summaryrefslogtreecommitdiff
path: root/compiler/GHC/HsToCore/Foreign/Decl.hs
blob: 8eae17e4140582ece624dd3e755e5d979fb13fb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998


Desugaring foreign declarations (see also GHC.HsToCore.Foreign.Call).
-}

module GHC.HsToCore.Foreign.Decl ( dsForeigns ) where

import GHC.Prelude

import GHC.Tc.Utils.Monad        -- temp

import GHC.Core

import GHC.HsToCore.Foreign.Call
import GHC.HsToCore.Monad
import GHC.HsToCore.Types (ds_next_wrapper_num)

import GHC.Hs
import GHC.Core.DataCon
import GHC.Core.Unfold.Make
import GHC.Types.Id
import GHC.Types.Literal
import GHC.Types.ForeignStubs
import GHC.Types.SourceText
import GHC.Unit.Module
import GHC.Types.Name
import GHC.Core.Type
import GHC.Types.RepType
import GHC.Core.TyCon
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcType

import GHC.Cmm.Expr
import GHC.Cmm.Utils
import GHC.Driver.Ppr
import GHC.Types.ForeignCall
import GHC.Builtin.Types
import GHC.Builtin.Types.Prim
import GHC.Builtin.Names
import GHC.Types.Basic
import GHC.Types.SrcLoc
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Driver.Session
import GHC.Driver.Config
import GHC.Platform
import GHC.Data.OrdList
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Driver.Hooks
import GHC.Utils.Encoding

import Data.Maybe
import Data.List (unzip4, nub)

{-
Desugaring of @foreign@ declarations is naturally split up into
parts, an @import@ and an @export@  part. A @foreign import@
declaration
\begin{verbatim}
  foreign import cc nm f :: prim_args -> IO prim_res
\end{verbatim}
is the same as
\begin{verbatim}
  f :: prim_args -> IO prim_res
  f a1 ... an = _ccall_ nm cc a1 ... an
\end{verbatim}
so we reuse the desugaring code in @GHC.HsToCore.Foreign.Call@ to deal with these.
-}

type Binding = (Id, CoreExpr) -- No rec/nonrec structure;
                              -- the occurrence analyser will sort it all out

dsForeigns :: [LForeignDecl GhcTc] -> DsM (ForeignStubs, OrdList Binding)
dsForeigns fos = do
    hooks <- getHooks
    case dsForeignsHook hooks of
        Nothing -> dsForeigns' fos
        Just h  -> h fos

dsForeigns' :: [LForeignDecl GhcTc]
            -> DsM (ForeignStubs, OrdList Binding)
dsForeigns' []
  = return (NoStubs, nilOL)
dsForeigns' fos = do
    mod <- getModule
    fives <- mapM do_ldecl fos
    let
        (hs, cs, idss, bindss) = unzip4 fives
        fe_ids = concat idss
        fe_init_code = foreignExportsInitialiser mod fe_ids
    --
    return (ForeignStubs
             (mconcat hs)
             (mconcat cs `mappend` fe_init_code),
            foldr (appOL . toOL) nilOL bindss)
  where
   do_ldecl (L loc decl) = putSrcSpanDs (locA loc) (do_decl decl)

   do_decl :: ForeignDecl GhcTc -> DsM (CHeader, CStub, [Id], [Binding])
   do_decl (ForeignImport { fd_name = id, fd_i_ext = co, fd_fi = spec }) = do
      traceIf (text "fi start" <+> ppr id)
      let id' = unLoc id
      (bs, h, c) <- dsFImport id' co spec
      traceIf (text "fi end" <+> ppr id)
      return (h, c, [], bs)

   do_decl (ForeignExport { fd_name = L _ id
                          , fd_e_ext = co
                          , fd_fe = CExport
                              (L _ (CExportStatic _ ext_nm cconv)) _ }) = do
      (h, c, _, _) <- dsFExport id co ext_nm cconv False
      return (h, c, [id], [])

{-
************************************************************************
*                                                                      *
\subsection{Foreign import}
*                                                                      *
************************************************************************

Desugaring foreign imports is just the matter of creating a binding
that on its RHS unboxes its arguments, performs the external call
(using the @CCallOp@ primop), before boxing the result up and returning it.

