1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Utilities for desugaring
This module exports some utility functions of no great interest.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
-- | Utility functions for constructing Core syntax, principally for desugaring
module GHC.HsToCore.Utils (
EquationInfo(..),
firstPat, shiftEqns,
MatchResult (..), CaseAlt(..),
cantFailMatchResult, alwaysFailMatchResult,
extractMatchResult, combineMatchResults,
adjustMatchResultDs,
shareFailureHandler,
mkCoLetMatchResult, mkViewMatchResult, mkGuardedMatchResult,
matchCanFail, mkEvalMatchResult,
mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult, mkCoSynCaseMatchResult,
wrapBind, wrapBinds,
mkErrorAppDs, mkCoreAppDs, mkCoreAppsDs, mkCastDs,
seqVar,
-- LHs tuples
mkLHsPatTup, mkVanillaTuplePat,
mkBigLHsVarTupId, mkBigLHsTupId, mkBigLHsVarPatTupId, mkBigLHsPatTupId,
mkSelectorBinds,
selectSimpleMatchVarL, selectMatchVars, selectMatchVar,
mkOptTickBox, mkBinaryTickBox, decideBangHood,
isTrueLHsExpr
) where
#include "HsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.HsToCore.Match ( matchSimply )
import {-# SOURCE #-} GHC.HsToCore.Expr ( dsLExpr )
import GHC.Hs
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.TcType( tcSplitTyConApp )
import GHC.Core
import GHC.HsToCore.Monad
import GHC.Core.Utils
import GHC.Core.Make
import GHC.Types.Id.Make
import GHC.Types.Id
import GHC.Types.Literal
import GHC.Core.TyCon
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Types.Basic
import GHC.Core.ConLike
import GHC.Types.Unique.Set
import GHC.Types.Unique.Supply
import GHC.Unit.Module
import GHC.Builtin.Names
import GHC.Types.Name( isInternalName )
import GHC.Utils.Outputable
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Driver.Session
import GHC.Data.FastString
import qualified GHC.LanguageExtensions as LangExt
import GHC.Tc.Types.Evidence
import Control.Monad ( zipWithM )
import Data.List.NonEmpty (NonEmpty(..))
import Data.Maybe (maybeToList)
import qualified Data.List.NonEmpty as NEL
{-
************************************************************************
* *
\subsection{ Selecting match variables}
* *
************************************************************************
We're about to match against some patterns. We want to make some
@Ids@ to use as match variables. If a pattern has an @Id@ readily at
hand, which should indeed be bound to the pattern as a whole, then use it;
otherwise, make one up.
-}
selectSimpleMatchVarL :: LPat GhcTc -> DsM Id
-- Postcondition: the returned Id has an Internal Name
selectSimpleMatchVarL pat = selectMatchVar (unLoc pat)
-- (selectMatchVars ps tys) chooses variables of type tys
-- to use for matching ps against. If the pattern is a variable,
-- we try to use that, to save inventing lots of fresh variables.
--
-- OLD, but interesting note:
-- But even if it is a variable, its type might not match. Consider
-- data T a where
-- T1 :: Int -> T Int
-- T2 :: a -> T a
--
-- f :: T a -> a -> Int
-- f (T1 i) (x::Int) = x
-- f (T2 i) (y::a) = 0
-- Then we must not choose (x::Int) as the matching variable!
-- And nowadays we won't, because the (x::Int) will be wrapped in a CoPat
selectMatchVars :: [Pat GhcTc] -> DsM [Id]
-- Postcondition: the returned Ids have Internal Names
selectMatchVars ps = mapM selectMatchVar ps
selectMatchVar :: Pat GhcTc -> DsM Id
-- Postcondition: the returned Id has an Internal Name
selectMatchVar (BangPat _ pat) = selectMatchVar (unLoc pat)
selectMatchVar (LazyPat _ pat) = selectMatchVar (unLoc pat)
selectMatchVar (ParPat _ pat) = selectMatchVar (unLoc pat)
selectMatchVar (VarPat _ var) = return (localiseId (unLoc var))
-- Note [Localise pattern binders]
selectMatchVar (AsPat _ var _) = return (unLoc var)
selectMatchVar other_pat = newSysLocalDsNoLP (hsPatType other_pat)
-- OK, better make up one...
{- Note [Localise pattern binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider module M where
[Just a] = e
After renaming it looks like
module M where
[Just M.a] = e
We don't generalise, since it's a pattern binding, monomorphic, etc,
so after desugaring we may get something like
M.a = case e of (v:_) ->
case v of Just M.a -> M.a
Notice the "M.a" in the pattern; after all, it was in the original
pattern. However, after optimisation those pattern binders can become
let-binders, and then end up floated to top level. They have a
different *unique* by then (the simplifier is good about maintaining
proper scoping), but it's BAD to have two top-level bindings with the
External Name M.a, because that turns into two linker symbols for M.a.
