1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
{-# LANGUAGE BinaryLiterals, CPP, ScopedTypeVariables, BangPatterns #-}
--
-- (c) The University of Glasgow 2002-2006
--
{-# OPTIONS_GHC -O2 #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
-- | Binary interface file support.
module GHC.Iface.Binary (
-- * Public API for interface file serialisation
writeBinIface,
readBinIface,
readBinIface_,
getSymtabName,
getDictFastString,
CheckHiWay(..),
TraceBinIFaceReading(..),
getWithUserData,
putWithUserData,
-- * Internal serialisation functions
getSymbolTable,
putName,
putDictionary,
putFastString,
putSymbolTable,
BinSymbolTable(..),
BinDictionary(..)
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Tc.Utils.Monad
import GHC.Builtin.Utils ( isKnownKeyName, lookupKnownKeyName )
import GHC.Iface.Env
import GHC.Driver.Types
import GHC.Unit
import GHC.Types.Name
import GHC.Driver.Session
import GHC.Driver.Ways
import GHC.Types.Unique.FM
import GHC.Types.Unique.Supply
import GHC.Utils.Panic
import GHC.Utils.Binary as Binary
import GHC.Types.SrcLoc
import GHC.Utils.Error
import GHC.Data.FastMutInt
import GHC.Types.Unique
import GHC.Utils.Outputable
import GHC.Types.Name.Cache
import GHC.Platform
import GHC.Data.FastString
import GHC.Settings.Constants
import GHC.Utils.Misc
import Data.Set (Set)
import Data.Array
import Data.Array.ST
import Data.Array.Unsafe
import Data.Bits
import Data.Char
import Data.Word
import Data.IORef
import Data.Foldable
import Control.Monad
import Control.Monad.ST
import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.State.Strict as State
-- ---------------------------------------------------------------------------
-- Reading and writing binary interface files
--
data CheckHiWay = CheckHiWay | IgnoreHiWay
deriving Eq
data TraceBinIFaceReading = TraceBinIFaceReading | QuietBinIFaceReading
deriving Eq
-- | Read an interface file
readBinIface :: CheckHiWay -> TraceBinIFaceReading -> FilePath
-> TcRnIf a b ModIface
readBinIface checkHiWay traceBinIFaceReading hi_path = do
ncu <- mkNameCacheUpdater
dflags <- getDynFlags
liftIO $ readBinIface_ dflags checkHiWay traceBinIFaceReading hi_path ncu
-- | Read an interface file in 'IO'.
readBinIface_ :: DynFlags -> CheckHiWay -> TraceBinIFaceReading -> FilePath
-> NameCacheUpdater
-> IO ModIface
readBinIface_ dflags checkHiWay traceBinIFaceReading hi_path ncu = do
let platform = targetPlatform dflags
printer :: SDoc -> IO ()
printer = case traceBinIFaceReading of
TraceBinIFaceReading -> \sd ->
putLogMsg dflags
NoReason
SevOutput
noSrcSpan
$ withPprStyle defaultDumpStyle sd
QuietBinIFaceReading -> \_ -> return ()
wantedGot :: String -> a -> a -> (a -> SDoc) -> IO ()
wantedGot what wanted got ppr' =
printer (text what <> text ": " <>
vcat [text "Wanted " <> ppr' wanted <> text ",",
text "got " <> ppr' got])
errorOnMismatch :: (Eq a, Show a) => String -> a -> a -> IO ()
errorOnMismatch what wanted got =
-- This will be caught by readIface which will emit an error
-- msg containing the iface module name.
when (wanted /= got) $ throwGhcExceptionIO $ ProgramError
(what ++ " (wanted " ++ show wanted
++ ", got " ++ show got ++ ")")
bh <- Binary.readBinMem hi_path
-- Read the magic number to check that this really is a GHC .hi file
-- (This magic number does not change when we change
-- GHC interface file format)
magic <- get bh
wantedGot "Magic" (binaryInterfaceMagic platform) magic (ppr . unFixedLength)
errorOnMismatch "magic number mismatch: old/corrupt interface file?"
