1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
|
-- -*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------
{
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
-- | This module provides the generated Happy parser for Haskell. It exports
-- a number of parsers which may be used in any library that uses the GHC API.
-- A common usage pattern is to initialize the parser state with a given string
-- and then parse that string:
--
-- @
-- runParser :: ParserOpts -> String -> P a -> ParseResult a
-- runParser opts str parser = unP parser parseState
-- where
-- filename = "\<interactive\>"
-- location = mkRealSrcLoc (mkFastString filename) 1 1
-- buffer = stringToStringBuffer str
-- parseState = initParserState opts buffer location
-- @
module GHC.Parser
( parseModule, parseSignature, parseImport, parseStatement, parseBackpack
, parseDeclaration, parseExpression, parsePattern
, parseTypeSignature
, parseStmt, parseIdentifier
, parseType, parseHeader
, parseModuleNoHaddock
)
where
-- base
import Control.Monad ( unless, liftM, when, (<=<) )
import GHC.Exts
import Data.Maybe ( maybeToList )
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.List.NonEmpty as NE
import qualified Prelude -- for happy-generated code
import GHC.Prelude
import GHC.Hs
import GHC.Driver.Backpack.Syntax
import GHC.Unit.Info
import GHC.Unit.Module
import GHC.Unit.Module.Warnings
import GHC.Data.OrdList
import GHC.Data.BooleanFormula ( BooleanFormula(..), LBooleanFormula, mkTrue )
import GHC.Data.FastString
import GHC.Data.Maybe ( orElse )
import GHC.Utils.Outputable
import GHC.Utils.Error
import GHC.Utils.Misc ( looksLikePackageName, fstOf3, sndOf3, thdOf3 )
import GHC.Utils.Panic
import GHC.Prelude
import qualified GHC.Data.Strict as Strict
import GHC.Types.Name.Reader
import GHC.Types.Name.Occurrence ( varName, dataName, tcClsName, tvName, occNameFS, mkVarOcc, occNameString)
import GHC.Types.SrcLoc
import GHC.Types.Basic
import GHC.Types.Error ( GhcHint(..) )
import GHC.Types.Fixity
import GHC.Types.ForeignCall
import GHC.Types.SourceFile
import GHC.Types.SourceText
import GHC.Types.PkgQual
import GHC.Core.Type ( unrestrictedFunTyCon, Specificity(..) )
import GHC.Core.Class ( FunDep )
import GHC.Core.DataCon ( DataCon, dataConName )
import GHC.Parser.PostProcess
import GHC.Parser.PostProcess.Haddock
import GHC.Parser.Lexer
import GHC.Parser.Annotation
import GHC.Parser.Errors.Types
import GHC.Parser.Errors.Ppr ()
import GHC.Builtin.Types ( unitTyCon, unitDataCon, tupleTyCon, tupleDataCon, nilDataCon,
unboxedUnitTyCon, unboxedUnitDataCon,
listTyCon_RDR, consDataCon_RDR, eqTyCon_RDR)
import qualified Data.Semigroup as Semi
}
%expect 0 -- shift/reduce conflicts
{- Note [shift/reduce conflicts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The 'happy' tool turns this grammar into an efficient parser that follows the
shift-reduce parsing model. There's a parse stack that contains items parsed so
far (both terminals and non-terminals). Every next token produced by the lexer
results in one of two actions:
SHIFT: push the token onto the parse stack
REDUCE: pop a few items off the parse stack and combine them
with a function (reduction rule)
However, sometimes it's unclear which of the two actions to take.
Consider this code example:
if x then y else f z
There are two ways to parse it:
(if x then y else f) z
if x then y else (f z)
How is this determined? At some point, the parser gets to the following state:
parse stack: 'if' exp 'then' exp 'else' "f"
next token: "z"
Scenario A (simplified):
1. REDUCE, parse stack: 'if' exp 'then' exp 'else' exp
next token: "z"
(Note that "f" reduced to exp here)
2. REDUCE, parse stack: exp
next token: "z"
3. SHIFT, parse stack: exp "z"
next token: ...
4. REDUCE, parse stack: exp
next token: ...
This way we get: (if x then y else f) z
Scenario B (simplified):
1. SHIFT, parse stack: 'if' exp 'then' exp 'else' "f" "z"
next token: ...
2. REDUCE, parse stack: 'if' exp 'then' exp 'else' exp
next token: ...
3. REDUCE, parse stack: exp
next token: ...
This way we get: if x then y else (f z)
The end result is determined by the chosen action. When Happy detects this, it
reports a shift/reduce conflict. At the top of the file, we have the following
directive:
%expect 0
It means that we expect no unresolved shift/reduce conflicts in this grammar.
If you modify the grammar and get shift/reduce conflicts, follow the steps
below to resolve them.
STEP ONE
is to figure out what causes the conflict.
That's where the -i flag comes in handy:
happy -agc --strict compiler/GHC/Parser.y -idetailed-info
By analysing the output of this command, in a new file `detailed-info`, you
can figure out which reduction rule causes the issue. At the top of the
generated report, you will see a line like this:
state 147 contains 67 shift/reduce conflicts.
Scroll down to section State 147 (in your case it could be a different
state). The start of the section lists the reduction rules that can fire
and shows their context:
exp10 -> fexp . (rule 492)
fexp -> fexp . aexp (rule 498)
fexp -> fexp . PREFIX_AT atype (rule 499)
And then, for every token, it tells you the parsing action:
']' reduce using rule 492
'::' reduce using rule 492
'(' shift, and enter state 178
QVARID shift, and enter state 44
DO shift, and enter state 182
...
But if you look closer, some of these tokens also have another parsing action
in parentheses:
QVARID shift, and enter state 44
(reduce using rule 492)
That's how you know rule 492 is causing trouble.
Scroll back to the top to see what this rule is:
----------------------------------
Grammar
----------------------------------
...
...
exp10 -> fexp (492)
optSemi -> ';' (493)
...
...
Hence the shift/reduce conflict is caused by this parser production:
exp10 :: { ECP }
: '-' fexp { ... }
| fexp { ... } -- problematic rule
STEP TWO
is to mark the problematic rule with the %shift pragma. This signals to
'happy' that any shift/reduce conflicts involving this rule must be resolved
in favor of a shift. There's currently no dedicated pragma to resolve in
favor of the reduce.
STEP THREE
is to add a dedicated Note for this specific conflict, as is done for all
other conflicts below.
-}
{- Note [%shift: rule_activation -> {- empty -}]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
rule -> STRING . rule_activation rule_foralls infixexp '=' exp
Example:
{-# RULES "name" [0] f = rhs #-}
Ambiguity:
If we reduced, then we'd get an empty activation rule, and [0] would be
parsed as part of the left-hand side expression.
We shift, so [0] is parsed as an activation rule.
-}
{- Note [%shift: rule_foralls -> 'forall' rule_vars '.']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
rule_foralls -> 'forall' rule_vars '.' . 'forall' rule_vars '.'
rule_foralls -> 'forall' rule_vars '.' .
Example:
{-# RULES "name" forall a1. forall a2. lhs = rhs #-}
Ambiguity:
Same as in Note [%shift: rule_foralls -> {- empty -}]
but for the second 'forall'.
-}
{- Note [%shift: rule_foralls -> {- empty -}]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
rule -> STRING rule_activation . rule_foralls infixexp '=' exp
Example:
{-# RULES "name" forall a1. lhs = rhs #-}
Ambiguity:
If we reduced, then we would get an empty rule_foralls; the 'forall', being
a valid term-level identifier, would be parsed as part of the left-hand
side expression.
We shift, so the 'forall' is parsed as part of rule_foralls.
-}
{- Note [%shift: type -> btype]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
context -> btype .
type -> btype .
type -> btype . '->' ctype
type -> btype . '->.' ctype
Example:
a :: Maybe Integer -> Bool
Ambiguity:
If we reduced, we would get: (a :: Maybe Integer) -> Bool
We shift to get this instead: a :: (Maybe Integer -> Bool)
-}
{- Note [%shift: infixtype -> ftype]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
infixtype -> ftype .
infixtype -> ftype . tyop infixtype
ftype -> ftype . tyarg
ftype -> ftype . PREFIX_AT tyarg
Example:
a :: Maybe Integer
Ambiguity:
If we reduced, we would get: (a :: Maybe) Integer
We shift to get this instead: a :: (Maybe Integer)
-}
{- Note [%shift: atype -> tyvar]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
atype -> tyvar .
tv_bndr_no_braces -> '(' tyvar . '::' kind ')'
Example:
class C a where type D a = (a :: Type ...
Ambiguity:
If we reduced, we could specify a default for an associated type like this:
class C a where type D a
type D a = (a :: Type)
But we shift in order to allow injectivity signatures like this:
class C a where type D a = (r :: Type) | r -> a
-}
{- Note [%shift: exp -> infixexp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
exp -> infixexp . '::' sigtype
exp -> infixexp . '-<' exp
exp -> infixexp . '>-' exp
exp -> infixexp . '-<<' exp
exp -> infixexp . '>>-' exp
exp -> infixexp .
infixexp -> infixexp . qop exp10p
Examples:
1) if x then y else z -< e
2) if x then y else z :: T
3) if x then y else z + 1 -- (NB: '+' is in VARSYM)
Ambiguity:
If we reduced, we would get:
1) (if x then y else z) -< e
2) (if x then y else z) :: T
3) (if x then y else z) + 1
We shift to get this instead:
1) if x then y else (z -< e)
2) if x then y else (z :: T)
3) if x then y else (z + 1)
-}
{- Note [%shift: exp10 -> '-' fexp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
exp10 -> '-' fexp .
fexp -> fexp . aexp
fexp -> fexp . PREFIX_AT atype
Examples & Ambiguity:
Same as in Note [%shift: exp10 -> fexp],
but with a '-' in front.
-}
{- Note [%shift: exp10 -> fexp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
exp10 -> fexp .
fexp -> fexp . aexp
fexp -> fexp . PREFIX_AT atype
Examples:
1) if x then y else f z
2) if x then y else f @z
Ambiguity:
If we reduced, we would get:
1) (if x then y else f) z
2) (if x then y else f) @z
We shift to get this instead:
1) if x then y else (f z)
2) if x then y else (f @z)
-}
{- Note [%shift: aexp2 -> ipvar]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
aexp2 -> ipvar .
dbind -> ipvar . '=' exp
Example:
let ?x = ...
Ambiguity:
If we reduced, ?x would be parsed as the LHS of a normal binding,
eventually producing an error.
We shift, so it is parsed as the LHS of an implicit binding.
-}
{- Note [%shift: aexp2 -> TH_TY_QUOTE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
aexp2 -> TH_TY_QUOTE . tyvar
aexp2 -> TH_TY_QUOTE . gtycon
aexp2 -> TH_TY_QUOTE .
Examples:
1) x = ''
2) x = ''a
3) x = ''T
Ambiguity:
If we reduced, the '' would result in reportEmptyDoubleQuotes even when
followed by a type variable or a type constructor. But the only reason
this reduction rule exists is to improve error messages.
Naturally, we shift instead, so that ''a and ''T work as expected.
-}
{- Note [%shift: tup_tail -> {- empty -}]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
tup_exprs -> commas . tup_tail
sysdcon_nolist -> '(' commas . ')'
sysdcon_nolist -> '(#' commas . '#)'
commas -> commas . ','
Example:
(,,)
Ambiguity:
A tuple section with no components is indistinguishable from the Haskell98
data constructor for a tuple.
If we reduced, (,,) would be parsed as a tuple section.
We shift, so (,,) is parsed as a data constructor.
This is preferable because we want to accept (,,) without -XTupleSections.
See also Note [ExplicitTuple] in GHC.Hs.Expr.
-}
{- Note [%shift: qtyconop -> qtyconsym]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
oqtycon -> '(' qtyconsym . ')'
qtyconop -> qtyconsym .
Example:
foo :: (:%)
Ambiguity:
If we reduced, (:%) would be parsed as a parenthehsized infix type
expression without arguments, resulting in the 'failOpFewArgs' error.
We shift, so it is parsed as a type constructor.
-}
{- Note [%shift: special_id -> 'group']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
transformqual -> 'then' 'group' . 'using' exp
transformqual -> 'then' 'group' . 'by' exp 'using' exp
special_id -> 'group' .
