++ [last_stmt])
where
last_stmt = L (getLoc expr) $ mkLastStmt expr
-- restricted to GhcPs because other phases might need a SyntaxExpr
mkHsIf :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs -> HsExpr GhcPs
mkHsIf c a b = HsIf True {- this might use rebindable syntax -} noSyntaxExpr c a b
-- see Note [Rebindable if] in Hs.Expr
-- restricted to GhcPs because other phases might need a SyntaxExpr
mkHsCmdIf :: LHsExpr GhcPs -> LHsCmd GhcPs -> LHsCmd GhcPs -> HsCmd GhcPs
mkHsCmdIf c a b = HsCmdIf noExtField noSyntaxExpr c a b
mkNPat lit neg = NPat noExtField lit neg noSyntaxExpr
mkNPlusKPat id lit
= NPlusKPat noExtField id lit (unLoc lit) noSyntaxExpr noSyntaxExpr
mkTransformStmt :: [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkTransformByStmt :: [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> LHsExpr GhcPs -> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkGroupUsingStmt :: [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkGroupByUsingStmt :: [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
emptyTransStmt :: StmtLR GhcPs GhcPs (LHsExpr GhcPs)
emptyTransStmt = TransStmt { trS_ext = noExtField
, trS_form = panic "emptyTransStmt: form"
, trS_stmts = [], trS_bndrs = []
, trS_by = Nothing, trS_using = noLoc noExpr
, trS_ret = noSyntaxExpr, trS_bind = noSyntaxExpr
, trS_fmap = noExpr }
mkTransformStmt ss u = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u }
mkTransformByStmt ss u b = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkGroupUsingStmt ss u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u }
mkGroupByUsingStmt ss b u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkLastStmt body = LastStmt noExtField body Nothing noSyntaxExpr
mkBodyStmt body
= BodyStmt noExtField body noSyntaxExpr noSyntaxExpr
mkPsBindStmt pat body = BindStmt noExtField pat body
mkRnBindStmt pat body = BindStmt (XBindStmtRn { xbsrn_bindOp = noSyntaxExpr, xbsrn_failOp = Nothing }) pat body
mkTcBindStmt pat body = BindStmt (XBindStmtTc { xbstc_bindOp = noSyntaxExpr, xbstc_boundResultType =unitTy, xbstc_failOp = Nothing }) pat body
-- don't use placeHolderTypeTc above, because that panics during zonking
emptyRecStmt' :: forall idL idR body. IsPass idR
=> XRecStmt (GhcPass idL) (GhcPass idR) body
-> StmtLR (GhcPass idL) (GhcPass idR) body
emptyRecStmt' tyVal =
RecStmt
{ recS_stmts = [], recS_later_ids = []
, recS_rec_ids = []
, recS_ret_fn = noSyntaxExpr
, recS_mfix_fn = noSyntaxExpr
, recS_bind_fn = noSyntaxExpr
, recS_ext = tyVal }
unitRecStmtTc :: RecStmtTc
unitRecStmtTc = RecStmtTc { recS_bind_ty = unitTy
, recS_later_rets = []
, recS_rec_rets = []
, recS_ret_ty = unitTy }
emptyRecStmt = emptyRecStmt' noExtField
emptyRecStmtName = emptyRecStmt' noExtField
emptyRecStmtId = emptyRecStmt' unitRecStmtTc
-- a panic might trigger during zonking
mkRecStmt stmts = emptyRecStmt { recS_stmts = stmts }
-------------------------------
-- | A useful function for building @OpApps@. The operator is always a
-- variable, and we don't know the fixity yet.
mkHsOpApp :: LHsExpr GhcPs -> IdP GhcPs -> LHsExpr GhcPs -> HsExpr GhcPs
mkHsOpApp e1 op e2 = OpApp noExtField e1 (noLoc (HsVar noExtField (noLoc op))) e2
unqualSplice :: RdrName
unqualSplice = mkRdrUnqual (mkVarOccFS (fsLit "splice"))
mkUntypedSplice :: SpliceDecoration -> LHsExpr GhcPs -> HsSplice GhcPs
mkUntypedSplice hasParen e = HsUntypedSplice noExtField hasParen unqualSplice e
mkTypedSplice :: SpliceDecoration -> LHsExpr GhcPs -> HsSplice GhcPs
mkTypedSplice hasParen e = HsTypedSplice noExtField hasParen unqualSplice e
mkHsQuasiQuote :: RdrName -> SrcSpan -> FastString -> HsSplice GhcPs
mkHsQuasiQuote quoter span quote
= HsQuasiQuote noExtField unqualSplice quoter span quote
mkHsString :: String -> HsLit (GhcPass p)
mkHsString s = HsString NoSourceText (mkFastString s)
mkHsStringPrimLit :: FastString -> HsLit (GhcPass p)
mkHsStringPrimLit fs = HsStringPrim NoSourceText (bytesFS fs)
{-
************************************************************************
* *
Constructing syntax with no location info
* *
************************************************************************
-}
nlHsVar :: IdP (GhcPass id) -> LHsExpr (GhcPass id)
nlHsVar n = noLoc (HsVar noExtField (noLoc n))
nl_HsVar :: IdP (GhcPass id) -> HsExpr (GhcPass id)
nl_HsVar n = HsVar noExtField (noLoc n)
-- | NB: Only for 'LHsExpr' 'Id'.
