1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GADTs #-}
{-# OPTIONS_GHC -fno-warn-orphans #-} -- only for Num, Fractional on JExpr
-----------------------------------------------------------------------------
-- |
-- Module : GHC.JS.Make
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : Jeffrey Young <jeffrey.young@iohk.io>
-- Luite Stegeman <luite.stegeman@iohk.io>
-- Sylvain Henry <sylvain.henry@iohk.io>
-- Josh Meredith <josh.meredith@iohk.io>
-- Stability : experimental
--
--
-- * Domain and Purpose
--
-- GHC.JS.Make defines helper functions to ease the creation of JavaScript
-- ASTs as defined in 'GHC.JS.Syntax'. Its purpose is twofold: make the EDSL
-- more ergonomic to program in, and make errors in the EDSL /look/ obvious
-- because the EDSL is untyped. It is primarily concerned with injecting
-- terms into the domain of the EDSL to construct JS programs in Haskell.
--
-- * Strategy
--
-- The strategy for this module comes straight from gentzen; where we have
-- two types of helper functions. Functions which inject terms into the
-- EDSL, and combinator functions which operate on terms in the EDSL to
-- construct new terms in the EDSL. Crucially, missing from this module are
-- corresponding /elimination/ or /destructing/ functions which would
-- project information from the EDSL back to Haskell. See
-- 'GHC.StgToJS.UnitUtils' and 'GHC.StgToJS.CoreUtils' for such functions.
--
-- * /Introduction/ functions
--
-- We define various primitive helpers which /introduce/ terms in the
-- EDSL, for example 'jVar', 'jLam', and 'var' and 'jString'. Notice
-- that the type of each of these functions have the domain @isSat a
-- => a -> ...@; indicating that they each take something that /can/
-- be injected into the EDSL domain, and the range 'JExpr' or 'JStat';
-- indicating the corresponding value in the EDSL domain. Similarly
-- this module exports two typeclasses 'ToExpr' and 'ToSat', 'ToExpr'
-- injects values as a JS expression into the EDSL. 'ToSat' ensures
-- that terms introduced into the EDSL carry identifier information so
-- terms in the EDSL must have meaning.
--
-- * /Combinator/ functions
--
-- The rest of the module defines combinators which create terms in
-- the EDSL from terms in the EDSL. Notable examples are '|=' and
-- '||=', '|=' is sugar for 'AssignStat', it is a binding form that
-- declares @foo = bar@ /assuming/ foo has been already declared.
-- '||=' is more sugar on top of '|=', it is also a binding form that
-- declares the LHS of '|=' before calling '|=' to bind a value, bar,
-- to a variable foo. Other common examples are the 'if_' and 'math_'
-- helpers such as 'math_cos'.
--
-- * Consumers
--
-- The entire JS backend consumes this module, e.g., the modules in
-- GHC.StgToJS.\*.
--
-- * Notation
--
-- In this module we use @==>@ in docstrings to show the translation from
-- the JS EDSL domain to JS code. For example, @foo ||= bar ==> var foo; foo
-- = bar;@ should be read as @foo ||= bar@ is in the EDSL domain and results
-- in the JS code @var foo; foo = bar;@ when compiled.
-----------------------------------------------------------------------------
module GHC.JS.Make
( -- * Injection Type classes
-- $classes
ToJExpr(..)
, ToStat(..)
-- * Introduction functions
-- $intro_funcs
, var
, jString
, jLam, jFunction, jVar, jFor, jForNoDecl, jForIn, jForEachIn, jTryCatchFinally
-- * Combinators
-- $combinators
, (||=), (|=), (.==.), (.===.), (.!=.), (.!==.), (.!)
, (.>.), (.>=.), (.<.), (.<=.)
, (.<<.), (.>>.), (.>>>.)
, (.|.), (.||.), (.&&.)