Example:
[ ... | then group by dept using groupWith
, then take 5 ]
Ambiguity:
If we reduced, 'group' would be parsed as a term-level identifier, just as
'take' in the other clause.
We shift, so it is parsed as part of the 'group by' clause introduced by
the -XTransformListComp extension.
-}
{- Note [%shift: activation -> {- empty -}]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Context:
sigdecl -> '{-# INLINE' . activation qvarcon '#-}'
activation -> {- empty -}
activation -> explicit_activation
Example:
{-# INLINE [0] Something #-}
Ambiguity:
We don't know whether the '[' is the start of the activation or the beginning
of the [] data constructor.
We parse this as having '[0]' activation for inlining 'Something', rather than
empty activation and inlining '[0] Something'.
-}
{- Note [Parser API Annotations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A lot of the productions are now cluttered with calls to
aa,am,acs,acsA etc.
These are helper functions to make sure that the locations of the
various keywords such as do / let / in are captured for use by tools
that want to do source to source conversions, such as refactorers or
structured editors.
The helper functions are defined at the bottom of this file.
See
https://gitlab.haskell.org/ghc/ghc/wikis/api-annotations and
https://gitlab.haskell.org/ghc/ghc/wikis/ghc-ast-annotations
for some background.
-}
{- Note [Parsing lists]
~~~~~~~~~~~~~~~~~~~~~~~
You might be wondering why we spend so much effort encoding our lists this
way:
importdecls
: importdecls ';' importdecl
| importdecls ';'
| importdecl
| {- empty -}
This might seem like an awfully roundabout way to declare a list; plus, to add
insult to injury you have to reverse the results at the end. The answer is that
left recursion prevents us from running out of stack space when parsing long
sequences. See: https://www.haskell.org/happy/doc/html/sec-sequences.html for
more guidance.
By adding/removing branches, you can affect what lists are accepted. Here
are the most common patterns, rewritten as regular expressions for clarity:
-- Equivalent to: ';'* (x ';'+)* x? (can be empty, permits leading/trailing semis)
xs : xs ';' x
| xs ';'
| x
| {- empty -}
-- Equivalent to x (';' x)* ';'* (non-empty, permits trailing semis)
xs : xs ';' x
| xs ';'
| x
-- Equivalent to ';'* alts (';' alts)* ';'* (non-empty, permits leading/trailing semis)
alts : alts1
| ';' alts
alts1 : alts1 ';' alt
| alts1 ';'
| alt
-- Equivalent to x (',' x)+ (non-empty, no trailing semis)
xs : x
| x ',' xs
-}
%token
'_' { L _ ITunderscore } -- Haskell keywords
'as' { L _ ITas }
'case' { L _ ITcase }
'class' { L _ ITclass }
'data' { L _ ITdata }
'default' { L _ ITdefault }
'deriving' { L _ ITderiving }
'else' { L _ ITelse }
'hiding' { L _ IThiding }
'if' { L _ ITif }
'import' { L _ ITimport }
'in' { L _ ITin }
'infix' { L _ ITinfix }
'infixl' { L _ ITinfixl }
'infixr' { L _ ITinfixr }
'instance' { L _ ITinstance }
'let' { L _ ITlet }
'module' { L _ ITmodule }
'newtype' { L _ ITnewtype }
'of' { L _ ITof }
'qualified' { L _ ITqualified }
'then' { L _ ITthen }
'type' { L _ ITtype }
'where' { L _ ITwhere }
'forall' { L _ (ITforall _) } -- GHC extension keywords
'foreign' { L _ ITforeign }
'export' { L _ ITexport }
'label' { L _ ITlabel }
'dynamic' { L _ ITdynamic }
'safe' { L _ ITsafe }
'interruptible' { L _ ITinterruptible }
'unsafe' { L _ ITunsafe }
'family' { L _ ITfamily }
'role' { L _ ITrole }
'stdcall' { L _ ITstdcallconv }
'ccall' { L _ ITccallconv }
'capi' { L _ ITcapiconv }
'prim' { L _ ITprimcallconv }
'javascript' { L _ ITjavascriptcallconv }
'proc' { L _ ITproc } -- for arrow notation extension
'rec' { L _ ITrec } -- for arrow notation extension
'group' { L _ ITgroup } -- for list transform extension
'by' { L _ ITby } -- for list transform extension
'using' { L _ ITusing } -- for list transform extension
'pattern' { L _ ITpattern } -- for pattern synonyms
'static' { L _ ITstatic } -- for static pointers extension
'stock' { L _ ITstock } -- for DerivingStrategies extension
'anyclass' { L _ ITanyclass } -- for DerivingStrategies extension
'via' { L _ ITvia } -- for DerivingStrategies extension
'unit' { L _ ITunit }
'signature' { L _ ITsignature }
'dependency' { L _ ITdependency }
'{-# INLINE' { L _ (ITinline_prag _ _ _) } -- INLINE or INLINABLE
'{-# SPECIALISE' { L _ (ITspec_prag _) }
'{-# SPECIALISE_INLINE' { L _ (ITspec_inline_prag _ _) }
'{-# SOURCE' { L _ (ITsource_prag _) }
'{-# RULES' { L _ (ITrules_prag _) }
'{-# SCC' { L _ (ITscc_prag _)}
'{-# DEPRECATED' { L _ (ITdeprecated_prag _) }
'{-# WARNING' { L _ (ITwarning_prag _) }
'{-# UNPACK' { L _ (ITunpack_prag _) }
'{-# NOUNPACK' { L _ (ITnounpack_prag _) }
'{-# ANN' { L _ (ITann_prag _) }
'{-# MINIMAL' { L _ (ITminimal_prag _) }
'{-# CTYPE' { L _ (ITctype _) }
'{-# OVERLAPPING' { L _ (IToverlapping_prag _) }
'{-# OVERLAPPABLE' { L _ (IToverlappable_prag _) }
'{-# OVERLAPS' { L _ (IToverlaps_prag _) }
'{-# INCOHERENT' { L _ (ITincoherent_prag _) }
'{-# COMPLETE' { L _ (ITcomplete_prag _) }
'#-}' { L _ ITclose_prag }
'..' { L _ ITdotdot } -- reserved symbols
':' { L _ ITcolon }
'::' { L _ (ITdcolon _) }
'=' { L _ ITequal }
'\\' { L _ ITlam }
'lcase' { L _ ITlcase }
'|' { L _ ITvbar }
'<-' { L _ (ITlarrow _) }
'->' { L _ (ITrarrow _) }
'->.' { L _ ITlolly }
TIGHT_INFIX_AT { L _ ITat }
'=>' { L _ (ITdarrow _) }
'-' { L _ ITminus }
PREFIX_TILDE { L _ ITtilde }
PREFIX_BANG { L _ ITbang }
PREFIX_MINUS { L _ ITprefixminus }
'*' { L _ (ITstar _) }
'-<' { L _ (ITlarrowtail _) } -- for arrow notation
'>-' { L _ (ITrarrowtail _) } -- for arrow notation
'-<<' { L _ (ITLarrowtail _) } -- for arrow notation
'>>-' { L _ (ITRarrowtail _) } -- for arrow notation
'.' { L _ ITdot }
PREFIX_PROJ { L _ (ITproj True) } -- RecordDotSyntax
TIGHT_INFIX_PROJ { L _ (ITproj False) } -- RecordDotSyntax
PREFIX_AT { L _ ITtypeApp }
PREFIX_PERCENT { L _ ITpercent } -- for linear types
'{' { L _ ITocurly } -- special symbols
'}' { L _ ITccurly }
vocurly { L _ ITvocurly } -- virtual open curly (from layout)
vccurly { L _ ITvccurly } -- virtual close curly (from layout)
'[' { L _ ITobrack }
']' { L _ ITcbrack }
'(' { L _ IToparen }
')' { L _ ITcparen }
'(#' { L _ IToubxparen }
'#)' { L _ ITcubxparen }
'(|' { L _ (IToparenbar _) }
'|)' { L _ (ITcparenbar _) }
';' { L _ ITsemi }
',' { L _ ITcomma }
'`' { L _ ITbackquote }
SIMPLEQUOTE { L _ ITsimpleQuote } -- 'x
VARID { L _ (ITvarid _) } -- identifiers
CONID { L _ (ITconid _) }
VARSYM { L _ (ITvarsym _) }
CONSYM { L _ (ITconsym _) }
QVARID { L _ (ITqvarid _) }
QCONID { L _ (ITqconid _) }
QVARSYM { L _ (ITqvarsym _) }
QCONSYM { L _ (ITqconsym _) }
-- QualifiedDo
DO { L _ (ITdo _) }
MDO { L _ (ITmdo _) }
IPDUPVARID { L _ (ITdupipvarid _) } -- GHC extension
LABELVARID { L _ (ITlabelvarid _) }
CHAR { L _ (ITchar _ _) }
STRING { L _ (ITstring _ _) }
INTEGER { L _ (ITinteger _) }
RATIONAL { L _ (ITrational _) }
PRIMCHAR { L _ (ITprimchar _ _) }
PRIMSTRING { L _ (ITprimstring _ _) }
PRIMINTEGER { L _ (ITprimint _ _) }
PRIMWORD { L _ (ITprimword _ _) }
PRIMFLOAT { L _ (ITprimfloat _) }
PRIMDOUBLE { L _ (ITprimdouble _) }
-- Template Haskell
'[|' { L _ (ITopenExpQuote _ _) }
'[p|' { L _ ITopenPatQuote }
'[t|' { L _ ITopenTypQuote }
'[d|' { L _ ITopenDecQuote }
'|]' { L _ (ITcloseQuote _) }
'[||' { L _ (ITopenTExpQuote _) }
'||]' { L _ ITcloseTExpQuote }
PREFIX_DOLLAR { L _ ITdollar }
PREFIX_DOLLAR_DOLLAR { L _ ITdollardollar }
TH_TY_QUOTE { L _ ITtyQuote } -- ''T
TH_QUASIQUOTE { L _ (ITquasiQuote _) }
TH_QQUASIQUOTE { L _ (ITqQuasiQuote _) }
%monad { P } { >>= } { return }
%lexer { (lexer True) } { L _ ITeof }
-- Replace 'lexer' above with 'lexerDbg'
-- to dump the tokens fed to the parser.
%tokentype { (Located Token) }
-- Exported parsers
%name parseModuleNoHaddock module
%name parseSignature signature
%name parseImport importdecl
%name parseStatement e_stmt
%name parseDeclaration topdecl
%name parseExpression exp
%name parsePattern pat
%name parseTypeSignature sigdecl
%name parseStmt maybe_stmt
%name parseIdentifier identifier
%name parseType ktype
%name parseBackpack backpack
%partial parseHeader header
%%
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { LocatedN RdrName }
: qvar { $1 }
| qcon { $1 }
| qvarop { $1 }
| qconop { $1 }
| '(' '->' ')' {% amsrn (sLL $1 $> $ getRdrName unrestrictedFunTyCon)
(NameAnn NameParens (glAA $1) (glAA $2) (glAA $3) []) }
| '->' {% amsrn (sLL $1 $> $ getRdrName unrestrictedFunTyCon)
(NameAnnRArrow (glAA $1) []) }
-----------------------------------------------------------------------------
-- Backpack stuff
backpack :: { [LHsUnit PackageName] }
: implicit_top units close { fromOL $2 }
| '{' units '}' { fromOL $2 }
units :: { OrdList (LHsUnit PackageName) }
: units ';' unit { $1 `appOL` unitOL $3 }
| units ';' { $1 }
| unit { unitOL $1 }
unit :: { LHsUnit PackageName }
: 'unit' pkgname 'where' unitbody
{ sL1 $1 $ HsUnit { hsunitName = $2
, hsunitBody = fromOL $4 } }
unitid :: { LHsUnitId PackageName }
: pkgname { sL1 $1 $ HsUnitId $1 [] }
| pkgname '[' msubsts ']' { sLL $1 $> $ HsUnitId $1 (fromOL $3) }
msubsts :: { OrdList (LHsModuleSubst PackageName) }
: msubsts ',' msubst { $1 `appOL` unitOL $3 }
| msubsts ',' { $1 }
| msubst { unitOL $1 }
msubst :: { LHsModuleSubst PackageName }
: modid '=' moduleid { sLL (reLoc $1) $> $ (reLoc $1, $3) }
| modid VARSYM modid VARSYM { sLL (reLoc $1) $> $ (reLoc $1, sLL $2 $> $ HsModuleVar (reLoc $3)) }
moduleid :: { LHsModuleId PackageName }
: VARSYM modid VARSYM { sLL $1 $> $ HsModuleVar (reLoc $2) }
| unitid ':' modid { sLL $1 (reLoc $>) $ HsModuleId $1 (reLoc $3) }
pkgname :: { Located PackageName }
: STRING { sL1 $1 $ PackageName (getSTRING $1) }
| litpkgname { sL1 $1 $ PackageName (unLoc $1) }
litpkgname_segment :: { Located FastString }
: VARID { sL1 $1 $ getVARID $1 }
| CONID { sL1 $1 $ getCONID $1 }
| special_id { $1 }
-- Parse a minus sign regardless of whether -XLexicalNegation is turned on or off.