nlHsDataCon :: DataCon -> LHsExpr GhcTc
nlHsDataCon con = noLoc (HsConLikeOut noExtField (RealDataCon con))
nlHsLit :: HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit n = noLoc (HsLit noExtField n)
nlHsIntLit :: Integer -> LHsExpr (GhcPass p)
nlHsIntLit n = noLoc (HsLit noExtField (HsInt noExtField (mkIntegralLit n)))
nlVarPat :: IdP (GhcPass id) -> LPat (GhcPass id)
nlVarPat n = noLoc (VarPat noExtField (noLoc n))
nlLitPat :: HsLit GhcPs -> LPat GhcPs
nlLitPat l = noLoc (LitPat noExtField l)
nlHsApp :: IsPass id => LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp f x = noLoc (HsApp noExtField f (mkLHsPar x))
nlHsSyntaxApps :: SyntaxExprTc -> [LHsExpr GhcTc]
-> LHsExpr GhcTc
nlHsSyntaxApps (SyntaxExprTc { syn_expr = fun
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap }) args
= mkLHsWrap res_wrap (foldl' nlHsApp (noLoc fun) (zipWithEqual "nlHsSyntaxApps"
mkLHsWrap arg_wraps args))
nlHsSyntaxApps NoSyntaxExprTc args = pprPanic "nlHsSyntaxApps" (ppr args)
-- this function should never be called in scenarios where there is no
-- syntax expr
nlHsApps :: IsPass id => IdP (GhcPass id) -> [LHsExpr (GhcPass id)] -> LHsExpr (GhcPass id)
nlHsApps f xs = foldl' nlHsApp (nlHsVar f) xs
nlHsVarApps :: IdP (GhcPass id) -> [IdP (GhcPass id)] -> LHsExpr (GhcPass id)
nlHsVarApps f xs = noLoc (foldl' mk (HsVar noExtField (noLoc f))
(map ((HsVar noExtField) . noLoc) xs))
where
mk f a = HsApp noExtField (noLoc f) (noLoc a)
nlConVarPat :: RdrName -> [RdrName] -> LPat GhcPs
nlConVarPat con vars = nlConPat con (map nlVarPat vars)
nlConVarPatName :: Name -> [Name] -> LPat GhcRn
nlConVarPatName con vars = nlConPatName con (map nlVarPat vars)
nlInfixConPat :: RdrName -> LPat GhcPs -> LPat GhcPs -> LPat GhcPs
nlInfixConPat con l r = noLoc $ ConPat
{ pat_con = noLoc con
, pat_args = InfixCon (parenthesizePat opPrec l)
(parenthesizePat opPrec r)
, pat_con_ext = noExtField
}
nlConPat :: RdrName -> [LPat GhcPs] -> LPat GhcPs
nlConPat con pats = noLoc $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLoc con
, pat_args = PrefixCon (map (parenthesizePat appPrec) pats)
}
nlConPatName :: Name -> [LPat GhcRn] -> LPat GhcRn
nlConPatName con pats = noLoc $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLoc con
, pat_args = PrefixCon (map (parenthesizePat appPrec) pats)
}
nlNullaryConPat :: RdrName -> LPat GhcPs
nlNullaryConPat con = noLoc $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLoc con
, pat_args = PrefixCon []
}
nlWildConPat :: DataCon -> LPat GhcPs
nlWildConPat con = noLoc $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLoc $ getRdrName con
, pat_args = PrefixCon $
replicate (dataConSourceArity con)
nlWildPat
}
-- | Wildcard pattern - after parsing
nlWildPat :: LPat GhcPs
nlWildPat = noLoc (WildPat noExtField )
-- | Wildcard pattern - after renaming
nlWildPatName :: LPat GhcRn
nlWildPatName = noLoc (WildPat noExtField )
nlHsDo :: HsStmtContext GhcRn -> [LStmt GhcPs (LHsExpr GhcPs)]
-> LHsExpr GhcPs
nlHsDo ctxt stmts = noLoc (mkHsDo ctxt stmts)
nlHsOpApp :: LHsExpr GhcPs -> IdP GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
nlHsOpApp e1 op e2 = noLoc (mkHsOpApp e1 op e2)
nlHsLam :: LMatch GhcPs (LHsExpr GhcPs) -> LHsExpr GhcPs
nlHsPar :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsCase :: LHsExpr GhcPs -> [LMatch GhcPs (LHsExpr GhcPs)]
-> LHsExpr GhcPs
nlList :: [LHsExpr GhcPs] -> LHsExpr GhcPs
nlHsLam match = noLoc (HsLam noExtField (mkMatchGroup Generated [match]))
nlHsPar e = noLoc (HsPar noExtField e)
-- nlHsIf should generate if-expressions which are NOT subject to
-- RebindableSyntax, so the first field of HsIf is False. (#12080)
-- See Note [Rebindable if] in Hs.Expr
nlHsIf :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
nlHsIf cond true false = noLoc (HsIf False noSyntaxExpr cond true false)
nlHsCase expr matches
= noLoc (HsCase noExtField expr (mkMatchGroup Generated matches))
nlList exprs = noLoc (ExplicitList noExtField Nothing exprs)
nlHsAppTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsTyVar :: IdP (GhcPass p) -> LHsType (GhcPass p)
nlHsFunTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsParTy :: LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsAppTy f t = noLoc (HsAppTy noExtField f (parenthesizeHsType appPrec t))
nlHsTyVar x = noLoc (HsTyVar noExtField NotPromoted (noLoc x))
nlHsFunTy a b = noLoc (HsFunTy noExtField (parenthesizeHsType funPrec a) b)
nlHsParTy t = noLoc (HsParTy noExtField t)
nlHsTyConApp :: LexicalFixity -> IdP (GhcPass p)
-> [LHsTypeArg (GhcPass p)] -> LHsType (GhcPass p)
nlHsTyConApp fixity tycon tys
| Infix <- fixity
, HsValArg ty1 : HsValArg ty2 : rest <- tys
= foldl' mk_app (noLoc $ HsOpTy noExtField ty1 (noLoc tycon) ty2) rest
| otherwise
= foldl' mk_app (nlHsTyVar tycon) tys
where
mk_app :: LHsType (GhcPass p) -> LHsTypeArg (GhcPass p) -> LHsType (GhcPass p)
mk_app fun@(L _ (HsOpTy {})) arg = mk_app (noLoc $ HsParTy noExtField fun) arg
-- parenthesize things like `(A + B) C`
mk_app fun (HsValArg ty) = noLoc (HsAppTy noExtField fun (parenthesizeHsType appPrec ty))
mk_app fun (HsTypeArg _ ki) = noLoc (HsAppKindTy noSrcSpan fun (parenthesizeHsType appPrec ki))
mk_app fun (HsArgPar _) = noLoc (HsParTy noExtField fun)
nlHsAppKindTy ::
LHsType (GhcPass p) -> LHsKind (GhcPass p) -> LHsType (GhcPass p)
nlHsAppKindTy f k
= noLoc (HsAppKindTy noSrcSpan f (parenthesizeHsType appPrec k))
{-
Tuples. All these functions are *pre-typechecker* because they lack
types on the tuple.