, if_, if10, if01, ifS, ifBlockS
, jwhenS
, app, appS, returnS
, loop, loopBlockS
, preIncrS, postIncrS
, preDecrS, postDecrS
, off8, off16, off32, off64
, mask8, mask16
, signExtend8, signExtend16
, typeof
, returnStack, assignAllEqual, assignAll, assignAllReverseOrder
, declAssignAll
, nullStat, (.^)
, trace
-- ** Hash combinators
, jhEmpty
, jhSingle
, jhAdd
, jhFromList
-- * Literals
-- $literals
, null_
, undefined_
, false_
, true_
, zero_
, one_
, two_
, three_
-- ** Math functions
-- $math
, math_log, math_sin, math_cos, math_tan, math_exp, math_acos, math_asin,
math_atan, math_abs, math_pow, math_sqrt, math_asinh, math_acosh, math_atanh,
math_cosh, math_sinh, math_tanh, math_expm1, math_log1p, math_fround
-- * Statement helpers
, decl
)
where
import GHC.Prelude hiding ((.|.))
import GHC.JS.Unsat.Syntax
import Control.Arrow ((***))
import qualified Data.Map as M
import GHC.Data.FastString
import GHC.Utils.Monad.State.Strict
import GHC.Utils.Misc
import GHC.Types.Unique.Map
--------------------------------------------------------------------------------
-- Type Classes
--------------------------------------------------------------------------------
-- $classes
-- The 'ToJExpr' class handles injection of of things into the EDSL as a JS
-- expression
-- | Things that can be marshalled into javascript values.
-- Instantiate for any necessary data structures.
class ToJExpr a where
toJExpr :: a -> JExpr
toJExprFromList :: [a] -> JExpr
toJExprFromList = ValExpr . JList . map toJExpr
instance ToJExpr a => ToJExpr [a] where
toJExpr = toJExprFromList
instance ToJExpr JExpr where
toJExpr = id
instance ToJExpr () where
toJExpr _ = ValExpr $ JList []
instance ToJExpr Bool where
toJExpr True = var "true"
toJExpr False = var "false"
instance ToJExpr JVal where
toJExpr = ValExpr
instance ToJExpr a => ToJExpr (UniqMap FastString a) where
toJExpr = ValExpr . JHash . mapUniqMap toJExpr
instance ToJExpr a => ToJExpr (M.Map String a) where
toJExpr = ValExpr . JHash . listToUniqMap . map (mkFastString *** toJExpr) . M.toList
instance ToJExpr Double where
toJExpr = ValExpr . JDouble . SaneDouble
instance ToJExpr Int where
toJExpr = ValExpr . JInt . fromIntegral
instance ToJExpr Integer where
toJExpr = ValExpr . JInt
instance ToJExpr Char where
toJExpr = ValExpr . JStr . mkFastString . (:[])
toJExprFromList = ValExpr . JStr . mkFastString
-- where escQuotes = tailDef "" . initDef "" . show
instance ToJExpr Ident where
toJExpr = ValExpr . JVar
instance ToJExpr FastString where
toJExpr = ValExpr . JStr
instance (ToJExpr a, ToJExpr b) => ToJExpr (a,b) where
toJExpr (a,b) = ValExpr . JList $ [toJExpr a, toJExpr b]
instance (ToJExpr a, ToJExpr b, ToJExpr c) => ToJExpr (a,b,c) where
toJExpr (a,b,c) = ValExpr . JList $ [toJExpr a, toJExpr b, toJExpr c]
instance (ToJExpr a, ToJExpr b, ToJExpr c, ToJExpr d) => ToJExpr (a,b,c,d) where
toJExpr (a,b,c,d) = ValExpr . JList $ [toJExpr a, toJExpr b, toJExpr c, toJExpr d]
instance (ToJExpr a, ToJExpr b, ToJExpr c, ToJExpr d, ToJExpr e) => ToJExpr (a,b,c,d,e) where
toJExpr (a,b,c,d,e) = ValExpr . JList $ [toJExpr a, toJExpr b, toJExpr c, toJExpr d, toJExpr e]
instance (ToJExpr a, ToJExpr b, ToJExpr c, ToJExpr d, ToJExpr e, ToJExpr f) => ToJExpr (a,b,c,d,e,f) where
toJExpr (a,b,c,d,e,f) = ValExpr . JList $ [toJExpr a, toJExpr b, toJExpr c, toJExpr d, toJExpr e, toJExpr f]
-- | The 'ToStat' class handles injection of of things into the EDSL as a JS
-- statement. This ends up being polymorphic sugar for JS blocks, see helper
-- function 'GHC.JS.Make.expr2stat'. Instantiate for any necessary data
-- structures.