-- See Note [Minus tokens] in GHC.Parser.Lexer
HYPHEN :: { [AddEpAnn] }
: '-' { [mj AnnMinus $1 ] }
| PREFIX_MINUS { [mj AnnMinus $1 ] }
| VARSYM {% if (getVARSYM $1 == fsLit "-")
then return [mj AnnMinus $1]
else do { addError $ mkPlainErrorMsgEnvelope (getLoc $1) $ PsErrExpectedHyphen
; return [] } }
litpkgname :: { Located FastString }
: litpkgname_segment { $1 }
-- a bit of a hack, means p - b is parsed same as p-b, enough for now.
| litpkgname_segment HYPHEN litpkgname { sLL $1 $> $ appendFS (unLoc $1) (consFS '-' (unLoc $3)) }
mayberns :: { Maybe [LRenaming] }
: {- empty -} { Nothing }
| '(' rns ')' { Just (fromOL $2) }
rns :: { OrdList LRenaming }
: rns ',' rn { $1 `appOL` unitOL $3 }
| rns ',' { $1 }
| rn { unitOL $1 }
rn :: { LRenaming }
: modid 'as' modid { sLL (reLoc $1) (reLoc $>) $ Renaming (reLoc $1) (Just (reLoc $3)) }
| modid { sL1 (reLoc $1) $ Renaming (reLoc $1) Nothing }
unitbody :: { OrdList (LHsUnitDecl PackageName) }
: '{' unitdecls '}' { $2 }
| vocurly unitdecls close { $2 }
unitdecls :: { OrdList (LHsUnitDecl PackageName) }
: unitdecls ';' unitdecl { $1 `appOL` unitOL $3 }
| unitdecls ';' { $1 }
| unitdecl { unitOL $1 }
unitdecl :: { LHsUnitDecl PackageName }
: 'module' maybe_src modid maybemodwarning maybeexports 'where' body
-- XXX not accurate
{ sL1 $1 $ DeclD
(case snd $2 of
NotBoot -> HsSrcFile
IsBoot -> HsBootFile)
(reLoc $3)
(sL1 $1 (HsModule noAnn (thdOf3 $7) (Just $3) $5 (fst $ sndOf3 $7) (snd $ sndOf3 $7) $4 Nothing)) }
| 'signature' modid maybemodwarning maybeexports 'where' body
{ sL1 $1 $ DeclD
HsigFile
(reLoc $2)
(sL1 $1 (HsModule noAnn (thdOf3 $6) (Just $2) $4 (fst $ sndOf3 $6) (snd $ sndOf3 $6) $3 Nothing)) }
| 'dependency' unitid mayberns
{ sL1 $1 $ IncludeD (IncludeDecl { idUnitId = $2
, idModRenaming = $3
, idSignatureInclude = False }) }
| 'dependency' 'signature' unitid
{ sL1 $1 $ IncludeD (IncludeDecl { idUnitId = $3
, idModRenaming = Nothing
, idSignatureInclude = True }) }
-----------------------------------------------------------------------------
-- Module Header
-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)
signature :: { Located HsModule }
: 'signature' modid maybemodwarning maybeexports 'where' body
{% fileSrcSpan >>= \ loc ->
acs (\cs-> (L loc (HsModule (EpAnn (spanAsAnchor loc) (AnnsModule [mj AnnSignature $1, mj AnnWhere $5] (fstOf3 $6)) cs)
(thdOf3 $6) (Just $2) $4 (fst $ sndOf3 $6)
(snd $ sndOf3 $6) $3 Nothing))
) }
module :: { Located HsModule }
: 'module' modid maybemodwarning maybeexports 'where' body
{% fileSrcSpan >>= \ loc ->
acsFinal (\cs -> (L loc (HsModule (EpAnn (spanAsAnchor loc) (AnnsModule [mj AnnModule $1, mj AnnWhere $5] (fstOf3 $6)) cs)
(thdOf3 $6) (Just $2) $4 (fst $ sndOf3 $6)
(snd $ sndOf3 $6) $3 Nothing)
)) }
| body2
{% fileSrcSpan >>= \ loc ->
acsFinal (\cs -> (L loc (HsModule (EpAnn (spanAsAnchor loc) (AnnsModule [] (fstOf3 $1)) cs)
(thdOf3 $1) Nothing Nothing
(fst $ sndOf3 $1) (snd $ sndOf3 $1) Nothing Nothing))) }
missing_module_keyword :: { () }
: {- empty -} {% pushModuleContext }
implicit_top :: { () }
: {- empty -} {% pushModuleContext }
maybemodwarning :: { Maybe (LocatedP WarningTxt) }
: '{-# DEPRECATED' strings '#-}'
{% fmap Just $ amsrp (sLL $1 $> $ DeprecatedTxt (sL1 $1 $ getDEPRECATED_PRAGs $1) (snd $ unLoc $2))
(AnnPragma (mo $1) (mc $3) (fst $ unLoc $2)) }
| '{-# WARNING' strings '#-}'
{% fmap Just $ amsrp (sLL $1 $> $ WarningTxt (sL1 $1 $ getWARNING_PRAGs $1) (snd $ unLoc $2))
(AnnPragma (mo $1) (mc $3) (fst $ unLoc $2))}
| {- empty -} { Nothing }
body :: { (AnnList
,([LImportDecl GhcPs], [LHsDecl GhcPs])
,LayoutInfo) }
: '{' top '}' { (AnnList Nothing (Just $ moc $1) (Just $ mcc $3) [] (fst $2)
, snd $2, ExplicitBraces) }
| vocurly top close { (AnnList Nothing Nothing Nothing [] (fst $2)
, snd $2, VirtualBraces (getVOCURLY $1)) }
body2 :: { (AnnList
,([LImportDecl GhcPs], [LHsDecl GhcPs])
,LayoutInfo) }
: '{' top '}' { (AnnList Nothing (Just $ moc $1) (Just $ mcc $3) [] (fst $2)
, snd $2, ExplicitBraces) }
| missing_module_keyword top close { (AnnList Nothing Nothing Nothing [] [], snd $2, VirtualBraces leftmostColumn) }
top :: { ([TrailingAnn]
,([LImportDecl GhcPs], [LHsDecl GhcPs])) }
: semis top1 { (reverse $1, $2) }
top1 :: { ([LImportDecl GhcPs], [LHsDecl GhcPs]) }
: importdecls_semi topdecls_cs_semi { (reverse $1, cvTopDecls $2) }
| importdecls_semi topdecls_cs { (reverse $1, cvTopDecls $2) }
| importdecls { (reverse $1, []) }
-----------------------------------------------------------------------------
-- Module declaration & imports only
header :: { Located HsModule }
: 'module' modid maybemodwarning maybeexports 'where' header_body
{% fileSrcSpan >>= \ loc ->
acs (\cs -> (L loc (HsModule (EpAnn (spanAsAnchor loc) (AnnsModule [mj AnnModule $1,mj AnnWhere $5] (AnnList Nothing Nothing Nothing [] [])) cs)
NoLayoutInfo (Just $2) $4 $6 [] $3 Nothing
))) }
| 'signature' modid maybemodwarning maybeexports 'where' header_body
{% fileSrcSpan >>= \ loc ->
acs (\cs -> (L loc (HsModule (EpAnn (spanAsAnchor loc) (AnnsModule [mj AnnModule $1,mj AnnWhere $5] (AnnList Nothing Nothing Nothing [] [])) cs)
NoLayoutInfo (Just $2) $4 $6 [] $3 Nothing
))) }
| header_body2
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule noAnn NoLayoutInfo Nothing Nothing $1 [] Nothing
Nothing)) }
header_body :: { [LImportDecl GhcPs] }
: '{' header_top { $2 }
| vocurly header_top { $2 }
header_body2 :: { [LImportDecl GhcPs] }
: '{' header_top { $2 }
| missing_module_keyword header_top { $2 }
header_top :: { [LImportDecl GhcPs] }
: semis header_top_importdecls { $2 }
header_top_importdecls :: { [LImportDecl GhcPs] }
: importdecls_semi { $1 }
| importdecls { $1 }
-----------------------------------------------------------------------------
-- The Export List
maybeexports :: { (Maybe (LocatedL [LIE GhcPs])) }
: '(' exportlist ')' {% fmap Just $ amsrl (sLL $1 $> (fromOL $ snd $2))
(AnnList Nothing (Just $ mop $1) (Just $ mcp $3) (fst $2) []) }
| {- empty -} { Nothing }
exportlist :: { ([AddEpAnn], OrdList (LIE GhcPs)) }
: exportlist1 { ([], $1) }
| {- empty -} { ([], nilOL) }
-- trailing comma:
| exportlist1 ',' {% case $1 of
SnocOL hs t -> do
t' <- addTrailingCommaA t (gl $2)
return ([], snocOL hs t')}
| ',' { ([mj AnnComma $1], nilOL) }
exportlist1 :: { OrdList (LIE GhcPs) }
: exportlist1 ',' export
{% let ls = $1
in if isNilOL ls
then return (ls `appOL` $3)
else case ls of
SnocOL hs t -> do
t' <- addTrailingCommaA t (gl $2)
return (snocOL hs t' `appOL` $3)}
| export { $1 }
-- No longer allow things like [] and (,,,) to be exported
-- They are built in syntax, always available
export :: { OrdList (LIE GhcPs) }
: qcname_ext export_subspec {% mkModuleImpExp (fst $ unLoc $2) $1 (snd $ unLoc $2)
>>= \ie -> fmap (unitOL . reLocA) (return (sLL (reLoc $1) $> ie)) }
| 'module' modid {% fmap (unitOL . reLocA) (acs (\cs -> sLL $1 (reLoc $>) (IEModuleContents (EpAnn (glR $1) [mj AnnModule $1] cs) $2))) }
| 'pattern' qcon { unitOL (reLocA (sLL $1 (reLocN $>)
(IEVar noExtField (sLLa $1 (reLocN $>) (IEPattern (glAA $1) $2))))) }
export_subspec :: { Located ([AddEpAnn],ImpExpSubSpec) }
: {- empty -} { sL0 ([],ImpExpAbs) }
| '(' qcnames ')' {% mkImpExpSubSpec (reverse (snd $2))
>>= \(as,ie) -> return $ sLL $1 $>
(as ++ [mop $1,mcp $3] ++ fst $2, ie) }
qcnames :: { ([AddEpAnn], [LocatedA ImpExpQcSpec]) }
: {- empty -} { ([],[]) }
| qcnames1 { $1 }
qcnames1 :: { ([AddEpAnn], [LocatedA ImpExpQcSpec]) } -- A reversed list
: qcnames1 ',' qcname_ext_w_wildcard {% case (snd $1) of
(l@(L la ImpExpQcWildcard):t) ->
do { l' <- addTrailingCommaA l (gl $2)
; return ([mj AnnDotdot (reLoc l),
mj AnnComma $2]
,(snd (unLoc $3) : l' : t)) }
(l:t) ->
do { l' <- addTrailingCommaA l (gl $2)
; return (fst $1 ++ fst (unLoc $3)
, snd (unLoc $3) : l' : t)} }
-- Annotations re-added in mkImpExpSubSpec
| qcname_ext_w_wildcard { (fst (unLoc $1),[snd (unLoc $1)]) }
-- Variable, data constructor or wildcard
-- or tagged type constructor
qcname_ext_w_wildcard :: { Located ([AddEpAnn], LocatedA ImpExpQcSpec) }
: qcname_ext { sL1A $1 ([],$1) }
| '..' { sL1 $1 ([mj AnnDotdot $1], sL1a $1 ImpExpQcWildcard) }
qcname_ext :: { LocatedA ImpExpQcSpec }
: qcname { reLocA $ sL1N $1 (ImpExpQcName $1) }
| 'type' oqtycon {% do { n <- mkTypeImpExp $2
; return $ sLLa $1 (reLocN $>) (ImpExpQcType (glAA $1) n) }}
qcname :: { LocatedN RdrName } -- Variable or type constructor
: qvar { $1 } -- Things which look like functions
-- Note: This includes record selectors but
-- also (-.->), see #11432
| oqtycon_no_varcon { $1 } -- see Note [Type constructors in export list]
-----------------------------------------------------------------------------
-- Import Declarations
-- importdecls and topdecls must contain at least one declaration;
-- top handles the fact that these may be optional.