However, we create a worker/wrapper pair, thus:

        foreign import f :: Int -> IO Int
==>
        f x = IO ( \s -> case x of { I# x# ->
                         case fw s x# of { (# s1, y# #) ->
                         (# s1, I# y# #)}})

        fw s x# = ccall f s x#

The strictness/CPR analyser won't do this automatically because it doesn't look
inside returned tuples; but inlining this wrapper is a Really Good Idea
because it exposes the boxing to the call site.
-}

dsFImport :: Id
          -> Coercion
          -> ForeignImport
          -> DsM ([Binding], CHeader, CStub)
dsFImport id co (CImport cconv safety mHeader spec _) =
    dsCImport id co spec (unLoc cconv) (unLoc safety) mHeader

dsCImport :: Id
          -> Coercion
          -> CImportSpec
          -> CCallConv
          -> Safety
          -> Maybe Header
          -> DsM ([Binding], CHeader, CStub)
dsCImport id co (CLabel cid) cconv _ _ = do
   dflags <- getDynFlags
   let ty  = coercionLKind co
       platform = targetPlatform dflags
       fod = case tyConAppTyCon_maybe (dropForAlls ty) of
             Just tycon
              | tyConUnique tycon == funPtrTyConKey ->
                 IsFunction
             _ -> IsData
   (resTy, foRhs) <- resultWrapper ty
   assert (fromJust resTy `eqType` addrPrimTy) $    -- typechecker ensures this
    let
        rhs = foRhs (Lit (LitLabel cid stdcall_info fod))
        rhs' = Cast rhs co
        stdcall_info = fun_type_arg_stdcall_info platform cconv ty
    in
    return ([(id, rhs')], mempty, mempty)

dsCImport id co (CFunction target) cconv@PrimCallConv safety _
  = dsPrimCall id co (CCall (CCallSpec target cconv safety))
dsCImport id co (CFunction target) cconv safety mHeader
  = dsFCall id co (CCall (CCallSpec target cconv safety)) mHeader
dsCImport id co CWrapper cconv _ _
  = dsFExportDynamic id co cconv

-- For stdcall labels, if the type was a FunPtr or newtype thereof,
-- then we need to calculate the size of the arguments in order to add
-- the @n suffix to the label.
fun_type_arg_stdcall_info :: Platform -> CCallConv -> Type -> Maybe Int
fun_type_arg_stdcall_info platform StdCallConv ty
  | Just (tc,[arg_ty]) <- splitTyConApp_maybe ty,
    tyConUnique tc == funPtrTyConKey
  = let
       (bndrs, _) = tcSplitPiTys arg_ty
       fe_arg_tys = mapMaybe binderRelevantType_maybe bndrs
    in Just $ sum (map (widthInBytes . typeWidth . typeCmmType platform . getPrimTyOf) fe_arg_tys)
fun_type_arg_stdcall_info _ _other_conv _
  = Nothing

{-
************************************************************************
*                                                                      *
\subsection{Foreign calls}
*                                                                      *
************************************************************************
-}

dsFCall :: Id -> Coercion -> ForeignCall -> Maybe Header
        -> DsM ([(Id, Expr TyVar)], CHeader, CStub)
dsFCall fn_id co fcall mDeclHeader = do
    let
        ty                   = coercionLKind co
        (tv_bndrs, rho)      = tcSplitForAllTyVarBinders ty
        (arg_tys, io_res_ty) = tcSplitFunTys rho

    args <- newSysLocalsDs arg_tys  -- no FFI representation polymorphism
    (val_args, arg_wrappers) <- mapAndUnzipM unboxArg (map Var args)