class ToStat a where
toStat :: a -> JStat
instance ToStat JStat where
toStat = id
instance ToStat [JStat] where
toStat = BlockStat
instance ToStat JExpr where
toStat = expr2stat
instance ToStat [JExpr] where
toStat = BlockStat . map expr2stat
--------------------------------------------------------------------------------
-- Introduction Functions
--------------------------------------------------------------------------------
-- $intro_functions
-- Introduction functions are functions that map values or terms in the Haskell
-- domain to the JS EDSL domain
-- | Create a new anonymous function. The result is a 'GHC.JS.Syntax.JExpr'
-- expression.
-- Usage:
--
-- > jLam $ \x -> jVar x + one_
-- > jLam $ \f -> (jLam $ \x -> (f `app` (x `app` x))) `app` (jLam $ \x -> (f `app` (x `app` x)))
jLam :: ToSat a => a -> JExpr
jLam f = ValExpr . UnsatVal . IS $ do
(block,is) <- runIdentSupply $ toSat_ f []
return $ JFunc is block
-- | Introduce a new variable into scope for the duration
-- of the enclosed expression. The result is a block statement.
-- Usage:
--
-- @jVar $ \x y -> mconcat [x ||= one_, y ||= two_, x + y]@
jVar :: ToSat a => a -> JStat
jVar f = UnsatBlock . IS $ do
(block, is) <- runIdentSupply $ toSat_ f []
let addDecls (BlockStat ss) =
BlockStat $ map decl is ++ ss
addDecls x = x
return $ addDecls block
jFunction :: Ident -> [Ident] -> JStat -> JStat
jFunction name args body = FuncStat name args body
-- | Create a 'for in' statement.
-- Usage:
--
-- @jForIn {expression} $ \x -> {block involving x}@
jForIn :: ToSat a => JExpr -> (JExpr -> a) -> JStat
jForIn e f = UnsatBlock . IS $ do
(block, is) <- runIdentSupply $ toSat_ f []
let i = head is
return $ decl i `mappend` ForInStat False i e block
-- | As with "jForIn" but creating a \"for each in\" statement.
jForEachIn :: ToSat a => JExpr -> (JExpr -> a) -> JStat
jForEachIn e f = UnsatBlock . IS $ do
(block, is) <- runIdentSupply $ toSat_ f []
let i = head is
return $ decl i `mappend` ForInStat True i e block
-- | Create a 'for' statement given a function for initialization, a predicate
-- to step to, a step and a body
-- Usage:
--
-- @ jFor (|= zero_) (.<. Int 65536) preIncrS
-- (\j -> ...something with the counter j...)@
--
jFor :: (JExpr -> JStat)
-> (JExpr -> JExpr)
-> (JExpr -> JStat)
-> (JExpr -> JStat)
-> JStat
jFor init pred step body = jVar $ \i -> ForStat (init i) (pred i) (step i) (body i)
jForNoDecl :: Ident -> JExpr -> JExpr -> JStat -> JStat -> JStat
jForNoDecl i initial p step body = ForStat (toJExpr i |= initial) p step body
-- | As with "jForIn" but creating a \"for each in\" statement.
jTryCatchFinally :: (ToSat a) => JStat -> a -> JStat -> JStat
jTryCatchFinally s f s2 = UnsatBlock . IS $ do
(block, is) <- runIdentSupply $ toSat_ f []
let i = head is
return $ TryStat s i block s2
-- | construct a JS variable reference
var :: FastString -> JExpr
var = ValExpr . JVar . TxtI
-- | Convert a ShortText to a Javascript String
jString :: FastString -> JExpr
jString = toJExpr
-- | construct a js declaration with the given identifier
decl :: Ident -> JStat
decl i = DeclStat i Nothing
-- | The empty JS HashMap
jhEmpty :: M.Map k JExpr
jhEmpty = M.empty
-- | A singleton JS HashMap
jhSingle :: (Ord k, ToJExpr a) => k -> a -> M.Map k JExpr
jhSingle k v = jhAdd k v jhEmpty
-- | insert a key-value pair into a JS HashMap
jhAdd :: (Ord k, ToJExpr a) => k -> a -> M.Map k JExpr -> M.Map k JExpr
jhAdd k v m = M.insert k (toJExpr v) m
-- | Construct a JS HashMap from a list of key-value pairs
jhFromList :: [(FastString, JExpr)] -> JVal
jhFromList = JHash . listToUniqMap
-- | The empty JS statement
nullStat :: JStat
nullStat = BlockStat []
--------------------------------------------------------------------------------
-- Combinators
--------------------------------------------------------------------------------
-- $combinators
-- Combinators operate on terms in the JS EDSL domain to create new terms in the
-- EDSL domain.