It's quite rare for this to actually *happen* -- the only case I know
of is tc003 compiled with the 'hpc' way -- but that only makes it
all the more annoying.
To avoid this, we craftily call 'localiseId' in the desugarer, which
simply turns the External Name for the Id into an Internal one, but
doesn't change the unique. So the desugarer produces this:
M.a{r8} = case e of (v:_) ->
case v of Just a{r8} -> M.a{r8}
The unique is still 'r8', but the binding site in the pattern
is now an Internal Name. Now the simplifier's usual mechanisms
will propagate that Name to all the occurrence sites, as well as
un-shadowing it, so we'll get
M.a{r8} = case e of (v:_) ->
case v of Just a{s77} -> a{s77}
In fact, even GHC.Core.Subst.simplOptExpr will do this, and simpleOptExpr
runs on the output of the desugarer, so all is well by the end of
the desugaring pass.
See also Note [MatchIds] in GHC.HsToCore.Match
************************************************************************
* *
* type synonym EquationInfo and access functions for its pieces *
* *
************************************************************************
\subsection[EquationInfo-synonym]{@EquationInfo@: a useful synonym}
The ``equation info'' used by @match@ is relatively complicated and
worthy of a type synonym and a few handy functions.
-}
firstPat :: EquationInfo -> Pat GhcTc
firstPat eqn = ASSERT( notNull (eqn_pats eqn) ) head (eqn_pats eqn)
shiftEqns :: Functor f => f EquationInfo -> f EquationInfo
-- Drop the first pattern in each equation
shiftEqns = fmap $ \eqn -> eqn { eqn_pats = tail (eqn_pats eqn) }
-- Functions on MatchResult CoreExprs
matchCanFail :: MatchResult a -> Bool
matchCanFail (MR_Fallible {}) = True
matchCanFail (MR_Infallible {}) = False
alwaysFailMatchResult :: MatchResult CoreExpr
alwaysFailMatchResult = MR_Fallible $ \fail -> return fail
cantFailMatchResult :: CoreExpr -> MatchResult CoreExpr
cantFailMatchResult expr = MR_Infallible $ return expr
extractMatchResult :: MatchResult CoreExpr -> CoreExpr -> DsM CoreExpr
extractMatchResult match_result failure_expr =
runMatchResult
failure_expr
(shareFailureHandler match_result)
combineMatchResults :: MatchResult CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
combineMatchResults match_result1@(MR_Infallible _) _
= match_result1
combineMatchResults match_result1 match_result2 =
-- if the first pattern needs a failure handler (i.e. if it is is fallible),
-- make it let-bind it bind it with `shareFailureHandler`.
case shareFailureHandler match_result1 of
MR_Infallible _ -> match_result1
MR_Fallible body_fn1 -> MR_Fallible $ \fail_expr ->
-- Before actually failing, try the next match arm.
body_fn1 =<< runMatchResult fail_expr match_result2
adjustMatchResultDs :: (a -> DsM b) -> MatchResult a -> MatchResult b
adjustMatchResultDs encl_fn = \case
MR_Infallible body_fn -> MR_Infallible $
encl_fn =<< body_fn
MR_Fallible body_fn -> MR_Fallible $ \fail ->
encl_fn =<< body_fn fail
wrapBinds :: [(Var,Var)] -> CoreExpr -> CoreExpr
wrapBinds [] e = e
wrapBinds ((new,old):prs) e = wrapBind new old (wrapBinds prs e)
wrapBind :: Var -> Var -> CoreExpr -> CoreExpr
wrapBind new old body -- NB: this function must deal with term
| new==old = body -- variables, type variables or coercion variables
| otherwise = Let (NonRec new (varToCoreExpr old)) body
seqVar :: Var -> CoreExpr -> CoreExpr
seqVar var body = mkDefaultCase (Var var) var body
mkCoLetMatchResult :: CoreBind -> MatchResult CoreExpr -> MatchResult CoreExpr
mkCoLetMatchResult bind = fmap (mkCoreLet bind)
-- (mkViewMatchResult var' viewExpr mr) makes the expression
-- let var' = viewExpr in mr
mkViewMatchResult :: Id -> CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkViewMatchResult var' viewExpr = fmap $ mkCoreLet $ NonRec var' viewExpr