    let
        work_arg_ids  = [v | Var v <- val_args] -- All guaranteed to be vars

    (ccall_result_ty, res_wrapper) <- boxResult io_res_ty

    ccall_uniq <- newUnique
    work_uniq  <- newUnique

    (fcall', cDoc) <-
              case fcall of
              CCall (CCallSpec (StaticTarget _ cName mUnitId isFun)
                               CApiConv safety) ->
               do nextWrapperNum <- ds_next_wrapper_num <$> getGblEnv
                  wrapperName <- mkWrapperName nextWrapperNum "ghc_wrapper" (unpackFS cName)
                  let fcall' = CCall (CCallSpec
                                      (StaticTarget NoSourceText
                                                    wrapperName mUnitId
                                                    True)
                                      CApiConv safety)
                      c = includes
                       $$ fun_proto <+> braces (cRet <> semi)
                      includes = vcat [ text "#include \"" <> ftext h
                                        <> text "\""
                                      | Header _ h <- nub headers ]
                      fun_proto = cResType <+> pprCconv <+> ppr wrapperName <> parens argTypes
                      cRet
                       | isVoidRes =                   cCall
                       | otherwise = text "return" <+> cCall
                      cCall = if isFun
                              then ppr cName <> parens argVals
                              else if null arg_tys
                                    then ppr cName
                                    else panic "dsFCall: Unexpected arguments to FFI value import"
                      raw_res_ty = case tcSplitIOType_maybe io_res_ty of
                                   Just (_ioTyCon, res_ty) -> res_ty
                                   Nothing                 -> io_res_ty
                      isVoidRes = raw_res_ty `eqType` unitTy
                      (mHeader, cResType)
                       | isVoidRes = (Nothing, text "void")
                       | otherwise = toCType raw_res_ty
                      pprCconv = ccallConvAttribute CApiConv
                      mHeadersArgTypeList
                          = [ (header, cType <+> char 'a' <> int n)
                            | (t, n) <- zip arg_tys [1..]
                            , let (header, cType) = toCType (scaledThing t) ]
                      (mHeaders, argTypeList) = unzip mHeadersArgTypeList
                      argTypes = if null argTypeList
                                 then text "void"
                                 else hsep $ punctuate comma argTypeList
                      mHeaders' = mDeclHeader : mHeader : mHeaders
                      headers = catMaybes mHeaders'
                      argVals = hsep $ punctuate comma
                                    [ char 'a' <> int n
                                    | (_, n) <- zip arg_tys [1..] ]
                  return (fcall', c)
              _ ->
                  return (fcall, empty)
    dflags <- getDynFlags
    let
        -- Build the worker
        worker_ty     = mkForAllTys tv_bndrs (mkVisFunTysMany (map idType work_arg_ids) ccall_result_ty)
        tvs           = map binderVar tv_bndrs
        the_ccall_app = mkFCall dflags ccall_uniq fcall' val_args ccall_result_ty
        work_rhs      = mkLams tvs (mkLams work_arg_ids the_ccall_app)
        work_id       = mkSysLocal (fsLit "$wccall") work_uniq Many worker_ty

        -- Build the wrapper
        work_app     = mkApps (mkVarApps (Var work_id) tvs) val_args
        wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers
        wrap_rhs     = mkLams (tvs ++ args) wrapper_body
        wrap_rhs'    = Cast wrap_rhs co
        simpl_opts   = initSimpleOpts dflags
        fn_id_w_inl  = fn_id `setIdUnfolding` mkInlineUnfoldingWithArity
                                                (length args)
                                                simpl_opts
                                                wrap_rhs'

    return ([(work_id, work_rhs), (fn_id_w_inl, wrap_rhs')], mempty, CStub cDoc)

{-
************************************************************************
*                                                                      *
\subsection{Primitive calls}
*                                                                      *
************************************************************************

This is for `@foreign import prim@' declarations.

Currently, at the core level we pretend that these primitive calls are
foreign calls. It may make more sense in future to have them as a distinct
kind of Id, or perhaps to bundle them with PrimOps since semantically and
for calling convention they are really prim ops.
-}

dsPrimCall :: Id -> Coercion -> ForeignCall
           -> DsM ([(Id, Expr TyVar)], CHeader, CStub)
dsPrimCall fn_id co fcall = do
    let
        ty                   = coercionLKind co
        (tvs, fun_ty)        = tcSplitForAllInvisTyVars ty
        (arg_tys, io_res_ty) = tcSplitFunTys fun_ty

    args <- newSysLocalsDs arg_tys  -- no FFI representation polymorphism

    ccall_uniq <- newUnique
    dflags <- getDynFlags
    let
        call_app = mkFCall dflags ccall_uniq fcall (map Var args) io_res_ty
        rhs      = mkLams tvs (mkLams args call_app)
        rhs'     = Cast rhs co
    return ([(fn_id, rhs')], mempty, mempty)

{-
************************************************************************
*                                                                      *
\subsection{Foreign export}
*                                                                      *
************************************************************************

The function that does most of the work for `@foreign export@' declarations.
(see below for the boilerplate code a `@foreign export@' declaration expands
 into.)