-- | JS infix Equality operators
(.==.), (.===.), (.!=.), (.!==.) :: JExpr -> JExpr -> JExpr
(.==.) = InfixExpr EqOp
(.===.) = InfixExpr StrictEqOp
(.!=.) = InfixExpr NeqOp
(.!==.) = InfixExpr StrictNeqOp
infixl 6 .==., .===., .!=., .!==.
-- | JS infix Ord operators
(.>.), (.>=.), (.<.), (.<=.) :: JExpr -> JExpr -> JExpr
(.>.) = InfixExpr GtOp
(.>=.) = InfixExpr GeOp
(.<.) = InfixExpr LtOp
(.<=.) = InfixExpr LeOp
infixl 7 .>., .>=., .<., .<=.
-- | JS infix bit operators
(.|.), (.||.), (.&&.) :: JExpr -> JExpr -> JExpr
(.|.) = InfixExpr BOrOp
(.||.) = InfixExpr LOrOp
(.&&.) = InfixExpr LAndOp
infixl 8 .||., .&&.
-- | JS infix bit shift operators
(.<<.), (.>>.), (.>>>.) :: JExpr -> JExpr -> JExpr
(.<<.) = InfixExpr LeftShiftOp
(.>>.) = InfixExpr RightShiftOp
(.>>>.) = InfixExpr ZRightShiftOp
infixl 9 .<<., .>>., .>>>.
-- | Given a 'JExpr', return the its type.
typeof :: JExpr -> JExpr
typeof = UOpExpr TypeofOp
-- | JS if-expression
--
-- > if_ e1 e2 e3 ==> e1 ? e2 : e3
if_ :: JExpr -> JExpr -> JExpr -> JExpr
if_ e1 e2 e3 = IfExpr e1 e2 e3
-- | If-expression which returns statements, see related 'ifBlockS'
--
-- > if e s1 s2 ==> if(e) { s1 } else { s2 }
ifS :: JExpr -> JStat -> JStat -> JStat
ifS e s1 s2 = IfStat e s1 s2
-- | A when-statement as syntactic sugar via `ifS`
--
-- > jwhenS cond block ==> if(cond) { block } else { }
jwhenS :: JExpr -> JStat -> JStat
jwhenS cond block = ifS cond block mempty
-- | If-expression which returns blocks
--
-- > ifBlockS e s1 s2 ==> if(e) { s1 } else { s2 }
ifBlockS :: JExpr -> [JStat] -> [JStat] -> JStat
ifBlockS e s1 s2 = IfStat e (mconcat s1) (mconcat s2)
-- | if-expression that returns 1 if condition <=> true, 0 otherwise
--
-- > if10 e ==> e ? 1 : 0
if10 :: JExpr -> JExpr
if10 e = IfExpr e one_ zero_
-- | if-expression that returns 0 if condition <=> true, 1 otherwise
--
-- > if01 e ==> e ? 0 : 1
if01 :: JExpr -> JExpr
if01 e = IfExpr e zero_ one_
-- | an expression application, see related 'appS'
--
-- > app f xs ==> f(xs)
app :: FastString -> [JExpr] -> JExpr
app f xs = ApplExpr (var f) xs
-- | A statement application, see the expression form 'app'
appS :: FastString -> [JExpr] -> JStat
appS f xs = ApplStat (var f) xs
-- | Return a 'JExpr'
returnS :: JExpr -> JStat
returnS e = ReturnStat e
-- | "for" loop with increment at end of body
loop :: JExpr -> (JExpr -> JExpr) -> (JExpr -> JStat) -> JStat
loop initial test body = jVar $ \i ->
mconcat [ i |= initial
, WhileStat False (test i) (body i)
]
-- | "for" loop with increment at end of body
loopBlockS :: JExpr -> (JExpr -> JExpr) -> (JExpr -> [JStat]) -> JStat
loopBlockS initial test body = jVar $ \i ->
mconcat [ i |= initial
, WhileStat False (test i) (mconcat (body i))
]
-- | Prefix-increment a 'JExpr'
preIncrS :: JExpr -> JStat
preIncrS x = UOpStat PreIncOp x
-- | Postfix-increment a 'JExpr'
postIncrS :: JExpr -> JStat
postIncrS x = UOpStat PostIncOp x
-- | Prefix-decrement a 'JExpr'
preDecrS :: JExpr -> JStat
preDecrS x = UOpStat PreDecOp x
-- | Postfix-decrement a 'JExpr'
postDecrS :: JExpr -> JStat
postDecrS x = UOpStat PostDecOp x
-- | Byte indexing of o with a 64-bit offset