(unFixedLength $ binaryInterfaceMagic platform) (unFixedLength magic)
-- Check the interface file version and ways.
check_ver <- get bh
let our_ver = show hiVersion
wantedGot "Version" our_ver check_ver text
errorOnMismatch "mismatched interface file versions" our_ver check_ver
check_way <- get bh
let way_descr = getWayDescr platform (ways dflags)
wantedGot "Way" way_descr check_way ppr
when (checkHiWay == CheckHiWay) $
errorOnMismatch "mismatched interface file ways" way_descr check_way
extFields_p <- get bh
mod_iface <- getWithUserData ncu bh
seekBin bh extFields_p
extFields <- get bh
return mod_iface{mi_ext_fields = extFields}
-- | This performs a get action after reading the dictionary and symbol
-- table. It is necessary to run this before trying to deserialise any
-- Names or FastStrings.
getWithUserData :: Binary a => NameCacheUpdater -> BinHandle -> IO a
getWithUserData ncu bh = do
-- Read the dictionary
-- The next word in the file is a pointer to where the dictionary is
-- (probably at the end of the file)
dict_p <- Binary.get bh
data_p <- tellBin bh -- Remember where we are now
seekBin bh dict_p
dict <- getDictionary bh
seekBin bh data_p -- Back to where we were before
-- Initialise the user-data field of bh
bh <- do
bh <- return $ setUserData bh $ newReadState (error "getSymtabName")
(getDictFastString dict)
symtab_p <- Binary.get bh -- Get the symtab ptr
data_p <- tellBin bh -- Remember where we are now
seekBin bh symtab_p
symtab <- getSymbolTable bh ncu
seekBin bh data_p -- Back to where we were before
-- It is only now that we know how to get a Name
return $ setUserData bh $ newReadState (getSymtabName ncu dict symtab)
(getDictFastString dict)
-- Read the interface file
get bh
-- | Write an interface file
writeBinIface :: DynFlags -> FilePath -> ModIface -> IO ()
writeBinIface dflags hi_path mod_iface = do
bh <- openBinMem initBinMemSize
let platform = targetPlatform dflags
put_ bh (binaryInterfaceMagic platform)
-- The version and way descriptor go next
put_ bh (show hiVersion)
let way_descr = getWayDescr platform (ways dflags)
put_ bh way_descr
extFields_p_p <- tellBin bh
put_ bh extFields_p_p
putWithUserData (debugTraceMsg dflags 3) bh mod_iface
extFields_p <- tellBin bh
putAt bh extFields_p_p extFields_p
seekBin bh extFields_p
put_ bh (mi_ext_fields mod_iface)
-- And send the result to the file
writeBinMem bh hi_path
-- | Put a piece of data with an initialised `UserData` field. This
-- is necessary if you want to serialise Names or FastStrings.
-- It also writes a symbol table and the dictionary.
-- This segment should be read using `getWithUserData`.
putWithUserData :: Binary a => (SDoc -> IO ()) -> BinHandle -> a -> IO ()
putWithUserData log_action bh payload = do
-- Remember where the dictionary pointer will go
dict_p_p <- tellBin bh
-- Placeholder for ptr to dictionary
put_ bh dict_p_p
-- Remember where the symbol table pointer will go
symtab_p_p <- tellBin bh
put_ bh symtab_p_p
-- Make some initial state
symtab_next <- newFastMutInt
writeFastMutInt symtab_next 0
symtab_map <- newIORef emptyUFM
let bin_symtab = BinSymbolTable {
bin_symtab_next = symtab_next,
bin_symtab_map = symtab_map }
dict_next_ref <- newFastMutInt
writeFastMutInt dict_next_ref 0
dict_map_ref <- newIORef emptyUFM
let bin_dict = BinDictionary {
bin_dict_next = dict_next_ref,
bin_dict_map = dict_map_ref }
-- Put the main thing,
bh <- return $ setUserData bh $ newWriteState (putName bin_dict bin_symtab)
(putName bin_dict bin_symtab)
(putFastString bin_dict)
put_ bh payload
-- Write the symtab pointer at the front of the file
symtab_p <- tellBin bh -- This is where the symtab will start
putAt bh symtab_p_p symtab_p -- Fill in the placeholder
seekBin bh symtab_p -- Seek back to the end of the file
-- Write the symbol table itself
symtab_next <- readFastMutInt symtab_next
symtab_map <- readIORef symtab_map
putSymbolTable bh symtab_next symtab_map
log_action (text "writeBinIface:" <+> int symtab_next
<+> text "Names")
-- NB. write the dictionary after the symbol table, because
-- writing the symbol table may create more dictionary entries.