mkEvalMatchResult :: Id -> Type -> MatchResult CoreExpr -> MatchResult CoreExpr
mkEvalMatchResult var ty = fmap $ \e ->
Case (Var var) var ty [(DEFAULT, [], e)]
mkGuardedMatchResult :: CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkGuardedMatchResult pred_expr mr = MR_Fallible $ \fail -> do
body <- runMatchResult fail mr
return (mkIfThenElse pred_expr body fail)
mkCoPrimCaseMatchResult :: Id -- Scrutinee
-> Type -- Type of the case
-> [(Literal, MatchResult CoreExpr)] -- Alternatives
-> MatchResult CoreExpr -- Literals are all unlifted
mkCoPrimCaseMatchResult var ty match_alts
= MR_Fallible mk_case
where
mk_case fail = do
alts <- mapM (mk_alt fail) sorted_alts
return (Case (Var var) var ty ((DEFAULT, [], fail) : alts))
sorted_alts = sortWith fst match_alts -- Right order for a Case
mk_alt fail (lit, mr)
= ASSERT( not (litIsLifted lit) )
do body <- runMatchResult fail mr
return (LitAlt lit, [], body)
data CaseAlt a = MkCaseAlt{ alt_pat :: a,
alt_bndrs :: [Var],
alt_wrapper :: HsWrapper,
alt_result :: MatchResult CoreExpr }
mkCoAlgCaseMatchResult
:: Id -- ^ Scrutinee
-> Type -- ^ Type of exp
-> NonEmpty (CaseAlt DataCon) -- ^ Alternatives (bndrs *include* tyvars, dicts)
-> MatchResult CoreExpr
mkCoAlgCaseMatchResult var ty match_alts
| isNewtype -- Newtype case; use a let
= ASSERT( null match_alts_tail && null (tail arg_ids1) )
mkCoLetMatchResult (NonRec arg_id1 newtype_rhs) match_result1
| otherwise
= mkDataConCase var ty match_alts
where
isNewtype = isNewTyCon (dataConTyCon (alt_pat alt1))
-- [Interesting: because of GADTs, we can't rely on the type of
-- the scrutinised Id to be sufficiently refined to have a TyCon in it]
alt1@MkCaseAlt{ alt_bndrs = arg_ids1, alt_result = match_result1 } :| match_alts_tail
= match_alts
-- Stuff for newtype
arg_id1 = ASSERT( notNull arg_ids1 ) head arg_ids1
var_ty = idType var
(tc, ty_args) = tcSplitTyConApp var_ty -- Don't look through newtypes
-- (not that splitTyConApp does, these days)
newtype_rhs = unwrapNewTypeBody tc ty_args (Var var)
mkCoSynCaseMatchResult :: Id -> Type -> CaseAlt PatSyn -> MatchResult CoreExpr
mkCoSynCaseMatchResult var ty alt = MR_Fallible $ mkPatSynCase var ty alt
mkPatSynCase :: Id -> Type -> CaseAlt PatSyn -> CoreExpr -> DsM CoreExpr
mkPatSynCase var ty alt fail = do
matcher <- dsLExpr $ mkLHsWrap wrapper $
nlHsTyApp matcher [getRuntimeRep ty, ty]
cont <- mkCoreLams bndrs <$> runMatchResult fail match_result
return $ mkCoreAppsDs (text "patsyn" <+> ppr var) matcher [Var var, ensure_unstrict cont, Lam voidArgId fail]
where
MkCaseAlt{ alt_pat = psyn,
alt_bndrs = bndrs,
alt_wrapper = wrapper,
alt_result = match_result} = alt
(matcher, needs_void_lam) = patSynMatcher psyn
-- See Note [Matchers and builders for pattern synonyms] in GHC.Core.PatSyn
-- on these extra Void# arguments
ensure_unstrict cont | needs_void_lam = Lam voidArgId cont
| otherwise = cont
mkDataConCase :: Id -> Type -> NonEmpty (CaseAlt DataCon) -> MatchResult CoreExpr
mkDataConCase var ty alts@(alt1 :| _)
= liftA2 mk_case mk_default mk_alts
-- The liftA2 combines the failability of all the alternatives and the default
where
con1 = alt_pat alt1
tycon = dataConTyCon con1
data_cons = tyConDataCons tycon
sorted_alts :: [ CaseAlt DataCon ]
sorted_alts = sortWith (dataConTag . alt_pat) $ NEL.toList alts
var_ty = idType var
(_, ty_args) = tcSplitTyConApp var_ty -- Don't look through newtypes
-- (not that splitTyConApp does, these days)
mk_case :: Maybe CoreAlt -> [CoreAlt] -> CoreExpr
mk_case def alts = mkWildCase (Var var) (idType var) ty $
maybeToList def ++ alts
mk_alts :: MatchResult [CoreAlt]
mk_alts = traverse mk_alt sorted_alts