off64 :: JExpr -> JExpr -> JExpr
off64 o i = Add o (i .<<. three_)
-- | Byte indexing of o with a 32-bit offset
off32 :: JExpr -> JExpr -> JExpr
off32 o i = Add o (i .<<. two_)
-- | Byte indexing of o with a 16-bit offset
off16 :: JExpr -> JExpr -> JExpr
off16 o i = Add o (i .<<. one_)
-- | Byte indexing of o with a 8-bit offset
off8 :: JExpr -> JExpr -> JExpr
off8 o i = Add o i
-- | a bit mask to retrieve the lower 8-bits
mask8 :: JExpr -> JExpr
mask8 x = BAnd x (Int 0xFF)
-- | a bit mask to retrieve the lower 16-bits
mask16 :: JExpr -> JExpr
mask16 x = BAnd x (Int 0xFFFF)
-- | Sign-extend/narrow a 8-bit value
signExtend8 :: JExpr -> JExpr
signExtend8 x = (BAnd x (Int 0x7F )) `Sub` (BAnd x (Int 0x80))
-- | Sign-extend/narrow a 16-bit value
signExtend16 :: JExpr -> JExpr
signExtend16 x = (BAnd x (Int 0x7FFF)) `Sub` (BAnd x (Int 0x8000))
-- | Select a property 'prop', from and object 'obj'
--
-- > obj .^ prop ==> obj.prop
(.^) :: JExpr -> FastString -> JExpr
obj .^ prop = SelExpr obj (TxtI prop)
infixl 8 .^
-- | Assign a variable to an expression
--
-- > foo |= expr ==> var foo = expr;
(|=) :: JExpr -> JExpr -> JStat
(|=) = AssignStat
-- | Declare a variable and then Assign the variable to an expression
--
-- > foo |= expr ==> var foo; foo = expr;
(||=) :: Ident -> JExpr -> JStat
i ||= ex = DeclStat i (Just ex)
infixl 2 ||=, |=
-- | return the expression at idx of obj
--
-- > obj .! idx ==> obj[idx]
(.!) :: JExpr -> JExpr -> JExpr
(.!) = IdxExpr
infixl 8 .!
assignAllEqual :: HasDebugCallStack => [JExpr] -> [JExpr] -> JStat
assignAllEqual xs ys = mconcat (zipWithEqual "assignAllEqual" (|=) xs ys)
assignAll :: [JExpr] -> [JExpr] -> JStat
assignAll xs ys = mconcat (zipWith (|=) xs ys)
assignAllReverseOrder :: [JExpr] -> [JExpr] -> JStat
assignAllReverseOrder xs ys = mconcat (reverse (zipWith (|=) xs ys))
declAssignAll :: [Ident] -> [JExpr] -> JStat
declAssignAll xs ys = mconcat (zipWith (||=) xs ys)
trace :: ToJExpr a => a -> JStat
trace ex = appS "h$log" [toJExpr ex]
--------------------------------------------------------------------------------
-- Literals
--------------------------------------------------------------------------------
-- $literals
-- Literals in the JS EDSL are constants in the Haskell domain. These are useful
-- helper values and never change
-- | The JS literal 'null'
null_ :: JExpr
null_ = var "null"
-- | The JS literal 0
zero_ :: JExpr
zero_ = Int 0
-- | The JS literal 1
one_ :: JExpr
one_ = Int 1
-- | The JS literal 2
two_ :: JExpr
two_ = Int 2
-- | The JS literal 3
three_ :: JExpr
three_ = Int 3
-- | The JS literal 'undefined'
undefined_ :: JExpr
undefined_ = var "undefined"
-- | The JS literal 'true'
true_ :: JExpr
true_ = var "true"
-- | The JS literal 'false'
false_ :: JExpr
false_ = var "false"
returnStack :: JStat
returnStack = ReturnStat (ApplExpr (var "h$rs") [])
--------------------------------------------------------------------------------
-- Math functions
--------------------------------------------------------------------------------
-- $math
-- Math functions in the EDSL are literals, with the exception of 'math_' which
-- is the sole math introduction function.