-}
mkLHsTupleExpr :: [LHsExpr (GhcPass a)] -> LHsExpr (GhcPass a)
-- Makes a pre-typechecker boxed tuple, deals with 1 case
mkLHsTupleExpr [e] = e
mkLHsTupleExpr es
= noLoc $ ExplicitTuple noExtField (map (noLoc . (Present noExtField)) es) Boxed
mkLHsVarTuple :: [IdP (GhcPass a)] -> LHsExpr (GhcPass a)
mkLHsVarTuple ids = mkLHsTupleExpr (map nlHsVar ids)
nlTuplePat :: [LPat GhcPs] -> Boxity -> LPat GhcPs
nlTuplePat pats box = noLoc (TuplePat noExtField pats box)
missingTupArg :: HsTupArg GhcPs
missingTupArg = Missing noExtField
mkLHsPatTup :: [LPat GhcRn] -> LPat GhcRn
mkLHsPatTup [] = noLoc $ TuplePat noExtField [] Boxed
mkLHsPatTup [lpat] = lpat
mkLHsPatTup lpats = L (getLoc (head lpats)) $ TuplePat noExtField lpats Boxed
-- | The Big equivalents for the source tuple expressions
mkBigLHsVarTup :: [IdP (GhcPass id)] -> LHsExpr (GhcPass id)
mkBigLHsVarTup ids = mkBigLHsTup (map nlHsVar ids)
mkBigLHsTup :: [LHsExpr (GhcPass id)] -> LHsExpr (GhcPass id)
mkBigLHsTup = mkChunkified mkLHsTupleExpr
-- | The Big equivalents for the source tuple patterns
mkBigLHsVarPatTup :: [IdP GhcRn] -> LPat GhcRn
mkBigLHsVarPatTup bs = mkBigLHsPatTup (map nlVarPat bs)
mkBigLHsPatTup :: [LPat GhcRn] -> LPat GhcRn
mkBigLHsPatTup = mkChunkified mkLHsPatTup
-- $big_tuples
-- #big_tuples#
--
-- GHCs built in tuples can only go up to 'mAX_TUPLE_SIZE' in arity, but
-- we might conceivably want to build such a massive tuple as part of the
-- output of a desugaring stage (notably that for list comprehensions).
--
-- We call tuples above this size \"big tuples\", and emulate them by
-- creating and pattern matching on >nested< tuples that are expressible
-- by GHC.
--
-- Nesting policy: it's better to have a 2-tuple of 10-tuples (3 objects)
-- than a 10-tuple of 2-tuples (11 objects), so we want the leaves of any
-- construction to be big.
--
-- If you just use the 'mkBigCoreTup', 'mkBigCoreVarTupTy', 'mkTupleSelector'
-- and 'mkTupleCase' functions to do all your work with tuples you should be
-- fine, and not have to worry about the arity limitation at all.
-- | Lifts a \"small\" constructor into a \"big\" constructor by recursive decomposition
mkChunkified :: ([a] -> a) -- ^ \"Small\" constructor function, of maximum input arity 'mAX_TUPLE_SIZE'
-> [a] -- ^ Possible \"big\" list of things to construct from
-> a -- ^ Constructed thing made possible by recursive decomposition
mkChunkified small_tuple as = mk_big_tuple (chunkify as)
where
-- Each sub-list is short enough to fit in a tuple
mk_big_tuple [as] = small_tuple as
mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s))
chunkify :: [a] -> [[a]]
-- ^ Split a list into lists that are small enough to have a corresponding
-- tuple arity. The sub-lists of the result all have length <= 'mAX_TUPLE_SIZE'
-- But there may be more than 'mAX_TUPLE_SIZE' sub-lists
chunkify xs
| n_xs <= mAX_TUPLE_SIZE = [xs]
| otherwise = split xs
where
n_xs = length xs
split [] = []
split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs)
{-
************************************************************************
* *
LHsSigType and LHsSigWcType
* *
********************************************************************* -}
mkLHsSigType :: LHsType GhcPs -> LHsSigType GhcPs
mkLHsSigType ty = mkHsImplicitBndrs ty
mkLHsSigWcType :: LHsType GhcPs -> LHsSigWcType GhcPs
mkLHsSigWcType ty = mkHsWildCardBndrs (mkHsImplicitBndrs ty)
mkHsSigEnv :: forall a. (LSig GhcRn -> Maybe ([Located Name], a))
-> [LSig GhcRn]
-> NameEnv a
mkHsSigEnv get_info sigs
= mkNameEnv (mk_pairs ordinary_sigs)
`extendNameEnvList` (mk_pairs gen_dm_sigs)
-- The subtlety is this: in a class decl with a
-- default-method signature as well as a method signature
-- we want the latter to win (#12533)
-- class C x where
-- op :: forall a . x a -> x a
-- default op :: forall b . x b -> x b
-- op x = ...(e :: b -> b)...
-- The scoped type variables of the 'default op', namely 'b',
-- scope over the code for op. The 'forall a' does not!
-- This applies both in the renamer and typechecker, both
-- of which use this function
where
(gen_dm_sigs, ordinary_sigs) = partition is_gen_dm_sig sigs
is_gen_dm_sig (L _ (ClassOpSig _ True _ _)) = True
is_gen_dm_sig _ = False
mk_pairs :: [LSig GhcRn] -> [(Name, a)]
mk_pairs sigs = [ (n,a) | Just (ns,a) <- map get_info sigs
, L _ n <- ns ]
mkClassOpSigs :: [LSig GhcPs] -> [LSig GhcPs]
-- ^ Convert 'TypeSig' to 'ClassOpSig'.
-- The former is what is parsed, but the latter is
-- what we need in class/instance declarations
mkClassOpSigs sigs
= map fiddle sigs
where
fiddle (L loc (TypeSig _ nms ty))
= L loc (ClassOpSig noExtField False nms (dropWildCards ty))
fiddle sig = sig
typeToLHsType :: Type -> LHsType GhcPs
-- ^ Converting a Type to an HsType RdrName
-- This is needed to implement GeneralizedNewtypeDeriving.
--
-- Note that we use 'getRdrName' extensively, which
-- generates Exact RdrNames rather than strings.
typeToLHsType ty
= go ty
where
go :: Type -> LHsType GhcPs
go ty@(FunTy { ft_af = af, ft_arg = arg, ft_res = res })
= case af of
VisArg -> nlHsFunTy (go arg) (go res)
InvisArg | (theta, tau) <- tcSplitPhiTy ty
-> noLoc (HsQualTy { hst_ctxt = noLoc (map go theta)
, hst_xqual = noExtField
, hst_body = go tau })
go ty@(ForAllTy (Bndr _ argf) _)
| (tvs, tau) <- tcSplitForAllTysSameVis argf ty
= noLoc (HsForAllTy { hst_fvf = argToForallVisFlag argf
, hst_bndrs = map go_tv tvs
, hst_xforall = noExtField
, hst_body = go tau })
go (TyVarTy tv) = nlHsTyVar (getRdrName tv)
go (LitTy (NumTyLit n))
= noLoc $ HsTyLit noExtField (HsNumTy NoSourceText n)
go (LitTy (StrTyLit s))
= noLoc $ HsTyLit noExtField (HsStrTy NoSourceText s)
go ty@(TyConApp tc args)
| tyConAppNeedsKindSig True tc (length args)
-- We must produce an explicit kind signature here to make certain
-- programs kind-check. See Note [Kind signatures in typeToLHsType].