-- Write the dictionary pointer at the front of the file
dict_p <- tellBin bh -- This is where the dictionary will start
putAt bh dict_p_p dict_p -- Fill in the placeholder
seekBin bh dict_p -- Seek back to the end of the file
-- Write the dictionary itself
dict_next <- readFastMutInt dict_next_ref
dict_map <- readIORef dict_map_ref
putDictionary bh dict_next dict_map
log_action (text "writeBinIface:" <+> int dict_next
<+> text "dict entries")
-- | Initial ram buffer to allocate for writing interface files
initBinMemSize :: Int
initBinMemSize = 1024 * 1024
binaryInterfaceMagic :: Platform -> FixedLengthEncoding Word32
binaryInterfaceMagic platform
| target32Bit platform = FixedLengthEncoding 0x1face
| otherwise = FixedLengthEncoding 0x1face64
-- -----------------------------------------------------------------------------
-- The symbol table
--
putSymbolTable :: BinHandle -> Int -> UniqFM Name (Int,Name) -> IO ()
putSymbolTable bh next_off symtab = do
put_ bh next_off
let names = elems (array (0,next_off-1) (nonDetEltsUFM symtab))
-- It's OK to use nonDetEltsUFM here because the elements have
-- indices that array uses to create order
mapM_ (\n -> serialiseName bh n symtab) names
getSymbolTable :: BinHandle -> NameCacheUpdater -> IO SymbolTable
getSymbolTable bh ncu = do
sz <- get bh
od_names <- sequence (replicate sz (get bh))
updateNameCache ncu $ \namecache ->
runST $ flip State.evalStateT namecache $ do
mut_arr <- lift $ newSTArray_ (0, sz-1)
for_ (zip [0..] od_names) $ \(i, odn) -> do
(nc, !n) <- State.gets $ \nc -> fromOnDiskName nc odn
lift $ writeArray mut_arr i n
State.put nc
arr <- lift $ unsafeFreeze mut_arr
namecache' <- State.get
return (namecache', arr)
where
-- This binding is required because the type of newArray_ cannot be inferred
newSTArray_ :: forall s. (Int, Int) -> ST s (STArray s Int Name)
newSTArray_ = newArray_
type OnDiskName = (Unit, ModuleName, OccName)
fromOnDiskName :: NameCache -> OnDiskName -> (NameCache, Name)
fromOnDiskName nc (pid, mod_name, occ) =
let mod = mkModule pid mod_name
cache = nsNames nc
in case lookupOrigNameCache cache mod occ of
Just name -> (nc, name)
Nothing ->
let (uniq, us) = takeUniqFromSupply (nsUniqs nc)
name = mkExternalName uniq mod occ noSrcSpan
new_cache = extendNameCache cache mod occ name
in ( nc{ nsUniqs = us, nsNames = new_cache }, name )
serialiseName :: BinHandle -> Name -> UniqFM key (Int,Name) -> IO ()
serialiseName bh name _ = do
let mod = ASSERT2( isExternalName name, ppr name ) nameModule name
put_ bh (moduleUnit mod, moduleName mod, nameOccName name)
-- Note [Symbol table representation of names]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- An occurrence of a name in an interface file is serialized as a single 32-bit
-- word. The format of this word is:
-- 00xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
-- A normal name. x is an index into the symbol table
-- 10xxxxxx xxyyyyyy yyyyyyyy yyyyyyyy
-- A known-key name. x is the Unique's Char, y is the int part. We assume that
-- all known-key uniques fit in this space. This is asserted by
-- GHC.Builtin.Utils.knownKeyNamesOkay.