-- One or more semicolons
semis1 :: { Located [TrailingAnn] }
semis1 : semis1 ';' { sLL $1 $> $ if isZeroWidthSpan (gl $2) then (unLoc $1) else (AddSemiAnn (glAA $2) : (unLoc $1)) }
| ';' { sL1 $1 $ msemi $1 }
-- Zero or more semicolons
semis :: { [TrailingAnn] }
semis : semis ';' { if isZeroWidthSpan (gl $2) then $1 else (AddSemiAnn (glAA $2) : $1) }
| {- empty -} { [] }
-- No trailing semicolons, non-empty
importdecls :: { [LImportDecl GhcPs] }
importdecls
: importdecls_semi importdecl
{ $2 : $1 }
-- May have trailing semicolons, can be empty
importdecls_semi :: { [LImportDecl GhcPs] }
importdecls_semi
: importdecls_semi importdecl semis1
{% do { i <- amsAl $2 (comb2 (reLoc $2) $3) (reverse $ unLoc $3)
; return (i : $1)} }
| {- empty -} { [] }
importdecl :: { LImportDecl GhcPs }
: 'import' maybe_src maybe_safe optqualified maybe_pkg modid optqualified maybeas maybeimpspec
{% do {
; let { ; mPreQual = unLoc $4
; mPostQual = unLoc $7 }
; checkImportDecl mPreQual mPostQual
; let anns
= EpAnnImportDecl
{ importDeclAnnImport = glAA $1
, importDeclAnnPragma = fst $ fst $2
, importDeclAnnSafe = fst $3
, importDeclAnnQualified = fst $ importDeclQualifiedStyle mPreQual mPostQual
, importDeclAnnPackage = fst $5
, importDeclAnnAs = fst $8
}
; fmap reLocA $ acs (\cs -> L (comb5 $1 (reLoc $6) $7 (snd $8) $9) $
ImportDecl { ideclExt = EpAnn (glR $1) anns cs
, ideclSourceSrc = snd $ fst $2
, ideclName = $6, ideclPkgQual = snd $5
, ideclSource = snd $2, ideclSafe = snd $3
, ideclQualified = snd $ importDeclQualifiedStyle mPreQual mPostQual
, ideclImplicit = False
, ideclAs = unLoc (snd $8)
, ideclHiding = unLoc $9 })
}
}
maybe_src :: { ((Maybe (EpaLocation,EpaLocation),SourceText),IsBootInterface) }
: '{-# SOURCE' '#-}' { ((Just (glAA $1,glAA $2),getSOURCE_PRAGs $1)
, IsBoot) }
| {- empty -} { ((Nothing,NoSourceText),NotBoot) }
maybe_safe :: { (Maybe EpaLocation,Bool) }
: 'safe' { (Just (glAA $1),True) }
| {- empty -} { (Nothing, False) }
maybe_pkg :: { (Maybe EpaLocation, RawPkgQual) }
: STRING {% do { let { pkgFS = getSTRING $1 }
; unless (looksLikePackageName (unpackFS pkgFS)) $
addError $ mkPlainErrorMsgEnvelope (getLoc $1) $
(PsErrInvalidPackageName pkgFS)
; return (Just (glAA $1), RawPkgQual (StringLiteral (getSTRINGs $1) pkgFS Nothing)) } }
| {- empty -} { (Nothing,NoRawPkgQual) }
optqualified :: { Located (Maybe EpaLocation) }
: 'qualified' { sL1 $1 (Just (glAA $1)) }
| {- empty -} { noLoc Nothing }
maybeas :: { (Maybe EpaLocation,Located (Maybe (LocatedA ModuleName))) }
: 'as' modid { (Just (glAA $1)
,sLL $1 (reLoc $>) (Just $2)) }
| {- empty -} { (Nothing,noLoc Nothing) }
maybeimpspec :: { Located (Maybe (Bool, LocatedL [LIE GhcPs])) }
: impspec {% let (b, ie) = unLoc $1 in
checkImportSpec ie
>>= \checkedIe ->
return (L (gl $1) (Just (b, checkedIe))) }
| {- empty -} { noLoc Nothing }
impspec :: { Located (Bool, LocatedL [LIE GhcPs]) }
: '(' exportlist ')' {% do { es <- amsrl (sLL $1 $> $ fromOL $ snd $2)
(AnnList Nothing (Just $ mop $1) (Just $ mcp $3) (fst $2) [])
; return $ sLL $1 $> (False, es)} }
| 'hiding' '(' exportlist ')' {% do { es <- amsrl (sLL $1 $> $ fromOL $ snd $3)
(AnnList Nothing (Just $ mop $2) (Just $ mcp $4) (mj AnnHiding $1:fst $3) [])
; return $ sLL $1 $> (True, es)} }
-----------------------------------------------------------------------------
-- Fixity Declarations
prec :: { Located (SourceText,Int) }
: {- empty -} { noLoc (NoSourceText,9) }
| INTEGER
{ sL1 $1 (getINTEGERs $1,fromInteger (il_value (getINTEGER $1))) }
infix :: { Located FixityDirection }
: 'infix' { sL1 $1 InfixN }
| 'infixl' { sL1 $1 InfixL }
| 'infixr' { sL1 $1 InfixR }
ops :: { Located (OrdList (LocatedN RdrName)) }
: ops ',' op {% case (unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingCommaN t (gl $2)
return (sLL $1 (reLocN $>) (snocOL hs t' `appOL` unitOL $3)) }
| op { sL1N $1 (unitOL $1) }
-----------------------------------------------------------------------------
-- Top-Level Declarations
-- No trailing semicolons, non-empty
topdecls :: { OrdList (LHsDecl GhcPs) }
: topdecls_semi topdecl { $1 `snocOL` $2 }
-- May have trailing semicolons, can be empty
topdecls_semi :: { OrdList (LHsDecl GhcPs) }
: topdecls_semi topdecl semis1 {% do { t <- amsAl $2 (comb2 (reLoc $2) $3) (reverse $ unLoc $3)
; return ($1 `snocOL` t) }}
| {- empty -} { nilOL }
-----------------------------------------------------------------------------
-- Each topdecl accumulates prior comments
-- No trailing semicolons, non-empty
topdecls_cs :: { OrdList (LHsDecl GhcPs) }
: topdecls_cs_semi topdecl_cs { $1 `snocOL` $2 }
-- May have trailing semicolons, can be empty
topdecls_cs_semi :: { OrdList (LHsDecl GhcPs) }
: topdecls_cs_semi topdecl_cs semis1 {% do { t <- amsAl $2 (comb2 (reLoc $2) $3) (reverse $ unLoc $3)
; return ($1 `snocOL` t) }}
| {- empty -} { nilOL }
-- Each topdecl accumulates prior comments
topdecl_cs :: { LHsDecl GhcPs }
topdecl_cs : topdecl {% commentsPA $1 }
-----------------------------------------------------------------------------
topdecl :: { LHsDecl GhcPs }
: cl_decl { sL1 $1 (TyClD noExtField (unLoc $1)) }
| ty_decl { sL1 $1 (TyClD noExtField (unLoc $1)) }
| standalone_kind_sig { sL1 $1 (KindSigD noExtField (unLoc $1)) }
| inst_decl { sL1 $1 (InstD noExtField (unLoc $1)) }
| stand_alone_deriving { sL1 $1 (DerivD noExtField (unLoc $1)) }
| role_annot { sL1 $1 (RoleAnnotD noExtField (unLoc $1)) }
| 'default' '(' comma_types0 ')' {% acsA (\cs -> sLL $1 $>
(DefD noExtField (DefaultDecl (EpAnn (glR $1) [mj AnnDefault $1,mop $2,mcp $4] cs) $3))) }
| 'foreign' fdecl {% acsA (\cs -> sLL $1 $> ((snd $ unLoc $2) (EpAnn (glR $1) (mj AnnForeign $1:(fst $ unLoc $2)) cs))) }
| '{-# DEPRECATED' deprecations '#-}' {% acsA (\cs -> sLL $1 $> $ WarningD noExtField (Warnings (EpAnn (glR $1) [mo $1,mc $3] cs) (getDEPRECATED_PRAGs $1) (fromOL $2))) }
| '{-# WARNING' warnings '#-}' {% acsA (\cs -> sLL $1 $> $ WarningD noExtField (Warnings (EpAnn (glR $1) [mo $1,mc $3] cs) (getWARNING_PRAGs $1) (fromOL $2))) }
| '{-# RULES' rules '#-}' {% acsA (\cs -> sLL $1 $> $ RuleD noExtField (HsRules (EpAnn (glR $1) [mo $1,mc $3] cs) (getRULES_PRAGs $1) (reverse $2))) }
| annotation { $1 }
| decl_no_th { $1 }
-- Template Haskell Extension
-- The $(..) form is one possible form of infixexp
-- but we treat an arbitrary expression just as if
-- it had a $(..) wrapped around it
| infixexp {% runPV (unECP $1) >>= \ $1 ->
do { d <- mkSpliceDecl $1
; commentsPA d }}
-- Type classes
--
cl_decl :: { LTyClDecl GhcPs }
: 'class' tycl_hdr fds where_cls
{% (mkClassDecl (comb4 $1 $2 $3 $4) $2 $3 (sndOf3 $ unLoc $4) (thdOf3 $ unLoc $4))
(mj AnnClass $1:(fst $ unLoc $3)++(fstOf3 $ unLoc $4)) }
-- Type declarations (toplevel)
--
ty_decl :: { LTyClDecl GhcPs }
-- ordinary type synonyms
: 'type' type '=' ktype
-- Note ktype, not sigtype, on the right of '='
-- We allow an explicit for-all but we don't insert one
-- in type Foo a = (b,b)
-- Instead we just say b is out of scope
--
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTySynonym (comb2A $1 $4) $2 $4 [mj AnnType $1,mj AnnEqual $3] }
-- type family declarations
| 'type' 'family' type opt_tyfam_kind_sig opt_injective_info
where_type_family
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkFamDecl (comb5 $1 (reLoc $3) $4 $5 $6) (snd $ unLoc $6) TopLevel $3
(snd $ unLoc $4) (snd $ unLoc $5)
(mj AnnType $1:mj AnnFamily $2:(fst $ unLoc $4)
++ (fst $ unLoc $5) ++ (fst $ unLoc $6)) }
-- ordinary data type or newtype declaration
| data_or_newtype capi_ctype tycl_hdr constrs maybe_derivings
{% mkTyData (comb4 $1 $3 $4 $5) (snd $ unLoc $1) $2 $3
Nothing (reverse (snd $ unLoc $4))
(fmap reverse $5)
((fst $ unLoc $1):(fst $ unLoc $4)) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- ordinary GADT declaration
| data_or_newtype capi_ctype tycl_hdr opt_kind_sig
gadt_constrlist
maybe_derivings
{% mkTyData (comb4 $1 $3 $5 $6) (snd $ unLoc $1) $2 $3
(snd $ unLoc $4) (snd $ unLoc $5)
(fmap reverse $6)
((fst $ unLoc $1):(fst $ unLoc $4)++(fst $ unLoc $5)) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- data/newtype family
| 'data' 'family' type opt_datafam_kind_sig
{% mkFamDecl (comb3 $1 $2 $4) DataFamily TopLevel $3
(snd $ unLoc $4) Nothing
(mj AnnData $1:mj AnnFamily $2:(fst $ unLoc $4)) }
-- standalone kind signature
standalone_kind_sig :: { LStandaloneKindSig GhcPs }
: 'type' sks_vars '::' sigktype
{% mkStandaloneKindSig (comb2A $1 $4) (L (gl $2) $ unLoc $2) $4
[mj AnnType $1,mu AnnDcolon $3]}
-- See also: sig_vars
sks_vars :: { Located [LocatedN RdrName] } -- Returned in reverse order
: sks_vars ',' oqtycon
{% case unLoc $1 of
(h:t) -> do
h' <- addTrailingCommaN h (gl $2)
return (sLL $1 (reLocN $>) ($3 : h' : t)) }
| oqtycon { sL1N $1 [$1] }
inst_decl :: { LInstDecl GhcPs }
: 'instance' overlap_pragma inst_type where_inst
{% do { (binds, sigs, _, ats, adts, _) <- cvBindsAndSigs (snd $ unLoc $4)
; let anns = (mj AnnInstance $1 : (fst $ unLoc $4))
; let cid cs = ClsInstDecl
{ cid_ext = (EpAnn (glR $1) anns cs, NoAnnSortKey)
, cid_poly_ty = $3, cid_binds = binds
, cid_sigs = mkClassOpSigs sigs
, cid_tyfam_insts = ats
, cid_overlap_mode = $2
, cid_datafam_insts = adts }