= nlHsParTy $ noLoc $ HsKindSig noExtField ty' (go (tcTypeKind ty))
| otherwise = ty'
where
ty' :: LHsType GhcPs
ty' = go_app (noLoc $ HsTyVar noExtField prom $ noLoc $ getRdrName tc)
args (tyConArgFlags tc args)
prom :: PromotionFlag
prom = if isPromotedDataCon tc then IsPromoted else NotPromoted
go ty@(AppTy {}) = go_app (go head) args (appTyArgFlags head args)
where
head :: Type
args :: [Type]
(head, args) = splitAppTys ty
go (CastTy ty _) = go ty
go (CoercionTy co) = pprPanic "toLHsSigWcType" (ppr co)
-- Source-language types have _invisible_ kind arguments,
-- so we must remove them here (#8563)
go_app :: LHsType GhcPs -- The type being applied
-> [Type] -- The argument types
-> [ArgFlag] -- The argument types' visibilities
-> LHsType GhcPs
go_app head args arg_flags =
foldl' (\f (arg, flag) ->
let arg' = go arg in
case flag of
-- See Note [Explicit Case Statement for Specificity]
Invisible spec -> case spec of
InferredSpec -> f
SpecifiedSpec -> f `nlHsAppKindTy` arg'
Required -> f `nlHsAppTy` arg')
head (zip args arg_flags)
argf_to_spec :: ArgFlag -> Specificity
argf_to_spec Required = SpecifiedSpec
-- see Note [Specificity in HsForAllTy] in GHC.Hs.Type
argf_to_spec (Invisible s) = s
go_tv :: TyVarBinder -> LHsTyVarBndr Specificity GhcPs
go_tv (Bndr tv argf) = noLoc $ KindedTyVar noExtField
(argf_to_spec argf)
(noLoc (getRdrName tv))
(go (tyVarKind tv))
{-
Note [Kind signatures in typeToLHsType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are types that typeToLHsType can produce which require explicit kind
signatures in order to kind-check. Here is an example from #14579:
-- type P :: forall {k} {t :: k}. Proxy t
type P = 'Proxy
-- type Wat :: forall a. Proxy a -> *
newtype Wat (x :: Proxy (a :: Type)) = MkWat (Maybe a)
deriving Eq
-- type Wat2 :: forall {a}. Proxy a -> *
type Wat2 = Wat
-- type Glurp :: * -> *
newtype Glurp a = MkGlurp (Wat2 (P :: Proxy a))
deriving Eq
The derived Eq instance for Glurp (without any kind signatures) would be:
instance Eq a => Eq (Glurp a) where
(==) :: Glurp a -> Glurp a -> Bool
(==) = coerce @(Wat2 P -> Wat2 P -> Bool)
@(Glurp a -> Glurp a -> Bool)
(==)
(Where the visible type applications use types produced by typeToLHsType.)
The type P (in Wat2 P) has an underspecified kind, so we must ensure that
typeToLHsType ascribes it with its kind: Wat2 (P :: Proxy a). To accomplish
this, whenever we see an application of a tycon to some arguments, we use
the tyConAppNeedsKindSig function to determine if it requires an explicit kind
signature to resolve some ambiguity. (See Note
Note [When does a tycon application need an explicit kind signature?] for a
more detailed explanation of how this works.)
Note that we pass True to tyConAppNeedsKindSig since we are generated code with
visible kind applications, so even specified arguments count towards injective
positions in the kind of the tycon.
-}
{- *********************************************************************
* *
--------- HsWrappers: type args, dict args, casts ---------
* *
********************************************************************* -}
mkLHsWrap :: HsWrapper -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrap co_fn (L loc e) = L loc (mkHsWrap co_fn e)
-- | Avoid @'HsWrap' co1 ('HsWrap' co2 _)@ and @'HsWrap' co1 ('HsPar' _ _)@
-- See Note [Detecting forced eta expansion] in "GHC.HsToCore.Expr"
mkHsWrap :: HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap co_fn e | isIdHsWrapper co_fn = e
mkHsWrap co_fn (XExpr (HsWrap co_fn' e)) = mkHsWrap (co_fn <.> co_fn') e
mkHsWrap co_fn (HsPar x (L l e)) = HsPar x (L l (mkHsWrap co_fn e))
mkHsWrap co_fn e = XExpr (HsWrap co_fn e)
mkHsWrapCo :: TcCoercionN -- A Nominal coercion a ~N b
-> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo co e = mkHsWrap (mkWpCastN co) e
mkHsWrapCoR :: TcCoercionR -- A Representational coercion a ~R b
-> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCoR co e = mkHsWrap (mkWpCastR co) e
mkLHsWrapCo :: TcCoercionN -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrapCo co (L loc e) = L loc (mkHsWrapCo co e)
mkHsCmdWrap :: HsWrapper -> HsCmd GhcTc -> HsCmd GhcTc
mkHsCmdWrap w cmd | isIdHsWrapper w = cmd
| otherwise = XCmd (HsWrap w cmd)
mkLHsCmdWrap :: HsWrapper -> LHsCmd GhcTc -> LHsCmd GhcTc
mkLHsCmdWrap w (L loc c) = L loc (mkHsCmdWrap w c)
mkHsWrapPat :: HsWrapper -> Pat GhcTc -> Type -> Pat GhcTc
mkHsWrapPat co_fn p ty | isIdHsWrapper co_fn = p
| otherwise = XPat $ CoPat co_fn p ty
mkHsWrapPatCo :: TcCoercionN -> Pat GhcTc -> Type -> Pat GhcTc
mkHsWrapPatCo co pat ty | isTcReflCo co = pat
| otherwise = XPat $ CoPat (mkWpCastN co) pat ty
mkHsDictLet :: TcEvBinds -> LHsExpr GhcTc -> LHsExpr GhcTc
mkHsDictLet ev_binds expr = mkLHsWrap (mkWpLet ev_binds) expr
{-
l
************************************************************************
* *
Bindings; with a location at the top
* *
************************************************************************
-}
mkFunBind :: Origin -> Located RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
-> HsBind GhcPs
-- ^ Not infix, with place holders for coercion and free vars
mkFunBind origin fn ms
= FunBind { fun_id = fn
, fun_matches = mkMatchGroup origin ms
, fun_ext = noExtField
, fun_tick = [] }
mkTopFunBind :: Origin -> Located Name -> [LMatch GhcRn (LHsExpr GhcRn)]
-> HsBind GhcRn
-- ^ In Name-land, with empty bind_fvs
mkTopFunBind origin fn ms = FunBind { fun_id = fn
, fun_matches = mkMatchGroup origin ms
, fun_ext = emptyNameSet -- NB: closed
-- binding
, fun_tick = [] }
mkHsVarBind :: SrcSpan -> RdrName -> LHsExpr GhcPs -> LHsBind GhcPs
mkHsVarBind loc var rhs = mkSimpleGeneratedFunBind loc var [] rhs
mkVarBind :: IdP (GhcPass p) -> LHsExpr (GhcPass p) -> LHsBind (GhcPass p)
mkVarBind var rhs = L (getLoc rhs) $
VarBind { var_ext = noExtField,
var_id = var, var_rhs = rhs }
mkPatSynBind :: Located RdrName -> HsPatSynDetails (Located RdrName)
-> LPat GhcPs -> HsPatSynDir GhcPs -> HsBind GhcPs
mkPatSynBind name details lpat dir = PatSynBind noExtField psb
where
psb = PSB{ psb_ext = noExtField
, psb_id = name
, psb_args = details
, psb_def = lpat
, psb_dir = dir }
-- |If any of the matches in the 'FunBind' are infix, the 'FunBind' is
-- considered infix.
isInfixFunBind :: HsBindLR id1 id2 -> Bool
isInfixFunBind (FunBind { fun_matches = MG _ matches _ })
= any (isInfixMatch . unLoc) (unLoc matches)
isInfixFunBind _ = False
------------
-- | Convenience function using 'mkFunBind'.