For each `@foreign export foo@' in a module M we generate:
\begin{itemize}
\item a C function `@foo@', which calls
\item a Haskell stub `@M.\$ffoo@', which calls
\end{itemize}
the user-written Haskell function `@M.foo@'.
-}

dsFExport :: Id                 -- Either the exported Id,
                                -- or the foreign-export-dynamic constructor
          -> Coercion           -- Coercion between the Haskell type callable
                                -- from C, and its representation type
          -> CLabelString       -- The name to export to C land
          -> CCallConv
          -> Bool               -- True => foreign export dynamic
                                --         so invoke IO action that's hanging off
                                --         the first argument's stable pointer
          -> DsM ( CHeader      -- contents of Module_stub.h
                 , CStub        -- contents of Module_stub.c
                 , String       -- string describing type to pass to createAdj.
                 , Int          -- size of args to stub function
                 )

dsFExport fn_id co ext_name cconv isDyn = do
    let
       ty                     = coercionRKind co
       (bndrs, orig_res_ty)   = tcSplitPiTys ty
       fe_arg_tys'            = mapMaybe binderRelevantType_maybe bndrs
       -- We must use tcSplits here, because we want to see
       -- the (IO t) in the corner of the type!
       fe_arg_tys | isDyn     = tail fe_arg_tys'
                  | otherwise = fe_arg_tys'

       -- Look at the result type of the exported function, orig_res_ty
       -- If it's IO t, return         (t, True)
       -- If it's plain t, return      (t, False)
       (res_ty, is_IO_res_ty) = case tcSplitIOType_maybe orig_res_ty of
                                -- The function already returns IO t
                                Just (_ioTyCon, res_ty) -> (res_ty, True)
                                -- The function returns t
                                Nothing                 -> (orig_res_ty, False)

    dflags <- getDynFlags
    return $
      mkFExportCBits dflags ext_name
                     (if isDyn then Nothing else Just fn_id)
                     fe_arg_tys res_ty is_IO_res_ty cconv

{-
@foreign import "wrapper"@ (previously "foreign export dynamic") lets
you dress up Haskell IO actions of some fixed type behind an
externally callable interface (i.e., as a C function pointer). Useful
for callbacks and stuff.

\begin{verbatim}
type Fun = Bool -> Int -> IO Int
foreign import "wrapper" f :: Fun -> IO (FunPtr Fun)

-- Haskell-visible constructor, which is generated from the above:
-- SUP: No check for NULL from createAdjustor anymore???

f :: Fun -> IO (FunPtr Fun)
f cback =
   bindIO (newStablePtr cback)
          (\StablePtr sp# -> IO (\s1# ->
              case _ccall_ createAdjustor cconv sp# ``f_helper'' <arg info> s1# of
                 (# s2#, a# #) -> (# s2#, A# a# #)))

foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun)

-- and the helper in C: (approximately; see `mkFExportCBits` below)

f_helper(StablePtr s, HsBool b, HsInt i)
{
        Capability *cap;
        cap = rts_lock();
        rts_inCall(&cap,
                   rts_apply(rts_apply(deRefStablePtr(s),
                                       rts_mkBool(b)), rts_mkInt(i)));
        rts_unlock(cap);
}
\end{verbatim}
-}