; acsA (\cs -> L (comb3 $1 (reLoc $3) $4)
(ClsInstD { cid_d_ext = noExtField, cid_inst = cid cs }))
} }
-- type instance declarations
| 'type' 'instance' ty_fam_inst_eqn
{% mkTyFamInst (comb2A $1 $3) (unLoc $3)
(mj AnnType $1:mj AnnInstance $2:[]) }
-- data/newtype instance declaration
| data_or_newtype 'instance' capi_ctype datafam_inst_hdr constrs
maybe_derivings
{% mkDataFamInst (comb4 $1 $4 $5 $6) (snd $ unLoc $1) $3 (unLoc $4)
Nothing (reverse (snd $ unLoc $5))
(fmap reverse $6)
((fst $ unLoc $1):mj AnnInstance $2:(fst $ unLoc $5)) }
-- GADT instance declaration
| data_or_newtype 'instance' capi_ctype datafam_inst_hdr opt_kind_sig
gadt_constrlist
maybe_derivings
{% mkDataFamInst (comb4 $1 $4 $6 $7) (snd $ unLoc $1) $3 (unLoc $4)
(snd $ unLoc $5) (snd $ unLoc $6)
(fmap reverse $7)
((fst $ unLoc $1):mj AnnInstance $2
:(fst $ unLoc $5)++(fst $ unLoc $6)) }
overlap_pragma :: { Maybe (LocatedP OverlapMode) }
: '{-# OVERLAPPABLE' '#-}' {% fmap Just $ amsrp (sLL $1 $> (Overlappable (getOVERLAPPABLE_PRAGs $1)))
(AnnPragma (mo $1) (mc $2) []) }
| '{-# OVERLAPPING' '#-}' {% fmap Just $ amsrp (sLL $1 $> (Overlapping (getOVERLAPPING_PRAGs $1)))
(AnnPragma (mo $1) (mc $2) []) }
| '{-# OVERLAPS' '#-}' {% fmap Just $ amsrp (sLL $1 $> (Overlaps (getOVERLAPS_PRAGs $1)))
(AnnPragma (mo $1) (mc $2) []) }
| '{-# INCOHERENT' '#-}' {% fmap Just $ amsrp (sLL $1 $> (Incoherent (getINCOHERENT_PRAGs $1)))
(AnnPragma (mo $1) (mc $2) []) }
| {- empty -} { Nothing }
deriv_strategy_no_via :: { LDerivStrategy GhcPs }
: 'stock' {% acsA (\cs -> sL1 $1 (StockStrategy (EpAnn (glR $1) [mj AnnStock $1] cs))) }
| 'anyclass' {% acsA (\cs -> sL1 $1 (AnyclassStrategy (EpAnn (glR $1) [mj AnnAnyclass $1] cs))) }
| 'newtype' {% acsA (\cs -> sL1 $1 (NewtypeStrategy (EpAnn (glR $1) [mj AnnNewtype $1] cs))) }
deriv_strategy_via :: { LDerivStrategy GhcPs }
: 'via' sigktype {% acsA (\cs -> sLLlA $1 $> (ViaStrategy (XViaStrategyPs (EpAnn (glR $1) [mj AnnVia $1] cs)
$2))) }
deriv_standalone_strategy :: { Maybe (LDerivStrategy GhcPs) }
: 'stock' {% fmap Just $ acsA (\cs -> sL1 $1 (StockStrategy (EpAnn (glR $1) [mj AnnStock $1] cs))) }
| 'anyclass' {% fmap Just $ acsA (\cs -> sL1 $1 (AnyclassStrategy (EpAnn (glR $1) [mj AnnAnyclass $1] cs))) }
| 'newtype' {% fmap Just $ acsA (\cs -> sL1 $1 (NewtypeStrategy (EpAnn (glR $1) [mj AnnNewtype $1] cs))) }
| deriv_strategy_via { Just $1 }
| {- empty -} { Nothing }
-- Injective type families
opt_injective_info :: { Located ([AddEpAnn], Maybe (LInjectivityAnn GhcPs)) }
: {- empty -} { noLoc ([], Nothing) }
| '|' injectivity_cond { sLL $1 (reLoc $>) ([mj AnnVbar $1]
, Just ($2)) }
injectivity_cond :: { LInjectivityAnn GhcPs }
: tyvarid '->' inj_varids
{% acsA (\cs -> sLL (reLocN $1) $> (InjectivityAnn (EpAnn (glNR $1) [mu AnnRarrow $2] cs) $1 (reverse (unLoc $3)))) }
inj_varids :: { Located [LocatedN RdrName] }
: inj_varids tyvarid { sLL $1 (reLocN $>) ($2 : unLoc $1) }
| tyvarid { sL1N $1 [$1] }
-- Closed type families
where_type_family :: { Located ([AddEpAnn],FamilyInfo GhcPs) }
: {- empty -} { noLoc ([],OpenTypeFamily) }
| 'where' ty_fam_inst_eqn_list
{ sLL $1 $> (mj AnnWhere $1:(fst $ unLoc $2)
,ClosedTypeFamily (fmap reverse $ snd $ unLoc $2)) }
ty_fam_inst_eqn_list :: { Located ([AddEpAnn],Maybe [LTyFamInstEqn GhcPs]) }
: '{' ty_fam_inst_eqns '}' { sLL $1 $> ([moc $1,mcc $3]
,Just (unLoc $2)) }
| vocurly ty_fam_inst_eqns close { let (L loc _) = $2 in
L loc ([],Just (unLoc $2)) }
| '{' '..' '}' { sLL $1 $> ([moc $1,mj AnnDotdot $2
,mcc $3],Nothing) }
| vocurly '..' close { let (L loc _) = $2 in
L loc ([mj AnnDotdot $2],Nothing) }
ty_fam_inst_eqns :: { Located [LTyFamInstEqn GhcPs] }
: ty_fam_inst_eqns ';' ty_fam_inst_eqn
{% let (L loc eqn) = $3 in
case unLoc $1 of
[] -> return (sLLlA $1 $> (L loc eqn : unLoc $1))
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (sLLlA $1 $> ($3 : h' : t)) }
| ty_fam_inst_eqns ';' {% case unLoc $1 of
[] -> return (sLL $1 $> (unLoc $1))
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (sLL $1 $> (h':t)) }
| ty_fam_inst_eqn { sLLAA $1 $> [$1] }
| {- empty -} { noLoc [] }
ty_fam_inst_eqn :: { LTyFamInstEqn GhcPs }
: 'forall' tv_bndrs '.' type '=' ktype
{% do { hintExplicitForall $1
; tvbs <- fromSpecTyVarBndrs $2
; let loc = comb2A $1 $>
; cs <- getCommentsFor loc
; mkTyFamInstEqn loc (mkHsOuterExplicit (EpAnn (glR $1) (mu AnnForall $1, mj AnnDot $3) cs) tvbs) $4 $6 [mj AnnEqual $5] }}
| type '=' ktype
{% mkTyFamInstEqn (comb2A (reLoc $1) $>) mkHsOuterImplicit $1 $3 (mj AnnEqual $2:[]) }
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
-- Associated type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
-- identifier).
--
-- * They also need to be separate from instances; otherwise, data family
-- declarations without a kind signature cause parsing conflicts with empty
-- data declarations.
--
at_decl_cls :: { LHsDecl GhcPs }
: -- data family declarations, with optional 'family' keyword
'data' opt_family type opt_datafam_kind_sig
{% liftM mkTyClD (mkFamDecl (comb3 $1 (reLoc $3) $4) DataFamily NotTopLevel $3
(snd $ unLoc $4) Nothing
(mj AnnData $1:$2++(fst $ unLoc $4))) }
-- type family declarations, with optional 'family' keyword
-- (can't use opt_instance because you get shift/reduce errors
| 'type' type opt_at_kind_inj_sig
{% liftM mkTyClD
(mkFamDecl (comb3 $1 (reLoc $2) $3) OpenTypeFamily NotTopLevel $2
(fst . snd $ unLoc $3)
(snd . snd $ unLoc $3)
(mj AnnType $1:(fst $ unLoc $3)) )}
| 'type' 'family' type opt_at_kind_inj_sig
{% liftM mkTyClD
(mkFamDecl (comb3 $1 (reLoc $3) $4) OpenTypeFamily NotTopLevel $3
(fst . snd $ unLoc $4)
(snd . snd $ unLoc $4)
(mj AnnType $1:mj AnnFamily $2:(fst $ unLoc $4)))}
-- default type instances, with optional 'instance' keyword
| 'type' ty_fam_inst_eqn
{% liftM mkInstD (mkTyFamInst (comb2A $1 $2) (unLoc $2)
[mj AnnType $1]) }
| 'type' 'instance' ty_fam_inst_eqn
{% liftM mkInstD (mkTyFamInst (comb2A $1 $3) (unLoc $3)
(mj AnnType $1:mj AnnInstance $2:[]) )}
opt_family :: { [AddEpAnn] }
: {- empty -} { [] }
| 'family' { [mj AnnFamily $1] }
opt_instance :: { [AddEpAnn] }
: {- empty -} { [] }
| 'instance' { [mj AnnInstance $1] }
-- Associated type instances
--
at_decl_inst :: { LInstDecl GhcPs }
-- type instance declarations, with optional 'instance' keyword
: 'type' opt_instance ty_fam_inst_eqn
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTyFamInst (comb2A $1 $3) (unLoc $3)
(mj AnnType $1:$2) }
-- data/newtype instance declaration, with optional 'instance' keyword
| data_or_newtype opt_instance capi_ctype datafam_inst_hdr constrs maybe_derivings
{% mkDataFamInst (comb4 $1 $4 $5 $6) (snd $ unLoc $1) $3 (unLoc $4)
Nothing (reverse (snd $ unLoc $5))
(fmap reverse $6)
((fst $ unLoc $1):$2++(fst $ unLoc $5)) }
-- GADT instance declaration, with optional 'instance' keyword
| data_or_newtype opt_instance capi_ctype datafam_inst_hdr opt_kind_sig
gadt_constrlist
maybe_derivings
{% mkDataFamInst (comb4 $1 $4 $6 $7) (snd $ unLoc $1) $3
(unLoc $4) (snd $ unLoc $5) (snd $ unLoc $6)
(fmap reverse $7)
((fst $ unLoc $1):$2++(fst $ unLoc $5)++(fst $ unLoc $6)) }
data_or_newtype :: { Located (AddEpAnn, NewOrData) }
: 'data' { sL1 $1 (mj AnnData $1,DataType) }
| 'newtype' { sL1 $1 (mj AnnNewtype $1,NewType) }
-- Family result/return kind signatures
opt_kind_sig :: { Located ([AddEpAnn], Maybe (LHsKind GhcPs)) }
: { noLoc ([] , Nothing) }
| '::' kind { sLL $1 (reLoc $>) ([mu AnnDcolon $1], Just $2) }
opt_datafam_kind_sig :: { Located ([AddEpAnn], LFamilyResultSig GhcPs) }
: { noLoc ([] , noLocA (NoSig noExtField) )}
| '::' kind { sLL $1 (reLoc $>) ([mu AnnDcolon $1], sLLa $1 (reLoc $>) (KindSig noExtField $2))}
opt_tyfam_kind_sig :: { Located ([AddEpAnn], LFamilyResultSig GhcPs) }
: { noLoc ([] , noLocA (NoSig noExtField) )}
| '::' kind { sLL $1 (reLoc $>) ([mu AnnDcolon $1], sLLa $1 (reLoc $>) (KindSig noExtField $2))}
| '=' tv_bndr {% do { tvb <- fromSpecTyVarBndr $2
; return $ sLL $1 (reLoc $>) ([mj AnnEqual $1], sLLa $1 (reLoc $>) (TyVarSig noExtField tvb))} }
opt_at_kind_inj_sig :: { Located ([AddEpAnn], ( LFamilyResultSig GhcPs
, Maybe (LInjectivityAnn GhcPs)))}
: { noLoc ([], (noLocA (NoSig noExtField), Nothing)) }
| '::' kind { sLL $1 (reLoc $>) ( [mu AnnDcolon $1]
, (sL1a (reLoc $>) (KindSig noExtField $2), Nothing)) }
| '=' tv_bndr_no_braces '|' injectivity_cond
{% do { tvb <- fromSpecTyVarBndr $2
; return $ sLL $1 (reLoc $>) ([mj AnnEqual $1, mj AnnVbar $3]
, (sLLa $1 (reLoc $2) (TyVarSig noExtField tvb), Just $4))} }
-- tycl_hdr parses the header of a class or data type decl,
-- which takes the form
-- T a b
-- Eq a => T a
-- (Eq a, Ord b) => T a b
-- T Int [a] -- for associated types
-- Rather a lot of inlining here, else we get reduce/reduce errors
tycl_hdr :: { Located (Maybe (LHsContext GhcPs), LHsType GhcPs) }
: context '=>' type {% acs (\cs -> (sLLAA $1 $> (Just (addTrailingDarrowC $1 $2 cs), $3))) }
| type { sL1A $1 (Nothing, $1) }
datafam_inst_hdr :: { Located (Maybe (LHsContext GhcPs), HsOuterFamEqnTyVarBndrs GhcPs, LHsType GhcPs) }
: 'forall' tv_bndrs '.' context '=>' type {% hintExplicitForall $1
>> fromSpecTyVarBndrs $2
>>= \tvbs ->
(acs (\cs -> (sLL $1 (reLoc $>)
(Just ( addTrailingDarrowC $4 $5 cs)