-- This is for generated bindings only, do not use for user-written code.
mkSimpleGeneratedFunBind :: SrcSpan -> RdrName -> [LPat GhcPs]
-> LHsExpr GhcPs -> LHsBind GhcPs
mkSimpleGeneratedFunBind loc fun pats expr
= L loc $ mkFunBind Generated (L loc fun)
[mkMatch (mkPrefixFunRhs (L loc fun)) pats expr
(noLoc emptyLocalBinds)]
-- | Make a prefix, non-strict function 'HsMatchContext'
mkPrefixFunRhs :: LIdP p -> HsMatchContext p
mkPrefixFunRhs n = FunRhs { mc_fun = n
, mc_fixity = Prefix
, mc_strictness = NoSrcStrict }
------------
mkMatch :: forall p. IsPass p
=> HsMatchContext (NoGhcTc (GhcPass p))
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> Located (HsLocalBinds (GhcPass p))
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch ctxt pats expr lbinds
= noLoc (Match { m_ext = noExtField
, m_ctxt = ctxt
, m_pats = map paren pats
, m_grhss = GRHSs noExtField (unguardedRHS noSrcSpan expr) lbinds })
where
paren :: Located (Pat (GhcPass p)) -> Located (Pat (GhcPass p))
paren lp@(L l p)
| patNeedsParens appPrec p = L l (ParPat noExtField lp)
| otherwise = lp
{-
************************************************************************
* *
Collecting binders
* *
************************************************************************
Get all the binders in some HsBindGroups, IN THE ORDER OF APPEARANCE. eg.
...
where
(x, y) = ...
f i j = ...
[a, b] = ...
it should return [x, y, f, a, b] (remember, order important).
Note [Collect binders only after renaming]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These functions should only be used on HsSyn *after* the renamer,
to return a [Name] or [Id]. Before renaming the record punning
and wild-card mechanism makes it hard to know what is bound.
So these functions should not be applied to (HsSyn RdrName)
Note [Unlifted id check in isUnliftedHsBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function isUnliftedHsBind is used to complain if we make a top-level
binding for a variable of unlifted type.
Such a binding is illegal if the top-level binding would be unlifted;
but also if the local letrec generated by desugaring AbsBinds would be.
E.g.
f :: Num a => (# a, a #)
g :: Num a => a -> a
f = ...g...
g = ...g...
The top-level bindings for f,g are not unlifted (because of the Num a =>),
but the local, recursive, monomorphic bindings are:
t = /\a \(d:Num a).
letrec fm :: (# a, a #) = ...g...
gm :: a -> a = ...f...
in (fm, gm)
Here the binding for 'fm' is illegal. So generally we check the abe_mono types.
BUT we have a special case when abs_sig is true;
see Note [The abs_sig field of AbsBinds] in GHC.Hs.Binds
-}
----------------- Bindings --------------------------
-- | Should we treat this as an unlifted bind? This will be true for any
-- bind that binds an unlifted variable, but we must be careful around
-- AbsBinds. See Note [Unlifted id check in isUnliftedHsBind]. For usage
-- information, see Note [Strict binds check] is GHC.HsToCore.Binds.
isUnliftedHsBind :: HsBind GhcTc -> Bool -- works only over typechecked binds
isUnliftedHsBind bind
| AbsBinds { abs_exports = exports, abs_sig = has_sig } <- bind
= if has_sig
then any (is_unlifted_id . abe_poly) exports
else any (is_unlifted_id . abe_mono) exports
-- If has_sig is True we wil never generate a binding for abe_mono,
-- so we don't need to worry about it being unlifted. The abe_poly
-- binding might not be: e.g. forall a. Num a => (# a, a #)
| otherwise
= any is_unlifted_id (collectHsBindBinders bind)
where
is_unlifted_id id = isUnliftedType (idType id)
-- | Is a binding a strict variable or pattern bind (e.g. @!x = ...@)?