mk_alt :: CaseAlt DataCon -> MatchResult CoreAlt
mk_alt MkCaseAlt { alt_pat = con
, alt_bndrs = args
, alt_result = match_result } =
flip adjustMatchResultDs match_result $ \body -> do
case dataConBoxer con of
Nothing -> return (DataAlt con, args, body)
Just (DCB boxer) -> do
us <- newUniqueSupply
let (rep_ids, binds) = initUs_ us (boxer ty_args args)
return (DataAlt con, rep_ids, mkLets binds body)
mk_default :: MatchResult (Maybe CoreAlt)
mk_default
| exhaustive_case = MR_Infallible $ return Nothing
| otherwise = MR_Fallible $ \fail -> return $ Just (DEFAULT, [], fail)
mentioned_constructors = mkUniqSet $ map alt_pat sorted_alts
un_mentioned_constructors
= mkUniqSet data_cons `minusUniqSet` mentioned_constructors
exhaustive_case = isEmptyUniqSet un_mentioned_constructors
{-
************************************************************************
* *
\subsection{Desugarer's versions of some Core functions}
* *
************************************************************************
-}
mkErrorAppDs :: Id -- The error function
-> Type -- Type to which it should be applied
-> SDoc -- The error message string to pass
-> DsM CoreExpr
mkErrorAppDs err_id ty msg = do
src_loc <- getSrcSpanDs
dflags <- getDynFlags
let
full_msg = showSDoc dflags (hcat [ppr src_loc, vbar, msg])
core_msg = Lit (mkLitString full_msg)
-- mkLitString returns a result of type String#
return (mkApps (Var err_id) [Type (getRuntimeRep ty), Type ty, core_msg])
{-
'mkCoreAppDs' and 'mkCoreAppsDs' handle the special-case desugaring of 'seq'.
Note [Desugaring seq]
~~~~~~~~~~~~~~~~~~~~~
There are a few subtleties in the desugaring of `seq`:
1. (as described in #1031)
Consider,
f x y = x `seq` (y `seq` (# x,y #))
The [Core let/app invariant] means that, other things being equal, because
the argument to the outer 'seq' has an unlifted type, we'll use call-by-value thus:
f x y = case (y `seq` (# x,y #)) of v -> x `seq` v
But that is bad for two reasons:
(a) we now evaluate y before x, and
(b) we can't bind v to an unboxed pair
Seq is very, very special! So we recognise it right here, and desugar to
case x of _ -> case y of _ -> (# x,y #)
2. (as described in #2273)
Consider
let chp = case b of { True -> fst x; False -> 0 }
in chp `seq` ...chp...
Here the seq is designed to plug the space leak of retaining (snd x)
for too long.
If we rely on the ordinary inlining of seq, we'll get
let chp = case b of { True -> fst x; False -> 0 }
case chp of _ { I# -> ...chp... }
But since chp is cheap, and the case is an alluring contet, we'll
inline chp into the case scrutinee. Now there is only one use of chp,
so we'll inline a second copy. Alas, we've now ruined the purpose of
the seq, by re-introducing the space leak:
case (case b of {True -> fst x; False -> 0}) of
I# _ -> ...case b of {True -> fst x; False -> 0}...
We can try to avoid doing this by ensuring that the binder-swap in the
case happens, so we get his at an early stage:
case chp of chp2 { I# -> ...chp2... }
But this is fragile. The real culprit is the source program. Perhaps we
should have said explicitly
let !chp2 = chp in ...chp2...
But that's painful. So the code here does a little hack to make seq
more robust: a saturated application of 'seq' is turned *directly* into
the case expression, thus:
x `seq` e2 ==> case x of x -> e2 -- Note shadowing!
e1 `seq` e2 ==> case x of _ -> e2
So we desugar our example to:
let chp = case b of { True -> fst x; False -> 0 }
case chp of chp { I# -> ...chp... }
And now all is well.
The reason it's a hack is because if you define mySeq=seq, the hack
won't work on mySeq.
3. (as described in #2409)
The isLocalId ensures that we don't turn
True `seq` e
into
case True of True { ... }
which stupidly tries to bind the datacon 'True'.