, mkHsOuterExplicit (EpAnn (glR $1) (mu AnnForall $1, mj AnnDot $3) emptyComments) tvbs, $6))))
}
| 'forall' tv_bndrs '.' type {% do { hintExplicitForall $1
; tvbs <- fromSpecTyVarBndrs $2
; let loc = comb2 $1 (reLoc $>)
; cs <- getCommentsFor loc
; return (sL loc (Nothing, mkHsOuterExplicit (EpAnn (glR $1) (mu AnnForall $1, mj AnnDot $3) cs) tvbs, $4))
} }
| context '=>' type {% acs (\cs -> (sLLAA $1 $>(Just (addTrailingDarrowC $1 $2 cs), mkHsOuterImplicit, $3))) }
| type { sL1A $1 (Nothing, mkHsOuterImplicit, $1) }
capi_ctype :: { Maybe (LocatedP CType) }
capi_ctype : '{-# CTYPE' STRING STRING '#-}'
{% fmap Just $ amsrp (sLL $1 $> (CType (getCTYPEs $1) (Just (Header (getSTRINGs $2) (getSTRING $2)))
(getSTRINGs $3,getSTRING $3)))
(AnnPragma (mo $1) (mc $4) [mj AnnHeader $2,mj AnnVal $3]) }
| '{-# CTYPE' STRING '#-}'
{% fmap Just $ amsrp (sLL $1 $> (CType (getCTYPEs $1) Nothing (getSTRINGs $2, getSTRING $2)))
(AnnPragma (mo $1) (mc $3) [mj AnnVal $2]) }
| { Nothing }
-----------------------------------------------------------------------------
-- Stand-alone deriving
-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl GhcPs }
: 'deriving' deriv_standalone_strategy 'instance' overlap_pragma inst_type
{% do { let { err = text "in the stand-alone deriving instance"
<> colon <+> quotes (ppr $5) }
; acsA (\cs -> sLL $1 (reLoc $>)
(DerivDecl (EpAnn (glR $1) [mj AnnDeriving $1, mj AnnInstance $3] cs) (mkHsWildCardBndrs $5) $2 $4)) }}
-----------------------------------------------------------------------------
-- Role annotations
role_annot :: { LRoleAnnotDecl GhcPs }
role_annot : 'type' 'role' oqtycon maybe_roles
{% mkRoleAnnotDecl (comb3N $1 $4 $3) $3 (reverse (unLoc $4))
[mj AnnType $1,mj AnnRole $2] }
-- Reversed!
maybe_roles :: { Located [Located (Maybe FastString)] }
maybe_roles : {- empty -} { noLoc [] }
| roles { $1 }
roles :: { Located [Located (Maybe FastString)] }
roles : role { sLL $1 $> [$1] }
| roles role { sLL $1 $> $ $2 : unLoc $1 }
-- read it in as a varid for better error messages
role :: { Located (Maybe FastString) }
role : VARID { sL1 $1 $ Just $ getVARID $1 }
| '_' { sL1 $1 Nothing }
-- Pattern synonyms
-- Glasgow extension: pattern synonyms
pattern_synonym_decl :: { LHsDecl GhcPs }
: 'pattern' pattern_synonym_lhs '=' pat
{% let (name, args, as ) = $2 in
acsA (\cs -> sLL $1 (reLoc $>) . ValD noExtField $ mkPatSynBind name args $4
ImplicitBidirectional
(EpAnn (glR $1) (as ++ [mj AnnPattern $1, mj AnnEqual $3]) cs)) }
| 'pattern' pattern_synonym_lhs '<-' pat
{% let (name, args, as) = $2 in
acsA (\cs -> sLL $1 (reLoc $>) . ValD noExtField $ mkPatSynBind name args $4 Unidirectional
(EpAnn (glR $1) (as ++ [mj AnnPattern $1,mu AnnLarrow $3]) cs)) }
| 'pattern' pattern_synonym_lhs '<-' pat where_decls
{% do { let (name, args, as) = $2
; mg <- mkPatSynMatchGroup name $5
; acsA (\cs -> sLL $1 (reLoc $>) . ValD noExtField $
mkPatSynBind name args $4 (ExplicitBidirectional mg)
(EpAnn (glR $1) (as ++ [mj AnnPattern $1,mu AnnLarrow $3]) cs))
}}
pattern_synonym_lhs :: { (LocatedN RdrName, HsPatSynDetails GhcPs, [AddEpAnn]) }
: con vars0 { ($1, PrefixCon noTypeArgs $2, []) }
| varid conop varid { ($2, InfixCon $1 $3, []) }
| con '{' cvars1 '}' { ($1, RecCon $3, [moc $2, mcc $4] ) }
vars0 :: { [LocatedN RdrName] }
: {- empty -} { [] }
| varid vars0 { $1 : $2 }
cvars1 :: { [RecordPatSynField GhcPs] }
: var { [RecordPatSynField (mkFieldOcc $1) $1] }
| var ',' cvars1 {% do { h <- addTrailingCommaN $1 (gl $2)
; return ((RecordPatSynField (mkFieldOcc h) h) : $3 )}}
where_decls :: { LocatedL (OrdList (LHsDecl GhcPs)) }
: 'where' '{' decls '}' {% amsrl (sLL $1 $> (snd $ unLoc $3))
(AnnList (Just $ glR $3) (Just $ moc $2) (Just $ mcc $4) [mj AnnWhere $1] (fst $ unLoc $3)) }
| 'where' vocurly decls close {% amsrl (sLL $1 $3 (snd $ unLoc $3))
(AnnList (Just $ glR $3) Nothing Nothing [mj AnnWhere $1] (fst $ unLoc $3))}
pattern_synonym_sig :: { LSig GhcPs }
: 'pattern' con_list '::' sigtype
{% acsA (\cs -> sLL $1 (reLoc $>)
$ PatSynSig (EpAnn (glR $1) (AnnSig (mu AnnDcolon $3) [mj AnnPattern $1]) cs)
(unLoc $2) $4) }
qvarcon :: { LocatedN RdrName }
: qvar { $1 }
| qcon { $1 }
-----------------------------------------------------------------------------
-- Nested declarations
-- Declaration in class bodies
--
decl_cls :: { LHsDecl GhcPs }
decl_cls : at_decl_cls { $1 }
| decl { $1 }
-- A 'default' signature used with the generic-programming extension
| 'default' infixexp '::' sigtype
{% runPV (unECP $2) >>= \ $2 ->
do { v <- checkValSigLhs $2
; let err = text "in default signature" <> colon <+>
quotes (ppr $2)
; acsA (\cs -> sLL $1 (reLoc $>) $ SigD noExtField $ ClassOpSig (EpAnn (glR $1) (AnnSig (mu AnnDcolon $3) [mj AnnDefault $1]) cs) True [v] $4) }}
decls_cls :: { Located ([AddEpAnn],OrdList (LHsDecl GhcPs)) } -- Reversed
: decls_cls ';' decl_cls {% if isNilOL (snd $ unLoc $1)
then return (sLLlA $1 $> ((fst $ unLoc $1) ++ (mz AnnSemi $2)
, unitOL $3))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (sLLlA $1 $> (fst $ unLoc $1
, snocOL hs t' `appOL` unitOL $3)) }
| decls_cls ';' {% if isNilOL (snd $ unLoc $1)
then return (sLL $1 $> ( (fst $ unLoc $1) ++ (mz AnnSemi $2)
,snd $ unLoc $1))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (sLL $1 $> (fst $ unLoc $1
, snocOL hs t')) }
| decl_cls { sL1A $1 ([], unitOL $1) }
| {- empty -} { noLoc ([],nilOL) }
decllist_cls
:: { Located ([AddEpAnn]
, OrdList (LHsDecl GhcPs)
, LayoutInfo) } -- Reversed
: '{' decls_cls '}' { sLL $1 $> (moc $1:mcc $3:(fst $ unLoc $2)
,snd $ unLoc $2, ExplicitBraces) }
| vocurly decls_cls close { let { L l (anns, decls) = $2 }
in L l (anns, decls, VirtualBraces (getVOCURLY $1)) }
-- Class body
--
where_cls :: { Located ([AddEpAnn]
,(OrdList (LHsDecl GhcPs)) -- Reversed
,LayoutInfo) }
-- No implicit parameters
-- May have type declarations
: 'where' decllist_cls { sLL $1 $> (mj AnnWhere $1:(fstOf3 $ unLoc $2)
,sndOf3 $ unLoc $2,thdOf3 $ unLoc $2) }
| {- empty -} { noLoc ([],nilOL,NoLayoutInfo) }
-- Declarations in instance bodies
--
decl_inst :: { Located (OrdList (LHsDecl GhcPs)) }
decl_inst : at_decl_inst { sL1A $1 (unitOL (sL1 $1 (InstD noExtField (unLoc $1)))) }
| decl { sL1A $1 (unitOL $1) }
decls_inst :: { Located ([AddEpAnn],OrdList (LHsDecl GhcPs)) } -- Reversed
: decls_inst ';' decl_inst {% if isNilOL (snd $ unLoc $1)
then return (sLL $1 $> ((fst $ unLoc $1) ++ (mz AnnSemi $2)
, unLoc $3))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (sLL $1 $> (fst $ unLoc $1
, snocOL hs t' `appOL` unLoc $3)) }
| decls_inst ';' {% if isNilOL (snd $ unLoc $1)
then return (sLL $1 $> ((fst $ unLoc $1) ++ (mz AnnSemi $2)
,snd $ unLoc $1))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (sLL $1 $> (fst $ unLoc $1
, snocOL hs t')) }
| decl_inst { sL1 $1 ([],unLoc $1) }
| {- empty -} { noLoc ([],nilOL) }
decllist_inst
:: { Located ([AddEpAnn]
, OrdList (LHsDecl GhcPs)) } -- Reversed
: '{' decls_inst '}' { sLL $1 $> (moc $1:mcc $3:(fst $ unLoc $2),snd $ unLoc $2) }
| vocurly decls_inst close { L (gl $2) (unLoc $2) }
-- Instance body
--
where_inst :: { Located ([AddEpAnn]
, OrdList (LHsDecl GhcPs)) } -- Reversed
-- No implicit parameters
-- May have type declarations
: 'where' decllist_inst { sLL $1 $> (mj AnnWhere $1:(fst $ unLoc $2)
,(snd $ unLoc $2)) }
| {- empty -} { noLoc ([],nilOL) }
-- Declarations in binding groups other than classes and instances
--
decls :: { Located ([TrailingAnn], OrdList (LHsDecl GhcPs)) }
: decls ';' decl {% if isNilOL (snd $ unLoc $1)
then return (sLLlA $1 $> ((fst $ unLoc $1) ++ (msemi $2)
, unitOL $3))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
let { this = unitOL $3;
rest = snocOL hs t';
these = rest `appOL` this }
return (rest `seq` this `seq` these `seq`
(sLLlA $1 $> (fst $ unLoc $1, these))) }
| decls ';' {% if isNilOL (snd $ unLoc $1)
then return (sLL $1 $> (((fst $ unLoc $1) ++ (msemi $2)
,snd $ unLoc $1)))
else case (snd $ unLoc $1) of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (sLL $1 $> (fst $ unLoc $1
, snocOL hs t')) }
| decl { sL1A $1 ([], unitOL $1) }
| {- empty -} { noLoc ([],nilOL) }
decllist :: { Located (AnnList,Located (OrdList (LHsDecl GhcPs))) }
: '{' decls '}' { sLL $1 $> (AnnList (Just $ glR $2) (Just $ moc $1) (Just $ mcc $3) [] (fst $ unLoc $2)
,sL1 $2 $ snd $ unLoc $2) }
| vocurly decls close { L (gl $2) (AnnList (Just $ glR $2) Nothing Nothing [] (fst $ unLoc $2)
,sL1 $2 $ snd $ unLoc $2) }
-- Binding groups other than those of class and instance declarations
--
binds :: { Located (HsLocalBinds GhcPs) }
-- May have implicit parameters
-- No type declarations
: decllist {% do { val_binds <- cvBindGroup (unLoc $ snd $ unLoc $1)
; cs <- getCommentsFor (gl $1)
; return (sL1 $1 $ HsValBinds (EpAnn (glR $1) (fst $ unLoc $1) cs) val_binds)} }
| '{' dbinds '}' {% acs (\cs -> (L (comb3 $1 $2 $3)
$ HsIPBinds (EpAnn (glR $1) (AnnList (Just$ glR $2) (Just $ moc $1) (Just $ mcc $3) [] []) cs) (IPBinds noExtField (reverse $ unLoc $2)))) }
| vocurly dbinds close {% acs (\cs -> (L (gl $2)
$ HsIPBinds (EpAnn (glR $1) (AnnList (Just $ glR $2) Nothing Nothing [] []) cs) (IPBinds noExtField (reverse $ unLoc $2)))) }