dsFExportDynamic :: Id
                 -> Coercion
                 -> CCallConv
                 -> DsM ([Binding], CHeader, CStub)
dsFExportDynamic id co0 cconv = do
    mod <- getModule
    dflags <- getDynFlags
    let platform = targetPlatform dflags
    let fe_nm = mkFastString $ zEncodeString
            (moduleStableString mod ++ "$" ++ toCName dflags id)
        -- Construct the label based on the passed id, don't use names
        -- depending on Unique. See #13807 and Note [Unique Determinism].
    cback <- newSysLocalDs arg_mult arg_ty
    newStablePtrId <- dsLookupGlobalId newStablePtrName
    stable_ptr_tycon <- dsLookupTyCon stablePtrTyConName
    let
        stable_ptr_ty = mkTyConApp stable_ptr_tycon [arg_ty]
        export_ty     = mkVisFunTyMany stable_ptr_ty arg_ty
    bindIOId <- dsLookupGlobalId bindIOName
    stbl_value <- newSysLocalDs Many stable_ptr_ty
    (h_code, c_code, typestring, args_size) <- dsFExport id (mkRepReflCo export_ty) fe_nm cconv True
    let
         {-
          The arguments to the external function which will
          create a little bit of (template) code on the fly
          for allowing the (stable pointed) Haskell closure
          to be entered using an external calling convention
          (stdcall, ccall).
         -}
        adj_args      = [ mkIntLit platform (fromIntegral (ccallConvToInt cconv))
                        , Var stbl_value
                        , Lit (LitLabel fe_nm mb_sz_args IsFunction)
                        , Lit (mkLitString typestring)
                        ]
          -- name of external entry point providing these services.
          -- (probably in the RTS.)
        adjustor   = fsLit "createAdjustor"

          -- Determine the number of bytes of arguments to the stub function,
          -- so that we can attach the '@N' suffix to its label if it is a
          -- stdcall on Windows.
        mb_sz_args = case cconv of
                        StdCallConv -> Just args_size
                        _           -> Nothing

    ccall_adj <- dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty])
        -- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback

    let io_app = mkLams tvs                  $
                 Lam cback                   $
                 mkApps (Var bindIOId)
                        [ Type stable_ptr_ty
                        , Type res_ty
                        , mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ]
                        , Lam stbl_value ccall_adj
                        ]

        fed = (id `setInlineActivation` NeverActive, Cast io_app co0)
               -- Never inline the f.e.d. function, because the litlit
               -- might not be in scope in other modules.

    return ([fed], h_code, c_code)

 where
  ty                       = coercionLKind co0
  (tvs,sans_foralls)       = tcSplitForAllInvisTyVars ty
  ([Scaled arg_mult arg_ty], fn_res_ty)    = tcSplitFunTys sans_foralls
  Just (io_tc, res_ty)     = tcSplitIOType_maybe fn_res_ty
        -- Must have an IO type; hence Just


toCName :: DynFlags -> Id -> String
toCName dflags i = showSDoc dflags (pprCode CStyle (ppr (idName i)))

{-
*

\subsection{Generating @foreign export@ stubs}

*

For each @foreign export@ function, a C stub function is generated.
The C stub constructs the application of the exported Haskell function
using the hugs/ghc rts invocation API.
-}

mkFExportCBits :: DynFlags
               -> FastString
               -> Maybe Id      -- Just==static, Nothing==dynamic
               -> [Type]
               -> Type
               -> Bool          -- True <=> returns an IO type
               -> CCallConv
               -> (CHeader,
                   CStub,
                   String,      -- the argument reps
                   Int          -- total size of arguments
                  )
mkFExportCBits dflags c_nm maybe_target arg_htys res_hty is_IO_res_ty cc
 = (header_bits, c_bits, type_string,
    sum [ widthInBytes (typeWidth rep) | (_,_,_,rep) <- aug_arg_info] -- all the args
         -- NB. the calculation here isn't strictly speaking correct.
         -- We have a primitive Haskell type (eg. Int#, Double#), and
         -- we want to know the size, when passed on the C stack, of
         -- the associated C type (eg. HsInt, HsDouble).  We don't have
         -- this information to hand, but we know what GHC's conventions
         -- are for passing around the primitive Haskell types, so we
         -- use that instead.  I hope the two coincide --SDM
    )
 where
  platform = targetPlatform dflags