-}
-- NB: Make sure the argument is not levity polymorphic
mkCoreAppDs :: SDoc -> CoreExpr -> CoreExpr -> CoreExpr
mkCoreAppDs _ (Var f `App` Type _r `App` Type ty1 `App` Type ty2 `App` arg1) arg2
| f `hasKey` seqIdKey -- Note [Desugaring seq], points (1) and (2)
= Case arg1 case_bndr ty2 [(DEFAULT,[],arg2)]
where
case_bndr = case arg1 of
Var v1 | isInternalName (idName v1)
-> v1 -- Note [Desugaring seq], points (2) and (3)
_ -> mkWildValBinder ty1
mkCoreAppDs s fun arg = mkCoreApp s fun arg -- The rest is done in GHC.Core.Make
-- NB: No argument can be levity polymorphic
mkCoreAppsDs :: SDoc -> CoreExpr -> [CoreExpr] -> CoreExpr
mkCoreAppsDs s fun args = foldl' (mkCoreAppDs s) fun args
mkCastDs :: CoreExpr -> Coercion -> CoreExpr
-- We define a desugarer-specific version of GHC.Core.Utils.mkCast,
-- because in the immediate output of the desugarer, we can have
-- apparently-mis-matched coercions: E.g.
-- let a = b
-- in (x :: a) |> (co :: b ~ Int)
-- Lint know about type-bindings for let and does not complain
-- So here we do not make the assertion checks that we make in
-- GHC.Core.Utils.mkCast; and we do less peephole optimisation too
mkCastDs e co | isReflCo co = e
| otherwise = Cast e co
{-
************************************************************************
* *
Tuples and selector bindings
* *
************************************************************************
This is used in various places to do with lazy patterns.
For each binder $b$ in the pattern, we create a binding:
\begin{verbatim}
b = case v of pat' -> b'
\end{verbatim}
where @pat'@ is @pat@ with each binder @b@ cloned into @b'@.
ToDo: making these bindings should really depend on whether there's
much work to be done per binding. If the pattern is complex, it
should be de-mangled once, into a tuple (and then selected from).
Otherwise the demangling can be in-line in the bindings (as here).
Boring! Boring! One error message per binder. The above ToDo is
even more helpful. Something very similar happens for pattern-bound
expressions.
Note [mkSelectorBinds]
~~~~~~~~~~~~~~~~~~~~~~
mkSelectorBinds is used to desugar a pattern binding {p = e},
in a binding group:
let { ...; p = e; ... } in body
where p binds x,y (this list of binders can be empty).
There are two cases.
------ Special case (A) -------
For a pattern that is just a variable,
let !x = e in body
==>
let x = e in x `seq` body
So we return the binding, with 'x' as the variable to seq.
------ Special case (B) -------
For a pattern that is essentially just a tuple:
* A product type, so cannot fail
* Only one level, so that
- generating multiple matches is fine
- seq'ing it evaluates the same as matching it
Then instead we generate
{ v = e
; x = case v of p -> x
; y = case v of p -> y }
with 'v' as the variable to force
------ General case (C) -------
In the general case we generate these bindings:
let { ...; p = e; ... } in body
==>
let { t = case e of p -> (x,y)
; x = case t of (x,y) -> x
; y = case t of (x,y) -> y }
in t `seq` body
Note that we return 't' as the variable to force if the pattern
is strict (i.e. with -XStrict or an outermost-bang-pattern)
Note that (A) /includes/ the situation where
* The pattern binds exactly one variable
let !(Just (Just x) = e in body
==>
let { t = case e of Just (Just v) -> Solo v
; v = case t of Solo v -> v }
in t `seq` body
The 'Solo' is a one-tuple; see Note [One-tuples] in GHC.Builtin.Types
Note that forcing 't' makes the pattern match happen,
but does not force 'v'.
* The pattern binds no variables
let !(True,False) = e in body
==>
let t = case e of (True,False) -> ()
in t `seq` body
------ Examples ----------
* !(_, (_, a)) = e
==>
t = case e of (_, (_, a)) -> Solo a
a = case t of Solo a -> a
Note that
- Forcing 't' will force the pattern to match fully;
e.g. will diverge if (snd e) is bottom
- But 'a' itself is not forced; it is wrapped in a one-tuple
(see Note [One-tuples] in GHC.Builtin.Types)
* !(Just x) = e
==>
t = case e of Just x -> Solo x
x = case t of Solo x -> x
Again, forcing 't' will fail if 'e' yields Nothing.