wherebinds :: { Maybe (Located (HsLocalBinds GhcPs, Maybe EpAnnComments )) }
-- May have implicit parameters
-- No type declarations
: 'where' binds {% do { r <- acs (\cs ->
(sLL $1 $> (annBinds (mj AnnWhere $1) cs (unLoc $2))))
; return $ Just r} }
| {- empty -} { Nothing }
-----------------------------------------------------------------------------
-- Transformation Rules
rules :: { [LRuleDecl GhcPs] } -- Reversed
: rules ';' rule {% case $1 of
[] -> return ($3:$1)
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return ($3:h':t) }
| rules ';' {% case $1 of
[] -> return $1
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (h':t) }
| rule { [$1] }
| {- empty -} { [] }
rule :: { LRuleDecl GhcPs }
: STRING rule_activation rule_foralls infixexp '=' exp
{%runPV (unECP $4) >>= \ $4 ->
runPV (unECP $6) >>= \ $6 ->
acsA (\cs -> (sLLlA $1 $> $ HsRule
{ rd_ext = EpAnn (glR $1) ((fstOf3 $3) (mj AnnEqual $5 : (fst $2))) cs
, rd_name = L (noAnnSrcSpan $ gl $1) (getSTRINGs $1, getSTRING $1)
, rd_act = (snd $2) `orElse` AlwaysActive
, rd_tyvs = sndOf3 $3, rd_tmvs = thdOf3 $3
, rd_lhs = $4, rd_rhs = $6 })) }
-- Rules can be specified to be NeverActive, unlike inline/specialize pragmas
rule_activation :: { ([AddEpAnn],Maybe Activation) }
-- See Note [%shift: rule_activation -> {- empty -}]
: {- empty -} %shift { ([],Nothing) }
| rule_explicit_activation { (fst $1,Just (snd $1)) }
-- This production is used to parse the tilde syntax in pragmas such as
-- * {-# INLINE[~2] ... #-}
-- * {-# SPECIALISE [~ 001] ... #-}
-- * {-# RULES ... [~0] ... g #-}
-- Note that it can be written either
-- without a space [~1] (the PREFIX_TILDE case), or
-- with a space [~ 1] (the VARSYM case).
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
rule_activation_marker :: { [AddEpAnn] }
: PREFIX_TILDE { [mj AnnTilde $1] }
| VARSYM {% if (getVARSYM $1 == fsLit "~")
then return [mj AnnTilde $1]
else do { addError $ mkPlainErrorMsgEnvelope (getLoc $1) $
PsErrInvalidRuleActivationMarker
; return [] } }
rule_explicit_activation :: { ([AddEpAnn]
,Activation) } -- In brackets
: '[' INTEGER ']' { ([mos $1,mj AnnVal $2,mcs $3]
,ActiveAfter (getINTEGERs $2) (fromInteger (il_value (getINTEGER $2)))) }
| '[' rule_activation_marker INTEGER ']'
{ ($2++[mos $1,mj AnnVal $3,mcs $4]
,ActiveBefore (getINTEGERs $3) (fromInteger (il_value (getINTEGER $3)))) }
| '[' rule_activation_marker ']'
{ ($2++[mos $1,mcs $3]
,NeverActive) }
rule_foralls :: { ([AddEpAnn] -> HsRuleAnn, Maybe [LHsTyVarBndr () GhcPs], [LRuleBndr GhcPs]) }
: 'forall' rule_vars '.' 'forall' rule_vars '.' {% let tyvs = mkRuleTyVarBndrs $2
in hintExplicitForall $1
>> checkRuleTyVarBndrNames (mkRuleTyVarBndrs $2)
>> return (\anns -> HsRuleAnn
(Just (mu AnnForall $1,mj AnnDot $3))
(Just (mu AnnForall $4,mj AnnDot $6))
anns,
Just (mkRuleTyVarBndrs $2), mkRuleBndrs $5) }
-- See Note [%shift: rule_foralls -> 'forall' rule_vars '.']
| 'forall' rule_vars '.' %shift { (\anns -> HsRuleAnn Nothing (Just (mu AnnForall $1,mj AnnDot $3)) anns,
Nothing, mkRuleBndrs $2) }
-- See Note [%shift: rule_foralls -> {- empty -}]
| {- empty -} %shift { (\anns -> HsRuleAnn Nothing Nothing anns, Nothing, []) }
rule_vars :: { [LRuleTyTmVar] }
: rule_var rule_vars { $1 : $2 }
| {- empty -} { [] }
rule_var :: { LRuleTyTmVar }
: varid { sL1l $1 (RuleTyTmVar noAnn $1 Nothing) }
| '(' varid '::' ctype ')' {% acsA (\cs -> sLL $1 $> (RuleTyTmVar (EpAnn (glR $1) [mop $1,mu AnnDcolon $3,mcp $5] cs) $2 (Just $4))) }
{- Note [Parsing explicit foralls in Rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We really want the above definition of rule_foralls to be:
rule_foralls : 'forall' tv_bndrs '.' 'forall' rule_vars '.'
| 'forall' rule_vars '.'
| {- empty -}
where rule_vars (term variables) can be named "forall", "family", or "role",
but tv_vars (type variables) cannot be. However, such a definition results
in a reduce/reduce conflict. For example, when parsing:
> {-# RULE "name" forall a ... #-}
before the '...' it is impossible to determine whether we should be in the
first or second case of the above.
This is resolved by using rule_vars (which is more general) for both, and
ensuring that type-level quantified variables do not have the names "forall",
"family", or "role" in the function 'checkRuleTyVarBndrNames' in
GHC.Parser.PostProcess.
Thus, whenever the definition of tyvarid (used for tv_bndrs) is changed relative
to varid (used for rule_vars), 'checkRuleTyVarBndrNames' must be updated.
-}
-----------------------------------------------------------------------------
-- Warnings and deprecations (c.f. rules)
warnings :: { OrdList (LWarnDecl GhcPs) }
: warnings ';' warning {% if isNilOL $1
then return ($1 `appOL` $3)
else case $1 of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (snocOL hs t' `appOL` $3) }
| warnings ';' {% if isNilOL $1
then return $1
else case $1 of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (snocOL hs t') }
| warning { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
warning :: { OrdList (LWarnDecl GhcPs) }
: namelist strings
{% fmap unitOL $ acsA (\cs -> sLL $1 $>
(Warning (EpAnn (glR $1) (fst $ unLoc $2) cs) (unLoc $1)
(WarningTxt (noLoc NoSourceText) $ snd $ unLoc $2))) }
deprecations :: { OrdList (LWarnDecl GhcPs) }
: deprecations ';' deprecation
{% if isNilOL $1
then return ($1 `appOL` $3)
else case $1 of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (snocOL hs t' `appOL` $3) }
| deprecations ';' {% if isNilOL $1
then return $1
else case $1 of
SnocOL hs t -> do
t' <- addTrailingSemiA t (gl $2)
return (snocOL hs t') }
| deprecation { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
deprecation :: { OrdList (LWarnDecl GhcPs) }
: namelist strings
{% fmap unitOL $ acsA (\cs -> sLL $1 $> $ (Warning (EpAnn (glR $1) (fst $ unLoc $2) cs) (unLoc $1)
(DeprecatedTxt (noLoc NoSourceText) $ snd $ unLoc $2))) }
strings :: { Located ([AddEpAnn],[Located StringLiteral]) }
: STRING { sL1 $1 ([],[L (gl $1) (getStringLiteral $1)]) }
| '[' stringlist ']' { sLL $1 $> $ ([mos $1,mcs $3],fromOL (unLoc $2)) }
stringlist :: { Located (OrdList (Located StringLiteral)) }
: stringlist ',' STRING {% if isNilOL (unLoc $1)
then return (sLL $1 $> (unLoc $1 `snocOL`
(L (gl $3) (getStringLiteral $3))))
else case (unLoc $1) of
SnocOL hs t -> do
let { t' = addTrailingCommaS t (glAA $2) }
return (sLL $1 $> (snocOL hs t' `snocOL`
(L (gl $3) (getStringLiteral $3))))
}
| STRING { sLL $1 $> (unitOL (L (gl $1) (getStringLiteral $1))) }
| {- empty -} { noLoc nilOL }
-----------------------------------------------------------------------------
-- Annotations
annotation :: { LHsDecl GhcPs }
: '{-# ANN' name_var aexp '#-}' {% runPV (unECP $3) >>= \ $3 ->
acsA (\cs -> sLL $1 $> (AnnD noExtField $ HsAnnotation
(EpAnn (glR $1) (AnnPragma (mo $1) (mc $4) []) cs)
(getANN_PRAGs $1)
(ValueAnnProvenance $2) $3)) }
| '{-# ANN' 'type' otycon aexp '#-}' {% runPV (unECP $4) >>= \ $4 ->
acsA (\cs -> sLL $1 $> (AnnD noExtField $ HsAnnotation
(EpAnn (glR $1) (AnnPragma (mo $1) (mc $5) [mj AnnType $2]) cs)
(getANN_PRAGs $1)
(TypeAnnProvenance $3) $4)) }
| '{-# ANN' 'module' aexp '#-}' {% runPV (unECP $3) >>= \ $3 ->
acsA (\cs -> sLL $1 $> (AnnD noExtField $ HsAnnotation
(EpAnn (glR $1) (AnnPragma (mo $1) (mc $4) [mj AnnModule $2]) cs)
(getANN_PRAGs $1)
ModuleAnnProvenance $3)) }
-----------------------------------------------------------------------------
-- Foreign import and export declarations
fdecl :: { Located ([AddEpAnn],EpAnn [AddEpAnn] -> HsDecl GhcPs) }
fdecl : 'import' callconv safety fspec
{% mkImport $2 $3 (snd $ unLoc $4) >>= \i ->
return (sLL $1 $> (mj AnnImport $1 : (fst $ unLoc $4),i)) }
| 'import' callconv fspec
{% do { d <- mkImport $2 (noLoc PlaySafe) (snd $ unLoc $3);
return (sLL $1 $> (mj AnnImport $1 : (fst $ unLoc $3),d)) }}
| 'export' callconv fspec
{% mkExport $2 (snd $ unLoc $3) >>= \i ->
return (sLL $1 $> (mj AnnExport $1 : (fst $ unLoc $3),i) ) }
callconv :: { Located CCallConv }
: 'stdcall' { sLL $1 $> StdCallConv }
| 'ccall' { sLL $1 $> CCallConv }
| 'capi' { sLL $1 $> CApiConv }
| 'prim' { sLL $1 $> PrimCallConv}
| 'javascript' { sLL $1 $> JavaScriptCallConv }
safety :: { Located Safety }
: 'unsafe' { sLL $1 $> PlayRisky }
| 'safe' { sLL $1 $> PlaySafe }
| 'interruptible' { sLL $1 $> PlayInterruptible }
fspec :: { Located ([AddEpAnn]
,(Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)) }
: STRING var '::' sigtype { sLL $1 (reLoc $>) ([mu AnnDcolon $3]
,(L (getLoc $1)
(getStringLiteral $1), $2, $4)) }
| var '::' sigtype { sLL (reLocN $1) (reLoc $>) ([mu AnnDcolon $2]
,(noLoc (StringLiteral NoSourceText nilFS Nothing), $1, $3)) }
-- if the entity string is missing, it defaults to the empty string;
-- the meaning of an empty entity string depends on the calling
-- convention
-----------------------------------------------------------------------------
-- Type signatures
opt_sig :: { Maybe (AddEpAnn, LHsType GhcPs) }
: {- empty -} { Nothing }
| '::' ctype { Just (mu AnnDcolon $1, $2) }
opt_tyconsig :: { ([AddEpAnn], Maybe (LocatedN RdrName)) }
: {- empty -} { ([], Nothing) }
| '::' gtycon { ([mu AnnDcolon $1], Just $2) }
-- Like ktype, but for types that obey the forall-or-nothing rule.