math :: JExpr
math = var "Math"
math_ :: FastString -> [JExpr] -> JExpr
math_ op args = ApplExpr (math .^ op) args
math_log, math_sin, math_cos, math_tan, math_exp, math_acos, math_asin, math_atan,
math_abs, math_pow, math_sqrt, math_asinh, math_acosh, math_atanh, math_sign,
math_sinh, math_cosh, math_tanh, math_expm1, math_log1p, math_fround
:: [JExpr] -> JExpr
math_log = math_ "log"
math_sin = math_ "sin"
math_cos = math_ "cos"
math_tan = math_ "tan"
math_exp = math_ "exp"
math_acos = math_ "acos"
math_asin = math_ "asin"
math_atan = math_ "atan"
math_abs = math_ "abs"
math_pow = math_ "pow"
math_sign = math_ "sign"
math_sqrt = math_ "sqrt"
math_asinh = math_ "asinh"
math_acosh = math_ "acosh"
math_atanh = math_ "atanh"
math_sinh = math_ "sinh"
math_cosh = math_ "cosh"
math_tanh = math_ "tanh"
math_expm1 = math_ "expm1"
math_log1p = math_ "log1p"
math_fround = math_ "fround"
instance Num JExpr where
x + y = InfixExpr AddOp x y
x - y = InfixExpr SubOp x y
x * y = InfixExpr MulOp x y
abs x = math_abs [x]
negate x = UOpExpr NegOp x
signum x = math_sign [x]
fromInteger x = ValExpr (JInt x)
instance Fractional JExpr where
x / y = InfixExpr DivOp x y
fromRational x = ValExpr (JDouble (realToFrac x))
--------------------------------------------------------------------------------
-- New Identifiers
--------------------------------------------------------------------------------
-- | The 'ToSat' class is heavily used in the Introduction function. It ensures
-- that all identifiers in the EDSL are tracked and named with an 'IdentSupply'.
class ToSat a where
toSat_ :: a -> [Ident] -> IdentSupply (JStat, [Ident])
instance ToSat [JStat] where
toSat_ f vs = IS $ return $ (BlockStat f, reverse vs)
instance ToSat JStat where
toSat_ f vs = IS $ return $ (f, reverse vs)
instance ToSat JExpr where
toSat_ f vs = IS $ return $ (toStat f, reverse vs)
instance ToSat [JExpr] where
toSat_ f vs = IS $ return $ (BlockStat $ map expr2stat f, reverse vs)
instance (ToSat a, b ~ JExpr) => ToSat (b -> a) where
toSat_ f vs = IS $ do
x <- takeOneIdent
runIdentSupply $ toSat_ (f (ValExpr $ JVar x)) (x:vs)
-- | Convert A JS expression to a JS statement where applicable. This only
-- affects applications; 'ApplExpr', If-expressions; 'IfExpr', and Unary
-- expression; 'UOpExpr'.
expr2stat :: JExpr -> JStat
expr2stat (ApplExpr x y) = (ApplStat x y)
expr2stat (IfExpr x y z) = IfStat x (expr2stat y) (expr2stat z)
expr2stat (UOpExpr o x) = UOpStat o x
expr2stat _ = nullStat
takeOneIdent :: State [Ident] Ident
takeOneIdent = do
xxs <- get
case xxs of
(x:xs) -> do
put xs
return x
_ -> error "takeOneIdent: empty list"
|