Note that even though this is rather general, the special cases
work out well:
* One binder, not -XStrict:
let Just (Just v) = e in body
==>
let t = case e of Just (Just v) -> Solo v
v = case t of Solo v -> v
in body
==>
let v = case (case e of Just (Just v) -> Solo v) of
Solo v -> v
in body
==>
let v = case e of Just (Just v) -> v
in body
* Non-recursive, -XStrict
let p = e in body
==>
let { t = case e of p -> (x,y)
; x = case t of (x,y) -> x
; y = case t of (x,y) -> x }
in t `seq` body
==> {inline seq, float x,y bindings inwards}
let t = case e of p -> (x,y) in
case t of t' ->
let { x = case t' of (x,y) -> x
; y = case t' of (x,y) -> x } in
body
==> {inline t, do case of case}
case e of p ->
let t = (x,y) in
let { x = case t' of (x,y) -> x
; y = case t' of (x,y) -> x } in
body
==> {case-cancellation, drop dead code}
case e of p -> body
* Special case (B) is there to avoid fruitlessly taking the tuple
apart and rebuilding it. For example, consider
{ K x y = e }
where K is a product constructor. Then general case (A) does:
{ t = case e of K x y -> (x,y)
; x = case t of (x,y) -> x
; y = case t of (x,y) -> y }
In the lazy case we can't optimise out this fruitless taking apart
and rebuilding. Instead (B) builds
{ v = e
; x = case v of K x y -> x
; y = case v of K x y -> y }
which is better.
-}
mkSelectorBinds :: [[Tickish Id]] -- ^ ticks to add, possibly
-> LPat GhcTc -- ^ The pattern
-> CoreExpr -- ^ Expression to which the pattern is bound
-> DsM (Id,[(Id,CoreExpr)])
-- ^ Id the rhs is bound to, for desugaring strict
-- binds (see Note [Desugar Strict binds] in GHC.HsToCore.Binds)
-- and all the desugared binds
mkSelectorBinds ticks pat val_expr
| L _ (VarPat _ (L _ v)) <- pat' -- Special case (A)
= return (v, [(v, val_expr)])
| is_flat_prod_lpat pat' -- Special case (B)
= do { let pat_ty = hsLPatType pat'
; val_var <- newSysLocalDsNoLP pat_ty
; let mk_bind tick bndr_var
-- (mk_bind sv bv) generates bv = case sv of { pat -> bv }
-- Remember, 'pat' binds 'bv'
= do { rhs_expr <- matchSimply (Var val_var) PatBindRhs pat'
(Var bndr_var)
(Var bndr_var) -- Neat hack
-- Neat hack: since 'pat' can't fail, the
-- "fail-expr" passed to matchSimply is not
-- used. But it /is/ used for its type, and for
-- that bndr_var is just the ticket.
; return (bndr_var, mkOptTickBox tick rhs_expr) }
; binds <- zipWithM mk_bind ticks' binders
; return ( val_var, (val_var, val_expr) : binds) }
| otherwise -- General case (C)
= do { tuple_var <- newSysLocalDs tuple_ty
; error_expr <- mkErrorAppDs pAT_ERROR_ID tuple_ty (ppr pat')
; tuple_expr <- matchSimply val_expr PatBindRhs pat
local_tuple error_expr
; let mk_tup_bind tick binder
= (binder, mkOptTickBox tick $
mkTupleSelector1 local_binders binder
tuple_var (Var tuple_var))
tup_binds = zipWith mk_tup_bind ticks' binders
; return (tuple_var, (tuple_var, tuple_expr) : tup_binds) }
where
pat' = strip_bangs pat
-- Strip the bangs before looking for case (A) or (B)
-- The incoming pattern may well have a bang on it
binders = collectPatBinders pat'
ticks' = ticks ++ repeat []
local_binders = map localiseId binders -- See Note [Localise pattern binders]
local_tuple = mkBigCoreVarTup1 binders
tuple_ty = exprType local_tuple
strip_bangs :: LPat (GhcPass p) -> LPat (GhcPass p)
-- Remove outermost bangs and parens
strip_bangs (L _ (ParPat _ p)) = strip_bangs p
strip_bangs (L _ (BangPat _ p)) = strip_bangs p
strip_bangs lp = lp
is_flat_prod_lpat :: LPat GhcTc -> Bool
is_flat_prod_lpat = is_flat_prod_pat . unLoc
is_flat_prod_pat :: Pat GhcTc -> Bool
is_flat_prod_pat (ParPat _ p) = is_flat_prod_lpat p
is_flat_prod_pat (TuplePat _ ps Boxed) = all is_triv_lpat ps
is_flat_prod_pat (ConPat { pat_con = L _ pcon
, pat_args = ps})
| RealDataCon con <- pcon
, isProductTyCon (dataConTyCon con)
= all is_triv_lpat (hsConPatArgs ps)
is_flat_prod_pat _ = False
is_triv_lpat :: LPat (GhcPass p) -> Bool
is_triv_lpat = is_triv_pat . unLoc
is_triv_pat :: Pat (GhcPass p) -> Bool
is_triv_pat (VarPat {}) = True
is_triv_pat (WildPat{}) = True
is_triv_pat (ParPat _ p) = is_triv_lpat p
is_triv_pat _ = False
{- *********************************************************************
* *
Creating big tuples and their types for full Haskell expressions.