--
-- During serialization we check for known-key things using isKnownKeyName.
-- During deserialization we use lookupKnownKeyName to get from the unique back
-- to its corresponding Name.
-- See Note [Symbol table representation of names]
putName :: BinDictionary -> BinSymbolTable -> BinHandle -> Name -> IO ()
putName _dict BinSymbolTable{
bin_symtab_map = symtab_map_ref,
bin_symtab_next = symtab_next }
bh name
| isKnownKeyName name
, let (c, u) = unpkUnique (nameUnique name) -- INVARIANT: (ord c) fits in 8 bits
= -- ASSERT(u < 2^(22 :: Int))
put_ bh (0x80000000
.|. (fromIntegral (ord c) `shiftL` 22)
.|. (fromIntegral u :: Word32))
| otherwise
= do symtab_map <- readIORef symtab_map_ref
case lookupUFM symtab_map name of
Just (off,_) -> put_ bh (fromIntegral off :: Word32)
Nothing -> do
off <- readFastMutInt symtab_next
-- MASSERT(off < 2^(30 :: Int))
writeFastMutInt symtab_next (off+1)
writeIORef symtab_map_ref
$! addToUFM symtab_map name (off,name)
put_ bh (fromIntegral off :: Word32)
-- See Note [Symbol table representation of names]
getSymtabName :: NameCacheUpdater
-> Dictionary -> SymbolTable
-> BinHandle -> IO Name
getSymtabName _ncu _dict symtab bh = do
i :: Word32 <- get bh
case i .&. 0xC0000000 of
0x00000000 -> return $! symtab ! fromIntegral i
0x80000000 ->
let
tag = chr (fromIntegral ((i .&. 0x3FC00000) `shiftR` 22))
ix = fromIntegral i .&. 0x003FFFFF
u = mkUnique tag ix
in
return $! case lookupKnownKeyName u of
Nothing -> pprPanic "getSymtabName:unknown known-key unique"
(ppr i $$ ppr (unpkUnique u))
Just n -> n
_ -> pprPanic "getSymtabName:unknown name tag" (ppr i)
data BinSymbolTable = BinSymbolTable {
bin_symtab_next :: !FastMutInt, -- The next index to use
bin_symtab_map :: !(IORef (UniqFM Name (Int,Name)))
-- indexed by Name
}
putFastString :: BinDictionary -> BinHandle -> FastString -> IO ()
putFastString dict bh fs = allocateFastString dict fs >>= put_ bh
allocateFastString :: BinDictionary -> FastString -> IO Word32
allocateFastString BinDictionary { bin_dict_next = j_r,
bin_dict_map = out_r} f = do
out <- readIORef out_r
let !uniq = getUnique f
case lookupUFM_Directly out uniq of
Just (j, _) -> return (fromIntegral j :: Word32)
Nothing -> do
j <- readFastMutInt j_r
writeFastMutInt j_r (j + 1)
writeIORef out_r $! addToUFM_Directly out uniq (j, f)
return (fromIntegral j :: Word32)
getDictFastString :: Dictionary -> BinHandle -> IO FastString
getDictFastString dict bh = do
j <- get bh
return $! (dict ! fromIntegral (j :: Word32))
data BinDictionary = BinDictionary {
bin_dict_next :: !FastMutInt, -- The next index to use
bin_dict_map :: !(IORef (UniqFM FastString (Int,FastString)))
-- indexed by FastString
}
getWayDescr :: Platform -> Set Way -> String
getWayDescr platform ws
| platformUnregisterised platform = 'u':tag
| otherwise = tag
where tag = waysBuildTag ws
-- if this is an unregisterised build, make sure our interfaces
-- can't be used by a registerised build.
|