  -- list the arguments to the C function
  arg_info :: [(SDoc,           -- arg name
                SDoc,           -- C type
                Type,           -- Haskell type
                CmmType)]       -- the CmmType
  arg_info  = [ let stg_type = showStgType ty in
                (arg_cname n stg_type,
                 stg_type,
                 ty,
                typeCmmType platform (getPrimTyOf ty))
              | (ty,n) <- zip arg_htys [1::Int ..] ]

  arg_cname n stg_ty
        | libffi    = char '*' <> parens (stg_ty <> char '*') <>
                      text "args" <> brackets (int (n-1))
        | otherwise = text ('a':show n)

  -- generate a libffi-style stub if this is a "wrapper" and libffi is enabled
  libffi = platformMisc_libFFI (platformMisc dflags) && isNothing maybe_target

  type_string
      -- libffi needs to know the result type too:
      | libffi    = primTyDescChar platform res_hty : arg_type_string
      | otherwise = arg_type_string

  arg_type_string = [primTyDescChar platform ty | (_,_,ty,_) <- arg_info]
                -- just the real args

  -- add some auxiliary args; the stable ptr in the wrapper case, and
  -- a slot for the dummy return address in the wrapper + ccall case
  aug_arg_info
    | isNothing maybe_target = stable_ptr_arg : insertRetAddr platform cc arg_info
    | otherwise              = arg_info

  stable_ptr_arg =
        (text "the_stableptr", text "StgStablePtr", undefined,
         typeCmmType platform (mkStablePtrPrimTy alphaTy))

  -- stuff to do with the return type of the C function
  res_hty_is_unit = res_hty `eqType` unitTy     -- Look through any newtypes

  cResType | res_hty_is_unit = text "void"
           | otherwise       = showStgType res_hty

  -- when the return type is integral and word-sized or smaller, it
  -- must be assigned as type ffi_arg (#3516).  To see what type
  -- libffi is expecting here, take a look in its own testsuite, e.g.
  -- libffi/testsuite/libffi.call/cls_align_ulonglong.c
  ffi_cResType
     | is_ffi_arg_type = text "ffi_arg"
     | otherwise       = cResType
     where
       res_ty_key = getUnique (getName (typeTyCon res_hty))
       is_ffi_arg_type = res_ty_key `notElem`
              [floatTyConKey, doubleTyConKey,
               int64TyConKey, word64TyConKey]

  -- Now we can cook up the prototype for the exported function.
  pprCconv = ccallConvAttribute cc

  header_bits = CHeader (text "extern" <+> fun_proto <> semi)

  fun_args
    | null aug_arg_info = text "void"
    | otherwise         = hsep $ punctuate comma
                               $ map (\(nm,ty,_,_) -> ty <+> nm) aug_arg_info

  fun_proto
    | libffi
      = text "void" <+> ftext c_nm <>
          parens (text "void *cif STG_UNUSED, void* resp, void** args, void* the_stableptr")
    | otherwise
      = cResType <+> pprCconv <+> ftext c_nm <> parens fun_args

  -- the target which will form the root of what we ask rts_inCall to run
  the_cfun
     = case maybe_target of
          Nothing    -> text "(StgClosure*)deRefStablePtr(the_stableptr)"
          Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure"

  cap = text "cap" <> comma

  -- the expression we give to rts_inCall
  expr_to_run
     = foldl' appArg the_cfun arg_info -- NOT aug_arg_info
       where
          appArg acc (arg_cname, _, arg_hty, _)
             = text "rts_apply"
               <> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname))

  -- various other bits for inside the fn
  declareResult = text "HaskellObj ret;"
  declareCResult | res_hty_is_unit = empty
                 | otherwise       = cResType <+> text "cret;"

  assignCResult | res_hty_is_unit = empty
                | otherwise       =
                        text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi

  -- an extern decl for the fn being called
  extern_decl
     = case maybe_target of
          Nothing -> empty
          Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi


  -- finally, the whole darn thing
  c_bits = CStub $
    space $$
    extern_decl $$
    fun_proto  $$
    vcat
     [ lbrace
     ,   text "Capability *cap;"
     ,   declareResult
     ,   declareCResult
     ,   text "cap = rts_lock();"
          -- create the application + perform it.
     ,   text "rts_inCall" <> parens (
                char '&' <> cap <>
                text "rts_apply" <> parens (
                    cap <>
                    text "(HaskellObj)"
                 <> (if is_IO_res_ty
                      then text "runIO_closure"
                      else text "runNonIO_closure")
                 <> comma
                 <> expr_to_run
                ) <+> comma
               <> text "&ret"
             ) <> semi
     ,   text "rts_checkSchedStatus" <> parens (doubleQuotes (ftext c_nm)
                                                <> comma <> text "cap") <> semi
     ,   assignCResult
     ,   text "rts_unlock(cap);"
     ,   ppUnless res_hty_is_unit $
         if libffi
                  then char '*' <> parens (ffi_cResType <> char '*') <>
                       text "resp = cret;"
                  else text "return cret;"
     , rbrace
     ]


foreignExportsInitialiser :: Module -> [Id] -> CStub
foreignExportsInitialiser mod hs_fns =
   -- Initialise foreign exports by registering a stable pointer from an
   -- __attribute__((constructor)) function.
   -- The alternative is to do this from stginit functions generated in
   -- codeGen/CodeGen.hs; however, stginit functions have a negative impact
   -- on binary sizes and link times because the static linker will think that
   -- all modules that are imported directly or indirectly are actually used by
   -- the program.
   -- (this is bad for big umbrella modules like Graphics.Rendering.OpenGL)
   --
   -- See Note [Tracking foreign exports] in rts/ForeignExports.c
   CStub $ vcat
    [ text "static struct ForeignExportsList" <+> list_symbol <+> equals
         <+> braces (
           text ".exports = " <+> export_list <> comma <+>
           text ".n_entries = " <+> ppr (length hs_fns))
         <> semi
    , text "static void " <> ctor_symbol <> text "(void)"
         <+> text " __attribute__((constructor));"
    , text "static void " <> ctor_symbol <> text "()"
    , braces (text "registerForeignExports" <> parens (char '&' <> list_symbol) <> semi)
    ]
  where
    mod_str = pprModuleName (moduleName mod)
    ctor_symbol = text "stginit_export_" <> mod_str
    list_symbol = text "stg_exports_" <> mod_str
    export_list = braces $ pprWithCommas closure_ptr hs_fns

    closure_ptr :: Id -> SDoc
    closure_ptr fn = text "(StgPtr) &" <> ppr fn <> text "_closure"


mkHObj :: Type -> SDoc
mkHObj t = text "rts_mk" <> text (showFFIType t)

unpackHObj :: Type -> SDoc
unpackHObj t = text "rts_get" <> text (showFFIType t)

showStgType :: Type -> SDoc
showStgType t = text "Hs" <> text (showFFIType t)

showFFIType :: Type -> String
showFFIType t = getOccString (getName (typeTyCon t))

toCType :: Type -> (Maybe Header, SDoc)
toCType = f False
    where f voidOK t
           -- First, if we have (Ptr t) of (FunPtr t), then we need to
           -- convert t to a C type and put a * after it. If we don't
           -- know a type for t, then "void" is fine, though.
           | Just (ptr, [t']) <- splitTyConApp_maybe t
           , tyConName ptr `elem` [ptrTyConName, funPtrTyConName]
              = case f True t' of
                (mh, cType') ->
                    (mh, cType' <> char '*')
           -- Otherwise, if we have a type constructor application, then
           -- see if there is a C type associated with that constructor.
           -- Note that we aren't looking through type synonyms or
           -- anything, as it may be the synonym that is annotated.
           | Just tycon <- tyConAppTyConPicky_maybe t
           , Just (CType _ mHeader (_,cType)) <- tyConCType_maybe tycon
              = (mHeader, ftext cType)
           -- If we don't know a C type for this type, then try looking
           -- through one layer of type synonym etc.
           | Just t' <- coreView t
              = f voidOK t'
           -- This may be an 'UnliftedFFITypes'-style ByteArray# argument
           -- (which is marshalled like a Ptr)
           | Just byteArrayPrimTyCon        == tyConAppTyConPicky_maybe t
              = (Nothing, text "const void*")
           | Just mutableByteArrayPrimTyCon == tyConAppTyConPicky_maybe t
              = (Nothing, text "void*")
           -- Otherwise we don't know the C type. If we are allowing
           -- void then return that; otherwise something has gone wrong.
           | voidOK = (Nothing, text "void")
           | otherwise
              = pprPanic "toCType" (ppr t)