They work over *Ids*, and create tuples replete with their types,
which is whey they are not in GHC.Hs.Utils.
* *
********************************************************************* -}
mkLHsPatTup :: [LPat GhcTc] -> LPat GhcTc
mkLHsPatTup [] = noLoc $ mkVanillaTuplePat [] Boxed
mkLHsPatTup [lpat] = lpat
mkLHsPatTup lpats = L (getLoc (head lpats)) $
mkVanillaTuplePat lpats Boxed
mkVanillaTuplePat :: [LPat GhcTc] -> Boxity -> Pat GhcTc
-- A vanilla tuple pattern simply gets its type from its sub-patterns
mkVanillaTuplePat pats box = TuplePat (map hsLPatType pats) pats box
-- The Big equivalents for the source tuple expressions
mkBigLHsVarTupId :: [Id] -> LHsExpr GhcTc
mkBigLHsVarTupId ids = mkBigLHsTupId (map nlHsVar ids)
mkBigLHsTupId :: [LHsExpr GhcTc] -> LHsExpr GhcTc
mkBigLHsTupId = mkChunkified mkLHsTupleExpr
-- The Big equivalents for the source tuple patterns
mkBigLHsVarPatTupId :: [Id] -> LPat GhcTc
mkBigLHsVarPatTupId bs = mkBigLHsPatTupId (map nlVarPat bs)
mkBigLHsPatTupId :: [LPat GhcTc] -> LPat GhcTc
mkBigLHsPatTupId = mkChunkified mkLHsPatTup
{-
************************************************************************
* *
Code for pattern-matching and other failures
* *
************************************************************************
Generally, we handle pattern matching failure like this: let-bind a
fail-variable, and use that variable if the thing fails:
\begin{verbatim}
let fail.33 = error "Help"
in
case x of
p1 -> ...
p2 -> fail.33
p3 -> fail.33
p4 -> ...
\end{verbatim}
Then
\begin{itemize}
\item
If the case can't fail, then there'll be no mention of @fail.33@, and the
simplifier will later discard it.
\item
If it can fail in only one way, then the simplifier will inline it.
\item
Only if it is used more than once will the let-binding remain.
\end{itemize}
There's a problem when the result of the case expression is of
unboxed type. Then the type of @fail.33@ is unboxed too, and
there is every chance that someone will change the let into a case:
\begin{verbatim}
case error "Help" of
fail.33 -> case ....
\end{verbatim}
which is of course utterly wrong. Rather than drop the condition that
only boxed types can be let-bound, we just turn the fail into a function
for the primitive case:
\begin{verbatim}
let fail.33 :: Void -> Int#
fail.33 = \_ -> error "Help"
in
case x of
p1 -> ...
p2 -> fail.33 void
p3 -> fail.33 void
p4 -> ...
\end{verbatim}
Now @fail.33@ is a function, so it can be let-bound.
We would *like* to use join points here; in fact, these "fail variables" are
paradigmatic join points! Sadly, this breaks pattern synonyms, which desugar as
CPS functions - i.e. they take "join points" as parameters. It's not impossible
to imagine extending our type system to allow passing join points around (very
carefully), but we certainly don't support it now.
99.99% of the time, the fail variables wind up as join points in short order
anyway, and the Void# doesn't do much harm.
-}
mkFailurePair :: CoreExpr -- Result type of the whole case expression
-> DsM (CoreBind, -- Binds the newly-created fail variable
-- to \ _ -> expression
CoreExpr) -- Fail variable applied to realWorld#
-- See Note [Failure thunks and CPR]
mkFailurePair expr
= do { fail_fun_var <- newFailLocalDs (voidPrimTy `mkVisFunTy` ty)
; fail_fun_arg <- newSysLocalDs voidPrimTy
; let real_arg = setOneShotLambda fail_fun_arg
; return (NonRec fail_fun_var (Lam real_arg expr),
App (Var fail_fun_var) (Var voidPrimId)) }
where
ty = exprType expr
-- Uses '@mkFailurePair@' to bind the failure case. Infallible matches have
-- neither a failure arg or failure "hole", so nothing is let-bound, and no
-- extraneous Core is produced.
shareFailureHandler :: MatchResult CoreExpr -> MatchResult CoreExpr
shareFailureHandler = \case
mr@(MR_Infallible _) -> mr
MR_Fallible match_fn -> MR_Fallible $ \fail_expr -> do
(fail_bind, shared_failure_handler) <- mkFailurePair fail_expr
body <- match_fn shared_failure_handler
-- Never unboxed, per the above, so always OK for `let` not `case`.
return $ Let fail_bind body
{-
Note [Failure thunks and CPR]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This note predates join points as formal entities (hence the quotation marks).