isBangedHsBind :: HsBind GhcTc -> Bool
isBangedHsBind (AbsBinds { abs_binds = binds })
= anyBag (isBangedHsBind . unLoc) binds
isBangedHsBind (FunBind {fun_matches = matches})
| [L _ match] <- unLoc $ mg_alts matches
, FunRhs{mc_strictness = SrcStrict} <- m_ctxt match
= True
isBangedHsBind (PatBind {pat_lhs = pat})
= isBangedLPat pat
isBangedHsBind _
= False
collectLocalBinders :: CollectPass (GhcPass idL)
=> HsLocalBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
collectLocalBinders (HsValBinds _ binds) = collectHsIdBinders binds
-- No pattern synonyms here
collectLocalBinders (HsIPBinds {}) = []
collectLocalBinders (EmptyLocalBinds _) = []
collectHsIdBinders :: CollectPass (GhcPass idL)
=> HsValBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
-- ^ Collect 'Id' binders only, or 'Id's + pattern synonyms, respectively
collectHsIdBinders = collect_hs_val_binders True
collectHsValBinders :: CollectPass (GhcPass idL)
=> HsValBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
collectHsValBinders = collect_hs_val_binders False
collectHsBindBinders :: CollectPass p
=> HsBindLR p idR
-> [IdP p]
-- ^ Collect both 'Id's and pattern-synonym binders
collectHsBindBinders b = collect_bind False b []
collectHsBindsBinders :: CollectPass p
=> LHsBindsLR p idR
-> [IdP p]
collectHsBindsBinders binds = collect_binds False binds []
collectHsBindListBinders :: CollectPass p
=> [LHsBindLR p idR]
-> [IdP p]
-- ^ Same as 'collectHsBindsBinders', but works over a list of bindings
collectHsBindListBinders = foldr (collect_bind False . unLoc) []
collect_hs_val_binders :: CollectPass (GhcPass idL)
=> Bool
-> HsValBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
collect_hs_val_binders ps (ValBinds _ binds _) = collect_binds ps binds []
collect_hs_val_binders ps (XValBindsLR (NValBinds binds _))
= collect_out_binds ps binds
collect_out_binds :: CollectPass p
=> Bool
-> [(RecFlag, LHsBinds p)]
-> [IdP p]
collect_out_binds ps = foldr (collect_binds ps . snd) []
collect_binds :: CollectPass p
=> Bool
-> LHsBindsLR p idR
-> [IdP p]
-> [IdP p]
-- ^ Collect 'Id's, or 'Id's + pattern synonyms, depending on boolean flag
collect_binds ps binds acc = foldr (collect_bind ps . unLoc) acc binds
collect_bind :: CollectPass p
=> Bool
-> HsBindLR p idR
-> [IdP p]
-> [IdP p]
collect_bind _ (PatBind { pat_lhs = p }) acc = collect_lpat p acc
collect_bind _ (FunBind { fun_id = L _ f }) acc = f : acc
collect_bind _ (VarBind { var_id = f }) acc = f : acc
collect_bind _ (AbsBinds { abs_exports = dbinds }) acc = map abe_poly dbinds ++ acc
-- I don't think we want the binders from the abe_binds
-- binding (hence see AbsBinds) is in zonking in GHC.Tc.Utils.Zonk
collect_bind omitPatSyn (PatSynBind _ (PSB { psb_id = L _ ps })) acc
| omitPatSyn = acc
| otherwise = ps : acc
collect_bind _ (PatSynBind _ (XPatSynBind _)) acc = acc
collect_bind _ (XHsBindsLR _) acc = acc
collectMethodBinders :: LHsBindsLR idL idR -> [Located (IdP idL)]
-- ^ Used exclusively for the bindings of an instance decl which are all
-- 'FunBinds'
collectMethodBinders binds = foldr (get . unLoc) [] binds
where
get (FunBind { fun_id = f }) fs = f : fs
get _ fs = fs
-- Someone else complains about non-FunBinds
----------------- Statements --------------------------
collectLStmtsBinders :: (CollectPass (GhcPass idL))
=> [LStmtLR (GhcPass idL) (GhcPass idR) body]
-> [IdP (GhcPass idL)]
collectLStmtsBinders = concatMap collectLStmtBinders
collectStmtsBinders :: (CollectPass (GhcPass idL))
=> [StmtLR (GhcPass idL) (GhcPass idR) body]
-> [IdP (GhcPass idL)]
collectStmtsBinders = concatMap collectStmtBinders
collectLStmtBinders :: (CollectPass (GhcPass idL))
=> LStmtLR (GhcPass idL) (GhcPass idR) body
-> [IdP (GhcPass idL)]
collectLStmtBinders = collectStmtBinders . unLoc
collectStmtBinders :: (CollectPass (GhcPass idL))
=> StmtLR (GhcPass idL) (GhcPass idR) body
-> [IdP (GhcPass idL)]
-- Id Binders for a Stmt... [but what about pattern-sig type vars]?
collectStmtBinders (BindStmt _ pat _) = collectPatBinders pat
collectStmtBinders (LetStmt _ binds) = collectLocalBinders (unLoc binds)
collectStmtBinders (BodyStmt {}) = []
collectStmtBinders (LastStmt {}) = []
collectStmtBinders (ParStmt _ xs _ _) = collectLStmtsBinders
$ [s | ParStmtBlock _ ss _ _ <- xs, s <- ss]
collectStmtBinders (TransStmt { trS_stmts = stmts }) = collectLStmtsBinders stmts
collectStmtBinders (RecStmt { recS_stmts = ss }) = collectLStmtsBinders ss
collectStmtBinders (ApplicativeStmt _ args _) = concatMap collectArgBinders args
where
collectArgBinders (_, ApplicativeArgOne { app_arg_pattern = pat }) = collectPatBinders pat
collectArgBinders (_, ApplicativeArgMany { bv_pattern = pat }) = collectPatBinders pat
collectArgBinders (_, XApplicativeArg {}) = []
----------------- Patterns --------------------------
collectPatBinders :: CollectPass p => LPat p -> [IdP p]
collectPatBinders pat = collect_lpat pat []
collectPatsBinders :: CollectPass p => [LPat p] -> [IdP p]
collectPatsBinders pats = foldr collect_lpat [] pats
-------------
collect_lpat :: forall pass. (CollectPass pass)
=> LPat pass -> [IdP pass] -> [IdP pass]
collect_lpat p bndrs = collect_pat (unLoc p) bndrs
collect_pat :: forall p. CollectPass p
=> Pat p
-> [IdP p]
-> [IdP p]
collect_pat pat bndrs = case pat of
(VarPat _ var) -> unLoc var : bndrs
(WildPat _) -> bndrs
(LazyPat _ pat) -> collect_lpat pat bndrs
(BangPat _ pat) -> collect_lpat pat bndrs
(AsPat _ a pat) -> unLoc a : collect_lpat pat bndrs
(ViewPat _ _ pat) -> collect_lpat pat bndrs
(ParPat _ pat) -> collect_lpat pat bndrs
(ListPat _ pats) -> foldr collect_lpat bndrs pats
(TuplePat _ pats _) -> foldr collect_lpat bndrs pats
(SumPat _ pat _ _) -> collect_lpat pat bndrs
(ConPat {pat_args=ps}) -> foldr collect_lpat bndrs (hsConPatArgs ps)
-- See Note [Dictionary binders in ConPatOut]
(LitPat _ _) -> bndrs
(NPat {}) -> bndrs
(NPlusKPat _ n _ _ _ _) -> unLoc n : bndrs
(SigPat _ pat _) -> collect_lpat pat bndrs
(SplicePat _ (HsSpliced _ _ (HsSplicedPat pat)))
-> collect_pat pat bndrs
(SplicePat _ _) -> bndrs
(XPat ext) -> collectXXPat (Proxy @p) ext bndrs
-- | This class specifies how to collect variable identifiers from extension patterns in the given pass.
-- Consumers of the GHC API that define their own passes should feel free to implement instances in order
-- to make use of functions which depend on it.