typeTyCon :: Type -> TyCon
typeTyCon ty
  | Just (tc, _) <- tcSplitTyConApp_maybe (unwrapType ty)
  = tc
  | otherwise
  = pprPanic "GHC.HsToCore.Foreign.Decl.typeTyCon" (ppr ty)

insertRetAddr :: Platform -> CCallConv
              -> [(SDoc, SDoc, Type, CmmType)]
              -> [(SDoc, SDoc, Type, CmmType)]
insertRetAddr platform CCallConv args
    = case platformArch platform of
      ArchX86_64
       | platformOS platform == OSMinGW32 ->
          -- On other Windows x86_64 we insert the return address
          -- after the 4th argument, because this is the point
          -- at which we need to flush a register argument to the stack
          -- (See rts/Adjustor.c for details).
          let go :: Int -> [(SDoc, SDoc, Type, CmmType)]
                        -> [(SDoc, SDoc, Type, CmmType)]
              go 4 args = ret_addr_arg platform : args
              go n (arg:args) = arg : go (n+1) args
              go _ [] = []
          in go 0 args
       | otherwise ->
          -- On other x86_64 platforms we insert the return address
          -- after the 6th integer argument, because this is the point
          -- at which we need to flush a register argument to the stack
          -- (See rts/Adjustor.c for details).
          let go :: Int -> [(SDoc, SDoc, Type, CmmType)]
                        -> [(SDoc, SDoc, Type, CmmType)]
              go 6 args = ret_addr_arg platform : args
              go n (arg@(_,_,_,rep):args)
               | cmmEqType_ignoring_ptrhood rep b64 = arg : go (n+1) args
               | otherwise  = arg : go n     args
              go _ [] = []
          in go 0 args
      _ ->
          ret_addr_arg platform : args
insertRetAddr _ _ args = args

ret_addr_arg :: Platform -> (SDoc, SDoc, Type, CmmType)
ret_addr_arg platform = (text "original_return_addr", text "void*", undefined,
                         typeCmmType platform addrPrimTy)

-- This function returns the primitive type associated with the boxed
-- type argument to a foreign export (eg. Int ==> Int#).
getPrimTyOf :: Type -> UnaryType
getPrimTyOf ty
  | isBoolTy rep_ty = intPrimTy
  -- Except for Bool, the types we are interested in have a single constructor
  -- with a single primitive-typed argument (see TcType.legalFEArgTyCon).
  | otherwise =
  case splitDataProductType_maybe rep_ty of
     Just (_, _, data_con, [Scaled _ prim_ty]) ->
        assert (dataConSourceArity data_con == 1) $
        assertPpr (isUnliftedType prim_ty) (ppr prim_ty)
        prim_ty
     _other -> pprPanic "GHC.HsToCore.Foreign.Decl.getPrimTyOf" (ppr ty)
  where
        rep_ty = unwrapType ty

-- represent a primitive type as a Char, for building a string that
-- described the foreign function type.  The types are size-dependent,
-- e.g. 'W' is a signed 32-bit integer.
primTyDescChar :: Platform -> Type -> Char
primTyDescChar platform ty
 | ty `eqType` unitTy = 'v'
 | otherwise
 = case typePrimRep1 (getPrimTyOf ty) of
     IntRep      -> signed_word
     WordRep     -> unsigned_word
     Int8Rep     -> 'B'
     Word8Rep    -> 'b'
     Int16Rep    -> 'S'
     Word16Rep   -> 's'
     Int32Rep    -> 'W'
     Word32Rep   -> 'w'
     Int64Rep    -> 'L'
     Word64Rep   -> 'l'
     AddrRep     -> 'p'
     FloatRep    -> 'f'
     DoubleRep   -> 'd'
     _           -> pprPanic "primTyDescChar" (ppr ty)
  where
    (signed_word, unsigned_word) = case platformWordSize platform of
      PW4 -> ('W','w')
      PW8 -> ('L','l')