We can't use actual join points here (see above); if we did, this would also
solve the CPR problem, since join points don't get CPR'd. See Note [Don't CPR
join points] in GHC.Core.Opt.WorkWrap.)
When we make a failure point we ensure that it
does not look like a thunk. Example:
let fail = \rw -> error "urk"
in case x of
[] -> fail realWorld#
(y:ys) -> case ys of
[] -> fail realWorld#
(z:zs) -> (y,z)
Reason: we know that a failure point is always a "join point" and is
entered at most once. Adding a dummy 'realWorld' token argument makes
it clear that sharing is not an issue. And that in turn makes it more
CPR-friendly. This matters a lot: if you don't get it right, you lose
the tail call property. For example, see #3403.
************************************************************************
* *
Ticks
* *
********************************************************************* -}
mkOptTickBox :: [Tickish Id] -> CoreExpr -> CoreExpr
mkOptTickBox = flip (foldr Tick)
mkBinaryTickBox :: Int -> Int -> CoreExpr -> DsM CoreExpr
mkBinaryTickBox ixT ixF e = do
uq <- newUnique
this_mod <- getModule
let bndr1 = mkSysLocal (fsLit "t1") uq boolTy
let
falseBox = Tick (HpcTick this_mod ixF) (Var falseDataConId)
trueBox = Tick (HpcTick this_mod ixT) (Var trueDataConId)
--
return $ Case e bndr1 boolTy
[ (DataAlt falseDataCon, [], falseBox)
, (DataAlt trueDataCon, [], trueBox)
]
-- *******************************************************************
{- Note [decideBangHood]
~~~~~~~~~~~~~~~~~~~~~~~~
With -XStrict we may make /outermost/ patterns more strict.
E.g.
let (Just x) = e in ...
==>
let !(Just x) = e in ...
and
f x = e
==>
f !x = e
This adjustment is done by decideBangHood,
* Just before constructing an EqnInfo, in GHC.HsToCore.Match
(matchWrapper and matchSinglePat)
* When desugaring a pattern-binding in GHC.HsToCore.Binds.dsHsBind
Note that it is /not/ done recursively. See the -XStrict
spec in the user manual.
Specifically:
~pat => pat -- when -XStrict (even if pat = ~pat')
!pat => !pat -- always
pat => !pat -- when -XStrict
pat => pat -- otherwise
-}
-- | Use -XStrict to add a ! or remove a ~
-- See Note [decideBangHood]
decideBangHood :: DynFlags
-> LPat GhcTc -- ^ Original pattern
-> LPat GhcTc -- Pattern with bang if necessary
decideBangHood dflags lpat
| not (xopt LangExt.Strict dflags)
= lpat
| otherwise -- -XStrict
= go lpat
where
go lp@(L l p)
= case p of
ParPat x p -> L l (ParPat x (go p))
LazyPat _ lp' -> lp'
BangPat _ _ -> lp
_ -> L l (BangPat noExtField lp)
isTrueLHsExpr :: LHsExpr GhcTc -> Maybe (CoreExpr -> DsM CoreExpr)
-- Returns Just {..} if we're sure that the expression is True
-- I.e. * 'True' datacon
-- * 'otherwise' Id
-- * Trivial wappings of these
-- The arguments to Just are any HsTicks that we have found,
-- because we still want to tick then, even it they are always evaluated.
isTrueLHsExpr (L _ (HsVar _ (L _ v)))
| v `hasKey` otherwiseIdKey
|| v `hasKey` getUnique trueDataConId
= Just return
-- trueDataConId doesn't have the same unique as trueDataCon
isTrueLHsExpr (L _ (HsConLikeOut _ con))
| con `hasKey` getUnique trueDataCon = Just return
isTrueLHsExpr (L _ (HsTick _ tickish e))
| Just ticks <- isTrueLHsExpr e
= Just (\x -> do wrapped <- ticks x
return (Tick tickish wrapped))
-- This encodes that the result is constant True for Hpc tick purposes;
-- which is specifically what isTrueLHsExpr is trying to find out.
isTrueLHsExpr (L _ (HsBinTick _ ixT _ e))
| Just ticks <- isTrueLHsExpr e
= Just (\x -> do e <- ticks x
this_mod <- getModule
return (Tick (HpcTick this_mod ixT) e))
isTrueLHsExpr (L _ (HsPar _ e)) = isTrueLHsExpr e
isTrueLHsExpr _ = Nothing
|