--
-- In particular, Haddock already makes use of this, with an instance for its 'DocNameI' pass so that
-- it can reuse the code in GHC for collecting binders.
class (XRec p Pat ~ Located (Pat p)) => CollectPass p where
collectXXPat :: Proxy p -> XXPat p -> [IdP p] -> [IdP p]
instance CollectPass (GhcPass 'Parsed) where
collectXXPat _ ext = noExtCon ext
instance CollectPass (GhcPass 'Renamed) where
collectXXPat _ ext = noExtCon ext
instance CollectPass (GhcPass 'Typechecked) where
collectXXPat _ (CoPat _ pat _) = collect_pat pat
{-
Note [Dictionary binders in ConPatOut] See also same Note in GHC.HsToCore.Arrows
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do *not* gather (a) dictionary and (b) dictionary bindings as binders
of a ConPatOut pattern. For most calls it doesn't matter, because
it's pre-typechecker and there are no ConPatOuts. But it does matter
more in the desugarer; for example, GHC.HsToCore.Utils.mkSelectorBinds uses
collectPatBinders. In a lazy pattern, for example f ~(C x y) = ...,
we want to generate bindings for x,y but not for dictionaries bound by
C. (The type checker ensures they would not be used.)
Desugaring of arrow case expressions needs these bindings (see GHC.HsToCore.Arrows
and arrowcase1), but SPJ (Jan 2007) says it's safer for it to use its
own pat-binder-collector:
Here's the problem. Consider
data T a where
C :: Num a => a -> Int -> T a
f ~(C (n+1) m) = (n,m)
Here, the pattern (C (n+1)) binds a hidden dictionary (d::Num a),
and *also* uses that dictionary to match the (n+1) pattern. Yet, the
variables bound by the lazy pattern are n,m, *not* the dictionary d.
So in mkSelectorBinds in GHC.HsToCore.Utils, we want just m,n as the variables bound.
-}
hsGroupBinders :: HsGroup GhcRn -> [Name]
hsGroupBinders (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls,
hs_fords = foreign_decls })
= collectHsValBinders val_decls
++ hsTyClForeignBinders tycl_decls foreign_decls
hsTyClForeignBinders :: [TyClGroup GhcRn]
-> [LForeignDecl GhcRn]
-> [Name]
-- We need to look at instance declarations too,
-- because their associated types may bind data constructors
hsTyClForeignBinders tycl_decls foreign_decls
= map unLoc (hsForeignDeclsBinders foreign_decls)
++ getSelectorNames
(foldMap (foldMap hsLTyClDeclBinders . group_tyclds) tycl_decls
`mappend`
foldMap (foldMap hsLInstDeclBinders . group_instds) tycl_decls)
where
getSelectorNames :: ([Located Name], [LFieldOcc GhcRn]) -> [Name]
getSelectorNames (ns, fs) = map unLoc ns ++ map (extFieldOcc . unLoc) fs
-------------------
hsLTyClDeclBinders :: Located (TyClDecl (GhcPass p))
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
-- ^ Returns all the /binding/ names of the decl. The first one is
-- guaranteed to be the name of the decl. The first component
-- represents all binding names except record fields; the second
-- represents field occurrences. For record fields mentioned in
-- multiple constructors, the SrcLoc will be from the first occurrence.
--
-- Each returned (Located name) has a SrcSpan for the /whole/ declaration.
-- See Note [SrcSpan for binders]
hsLTyClDeclBinders (L loc (FamDecl { tcdFam = FamilyDecl
{ fdLName = (L _ name) } }))
= ([L loc name], [])
hsLTyClDeclBinders (L loc (SynDecl
{ tcdLName = (L _ name) }))
= ([L loc name], [])
hsLTyClDeclBinders (L loc (ClassDecl
{ tcdLName = (L _ cls_name)
, tcdSigs = sigs
, tcdATs = ats }))
= (L loc cls_name :
[ L fam_loc fam_name | (L fam_loc (FamilyDecl
{ fdLName = L _ fam_name })) <- ats ]
++
[ L mem_loc mem_name | (L mem_loc (ClassOpSig _ False ns _)) <- sigs
, (L _ mem_name) <- ns ]
, [])
hsLTyClDeclBinders (L loc (DataDecl { tcdLName = (L _ name)
, tcdDataDefn = defn }))
= (\ (xs, ys) -> (L loc name : xs, ys)) $ hsDataDefnBinders defn
-------------------
hsForeignDeclsBinders :: [LForeignDecl pass] -> [Located (IdP pass)]
-- ^ See Note [SrcSpan for binders]
hsForeignDeclsBinders foreign_decls
= [ L decl_loc n
| L decl_loc (ForeignImport { fd_name = L _ n })
<- foreign_decls]
-------------------
hsPatSynSelectors :: HsValBinds (GhcPass p) -> [IdP (GhcPass p)]
-- ^ Collects record pattern-synonym selectors only; the pattern synonym
-- names are collected by 'collectHsValBinders'.
hsPatSynSelectors (ValBinds _ _ _) = panic "hsPatSynSelectors"
hsPatSynSelectors (XValBindsLR (NValBinds binds _))
= foldr addPatSynSelector [] . unionManyBags $ map snd binds
addPatSynSelector:: LHsBind p -> [IdP p] -> [IdP p]
addPatSynSelector bind sels
| PatSynBind _ (PSB { psb_args = RecCon as }) <- unLoc bind
= map (unLoc . recordPatSynSelectorId) as ++ sels
| otherwise = sels
getPatSynBinds :: [(RecFlag, LHsBinds id)] -> [PatSynBind id id]
getPatSynBinds binds
= [ psb | (_, lbinds) <- binds
, L _ (PatSynBind _ psb) <- bagToList lbinds ]
-------------------
hsLInstDeclBinders :: LInstDecl (GhcPass p)
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsLInstDeclBinders (L _ (ClsInstD
{ cid_inst = ClsInstDecl
{ cid_datafam_insts = dfis }}))
= foldMap (hsDataFamInstBinders . unLoc) dfis
hsLInstDeclBinders (L _ (DataFamInstD { dfid_inst = fi }))
= hsDataFamInstBinders fi
hsLInstDeclBinders (L _ (TyFamInstD {})) = mempty
-------------------
-- | the 'SrcLoc' returned are for the whole declarations, not just the names
hsDataFamInstBinders :: DataFamInstDecl (GhcPass p)
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsDataFamInstBinders (DataFamInstDecl { dfid_eqn = HsIB { hsib_body =
FamEqn { feqn_rhs = defn }}})
= hsDataDefnBinders defn
-- There can't be repeated symbols because only data instances have binders
-------------------
-- | the 'SrcLoc' returned are for the whole declarations, not just the names
hsDataDefnBinders :: HsDataDefn (GhcPass p)
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsDataDefnBinders (HsDataDefn { dd_cons = cons })
= hsConDeclsBinders cons
-- See Note [Binders in family instances]
-------------------
type Seen p = [LFieldOcc (GhcPass p)] -> [LFieldOcc (GhcPass p)]
-- Filters out ones that have already been seen
hsConDeclsBinders :: [LConDecl (GhcPass p)]
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
-- See hsLTyClDeclBinders for what this does
-- The function is boringly complicated because of the records
-- And since we only have equality, we have to be a little careful
hsConDeclsBinders cons
= go id cons
where
go :: Seen p -> [LConDecl (GhcPass p)]
-> ([Located (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
go _ [] = ([], [])
go remSeen (r:rs)
-- Don't re-mangle the location of field names, because we don't
-- have a record of the full location of the field declaration anyway
= let loc = getLoc r
in case unLoc r of
-- remove only the first occurrence of any seen field in order to
-- avoid circumventing detection of duplicate fields (#9156)
ConDeclGADT { con_names = names, con_args = args }
-> (map (L loc . unLoc) names ++ ns, flds ++ fs)
where
(remSeen', flds) = get_flds remSeen args
(ns, fs) = go remSeen' rs
ConDeclH98 { con_name = name, con_args = args }
-> ([L loc (unLoc name)] ++ ns, flds ++ fs)
where
(remSeen', flds) = get_flds remSeen args
(ns, fs) = go remSeen' rs
get_flds :: Seen p -> HsConDeclDetails (GhcPass p)
-> (Seen p, [LFieldOcc (GhcPass p)])
get_flds remSeen (RecCon flds)
= (remSeen', fld_names)
where
fld_names = remSeen (concatMap (cd_fld_names . unLoc) (unLoc flds))
remSeen' = foldr (.) remSeen
[deleteBy ((==) `on` unLoc . rdrNameFieldOcc . unLoc) v
| v <- fld_names]
get_flds remSeen _
= (remSeen, [])
{-
Note [SrcSpan for binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When extracting the (Located RdrNme) for a binder, at least for the
main name (the TyCon of a type declaration etc), we want to give it
the @SrcSpan@ of the whole /declaration/, not just the name itself
(which is how it appears in the syntax tree). This SrcSpan (for the
entire declaration) is used as the SrcSpan for the Name that is
finally produced, and hence for error messages. (See #8607.)
Note [Binders in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a type or data family instance declaration, the type
constructor is an *occurrence* not a binding site
type instance T Int = Int -> Int -- No binders
data instance S Bool = S1 | S2 -- Binders are S1,S2
************************************************************************
* *
Collecting binders the user did not write
* *
************************************************************************
The job of this family of functions is to run through binding sites and find the set of all Names
that were defined "implicitly", without being explicitly written by the user.
The main purpose is to find names introduced by record wildcards so that we can avoid
warning the user when they don't use those names (#4404)
Since the addition of -Wunused-record-wildcards, this function returns a pair
of [(SrcSpan, [Name])]. Each element of the list is one set of implicit
binders, the first component of the tuple is the document describes the possible
fix to the problem (by removing the ..).
This means there is some unfortunate coupling between this function and where it
is used but it's only used for one specific purpose in one place so it seemed
easier.
-}
lStmtsImplicits :: [LStmtLR GhcRn (GhcPass idR) (Located (body (GhcPass idR)))]
-> [(SrcSpan, [Name])]
lStmtsImplicits = hs_lstmts
where
hs_lstmts :: [LStmtLR GhcRn (GhcPass idR) (Located (body (GhcPass idR)))]
-> [(SrcSpan, [Name])]
hs_lstmts = concatMap (hs_stmt . unLoc)
hs_stmt :: StmtLR GhcRn (GhcPass idR) (Located (body (GhcPass idR)))
-> [(SrcSpan, [Name])]
hs_stmt (BindStmt _ pat _) = lPatImplicits pat
hs_stmt (ApplicativeStmt _ args _) = concatMap do_arg args
where do_arg (_, ApplicativeArgOne { app_arg_pattern = pat }) = lPatImplicits pat
do_arg (_, ApplicativeArgMany { app_stmts = stmts }) = hs_lstmts stmts
hs_stmt (LetStmt _ binds) = hs_local_binds (unLoc binds)
hs_stmt (BodyStmt {}) = []
hs_stmt (LastStmt {}) = []
hs_stmt (ParStmt _ xs _ _) = hs_lstmts [s | ParStmtBlock _ ss _ _ <- xs
, s <- ss]
hs_stmt (TransStmt { trS_stmts = stmts }) = hs_lstmts stmts
hs_stmt (RecStmt { recS_stmts = ss }) = hs_lstmts ss
hs_local_binds (HsValBinds _ val_binds) = hsValBindsImplicits val_binds
hs_local_binds (HsIPBinds {}) = []
hs_local_binds (EmptyLocalBinds _) = []
hsValBindsImplicits :: HsValBindsLR GhcRn (GhcPass idR) -> [(SrcSpan, [Name])]
hsValBindsImplicits (XValBindsLR (NValBinds binds _))
= concatMap (lhsBindsImplicits . snd) binds
hsValBindsImplicits (ValBinds _ binds _)
= lhsBindsImplicits binds
lhsBindsImplicits :: LHsBindsLR GhcRn idR -> [(SrcSpan, [Name])]
lhsBindsImplicits = foldBag (++) (lhs_bind . unLoc) []
where
lhs_bind (PatBind { pat_lhs = lpat }) = lPatImplicits lpat
lhs_bind _ = []
lPatImplicits :: LPat GhcRn -> [(SrcSpan, [Name])]
lPatImplicits = hs_lpat
where
hs_lpat lpat = hs_pat (unLoc lpat)
hs_lpats = foldr (\pat rest -> hs_lpat pat ++ rest) []
hs_pat (LazyPat _ pat) = hs_lpat pat
hs_pat (BangPat _ pat) = hs_lpat pat
hs_pat (AsPat _ _ pat) = hs_lpat pat
hs_pat (ViewPat _ _ pat) = hs_lpat pat
hs_pat (ParPat _ pat) = hs_lpat pat
hs_pat (ListPat _ pats) = hs_lpats pats
hs_pat (TuplePat _ pats _) = hs_lpats pats
hs_pat (SigPat _ pat _) = hs_lpat pat
hs_pat (ConPat {pat_con=con, pat_args=ps}) = details con ps
hs_pat _ = []
details :: Located Name -> HsConPatDetails GhcRn -> [(SrcSpan, [Name])]
details _ (PrefixCon ps) = hs_lpats ps
details n (RecCon fs) =
[(err_loc, collectPatsBinders implicit_pats) | Just{} <- [rec_dotdot fs] ]
++ hs_lpats explicit_pats
where implicit_pats = map (hsRecFieldArg . unLoc) implicit
explicit_pats = map (hsRecFieldArg . unLoc) explicit
(explicit, implicit) = partitionEithers [if pat_explicit then Left fld else Right fld
| (i, fld) <- [0..] `zip` rec_flds fs
, let pat_explicit =
maybe True ((i<) . unLoc)
(rec_dotdot fs)]
err_loc = maybe (getLoc n) getLoc (rec_dotdot fs)
details _ (InfixCon p1 p2) = hs_lpat p1 ++ hs_lpat p2
|