-- See Note [forall-or-nothing rule] in GHC.Hs.Type.
sigktype :: { LHsSigType GhcPs }
: sigtype { $1 }
| ctype '::' kind {% acsA (\cs -> sLLAA $1 $> $ mkHsImplicitSigType $
sLLa (reLoc $1) (reLoc $>) $ HsKindSig (EpAnn (glAR $1) [mu AnnDcolon $2] cs) $1 $3) }
-- Like ctype, but for types that obey the forall-or-nothing rule.
-- See Note [forall-or-nothing rule] in GHC.Hs.Type. To avoid duplicating the
-- logic in ctype here, we simply reuse the ctype production and perform
-- surgery on the LHsType it returns to turn it into an LHsSigType.
sigtype :: { LHsSigType GhcPs }
: ctype { hsTypeToHsSigType $1 }
sig_vars :: { Located [LocatedN RdrName] } -- Returned in reversed order
: sig_vars ',' var {% case unLoc $1 of
[] -> return (sLL $1 (reLocN $>) ($3 : unLoc $1))
(h:t) -> do
h' <- addTrailingCommaN h (gl $2)
return (sLL $1 (reLocN $>) ($3 : h' : t)) }
| var { sL1N $1 [$1] }
sigtypes1 :: { OrdList (LHsSigType GhcPs) }
: sigtype { unitOL $1 }
| sigtype ',' sigtypes1 {% do { st <- addTrailingCommaA $1 (gl $2)
; return $ unitOL st `appOL` $3 } }
-----------------------------------------------------------------------------
-- Types
unpackedness :: { Located UnpackednessPragma }
: '{-# UNPACK' '#-}' { sLL $1 $> (UnpackednessPragma [mo $1, mc $2] (getUNPACK_PRAGs $1) SrcUnpack) }
| '{-# NOUNPACK' '#-}' { sLL $1 $> (UnpackednessPragma [mo $1, mc $2] (getNOUNPACK_PRAGs $1) SrcNoUnpack) }
forall_telescope :: { Located (HsForAllTelescope GhcPs) }
: 'forall' tv_bndrs '.' {% do { hintExplicitForall $1
; acs (\cs -> (sLL $1 $> $
mkHsForAllInvisTele (EpAnn (glR $1) (mu AnnForall $1,mu AnnDot $3) cs) $2 )) }}
| 'forall' tv_bndrs '->' {% do { hintExplicitForall $1
; req_tvbs <- fromSpecTyVarBndrs $2
; acs (\cs -> (sLL $1 $> $
mkHsForAllVisTele (EpAnn (glR $1) (mu AnnForall $1,mu AnnRarrow $3) cs) req_tvbs )) }}
-- A ktype is a ctype, possibly with a kind annotation
ktype :: { LHsType GhcPs }
: ctype { $1 }
| ctype '::' kind {% acsA (\cs -> sLLAA $1 $> $ HsKindSig (EpAnn (glAR $1) [mu AnnDcolon $2] cs) $1 $3) }
-- A ctype is a for-all type
ctype :: { LHsType GhcPs }
: forall_telescope ctype { reLocA $ sLL $1 (reLoc $>) $
HsForAllTy { hst_tele = unLoc $1
, hst_xforall = noExtField
, hst_body = $2 } }
| context '=>' ctype {% acsA (\cs -> (sLL (reLoc $1) (reLoc $>) $
HsQualTy { hst_ctxt = addTrailingDarrowC $1 $2 cs
, hst_xqual = NoExtField
, hst_body = $3 })) }
| ipvar '::' type {% acsA (\cs -> sLL $1 (reLoc $>) (HsIParamTy (EpAnn (glR $1) [mu AnnDcolon $2] cs) (reLocA $1) $3)) }
| type { $1 }
----------------------
-- Notes for 'context'
-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype. The basic problem is that
-- (Eq a, Ord a)
-- looks so much like a tuple type. We can't tell until we find the =>
context :: { LHsContext GhcPs }
: btype {% checkContext $1 }
{- Note [GADT decl discards annotations]
~~~~~~~~~~~~~~~~~~~~~
The type production for
btype `->` ctype
add the AnnRarrow annotation twice, in different places.
This is because if the type is processed as usual, it belongs on the annotations
for the type as a whole.
But if the type is passed to mkGadtDecl, it discards the top level SrcSpan, and
the top-level annotation will be disconnected. Hence for this specific case it
is connected to the first type too.
-}
type :: { LHsType GhcPs }
-- See Note [%shift: type -> btype]
: btype %shift { $1 }
| btype '->' ctype {% acsA (\cs -> sLL (reLoc $1) (reLoc $>)
$ HsFunTy (EpAnn (glAR $1) NoEpAnns cs) (HsUnrestrictedArrow (hsUniTok $2)) $1 $3) }
| btype mult '->' ctype {% hintLinear (getLoc $2)
>> let arr = (unLoc $2) (hsUniTok $3)
in acsA (\cs -> sLL (reLoc $1) (reLoc $>)
$ HsFunTy (EpAnn (glAR $1) NoEpAnns cs) arr $1 $4) }
| btype '->.' ctype {% hintLinear (getLoc $2) >>
acsA (\cs -> sLL (reLoc $1) (reLoc $>)
$ HsFunTy (EpAnn (glAR $1) NoEpAnns cs) (HsLinearArrow (HsLolly (hsTok $2))) $1 $3) }
-- [mu AnnLollyU $2] }
mult :: { Located (LHsUniToken "->" "\8594" GhcPs -> HsArrow GhcPs) }
: PREFIX_PERCENT atype { sLL $1 (reLoc $>) (mkMultTy (hsTok $1) $2) }
btype :: { LHsType GhcPs }
: infixtype {% runPV $1 }
infixtype :: { forall b. DisambTD b => PV (LocatedA b) }
-- See Note [%shift: infixtype -> ftype]
: ftype %shift { $1 }
| ftype tyop infixtype { $1 >>= \ $1 ->
$3 >>= \ $3 ->
do { when (looksLikeMult $1 $2 $3) $ hintLinear (getLocA $2)
; mkHsOpTyPV $1 $2 $3 } }
| unpackedness infixtype { $2 >>= \ $2 ->
mkUnpackednessPV $1 $2 }
ftype :: { forall b. DisambTD b => PV (LocatedA b) }
: atype { mkHsAppTyHeadPV $1 }
| tyop { failOpFewArgs $1 }
| ftype tyarg { $1 >>= \ $1 ->
mkHsAppTyPV $1 $2 }
| ftype PREFIX_AT atype { $1 >>= \ $1 ->
mkHsAppKindTyPV $1 (getLoc $2) $3 }
tyarg :: { LHsType GhcPs }
: atype { $1 }
| unpackedness atype {% addUnpackednessP $1 $2 }
tyop :: { LocatedN RdrName }
: qtyconop { $1 }
| tyvarop { $1 }
| SIMPLEQUOTE qconop {% amsrn (sLL $1 (reLoc $>) (unLoc $2))
(NameAnnQuote (glAA $1) (gl $2) []) }
| SIMPLEQUOTE varop {% amsrn (sLL $1 (reLoc $>) (unLoc $2))
(NameAnnQuote (glAA $1) (gl $2) []) }
atype :: { LHsType GhcPs }
: ntgtycon {% acsa (\cs -> sL1a (reLocN $1) (HsTyVar (EpAnn (glNR $1) [] cs) NotPromoted $1)) } -- Not including unit tuples
-- See Note [%shift: atype -> tyvar]
| tyvar %shift {% acsa (\cs -> sL1a (reLocN $1) (HsTyVar (EpAnn (glNR $1) [] cs) NotPromoted $1)) } -- (See Note [Unit tuples])
| '*' {% do { warnStarIsType (getLoc $1)
; return $ reLocA $ sL1 $1 (HsStarTy noExtField (isUnicode $1)) } }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
| PREFIX_TILDE atype {% acsA (\cs -> sLLlA $1 $> (mkBangTy (EpAnn (glR $1) [mj AnnTilde $1] cs) SrcLazy $2)) }
| PREFIX_BANG atype {% acsA (\cs -> sLLlA $1 $> (mkBangTy (EpAnn (glR $1) [mj AnnBang $1] cs) SrcStrict $2)) }
| '{' fielddecls '}' {% do { decls <- acsA (\cs -> (sLL $1 $> $ HsRecTy (EpAnn (glR $1) (AnnList (Just $ listAsAnchor $2) (Just $ moc $1) (Just $ mcc $3) [] []) cs) $2))
; checkRecordSyntax decls }}
-- Constructor sigs only
| '(' ')' {% acsA (\cs -> sLL $1 $> $ HsTupleTy (EpAnn (glR $1) (AnnParen AnnParens (glAA $1) (glAA $2)) cs)
HsBoxedOrConstraintTuple []) }
| '(' ktype ',' comma_types1 ')' {% do { h <- addTrailingCommaA $2 (gl $3)
; acsA (\cs -> sLL $1 $> $ HsTupleTy (EpAnn (glR $1) (AnnParen AnnParens (glAA $1) (glAA $5)) cs)
HsBoxedOrConstraintTuple (h : $4)) }}
| '(#' '#)' {% acsA (\cs -> sLL $1 $> $ HsTupleTy (EpAnn (glR $1) (AnnParen AnnParensHash (glAA $1) (glAA $2)) cs) HsUnboxedTuple []) }
| '(#' comma_types1 '#)' {% acsA (\cs -> sLL $1 $> $ HsTupleTy (EpAnn (glR $1) (AnnParen AnnParensHash (glAA $1) (glAA $3)) cs) HsUnboxedTuple $2) }
| '(#' bar_types2 '#)' {% acsA (\cs -> sLL $1 $> $ HsSumTy (EpAnn (glR $1) (AnnParen AnnParensHash (glAA $1) (glAA $3)) cs) $2) }
| '[' ktype ']' {% acsA (\cs -> sLL $1 $> $ HsListTy (EpAnn (glR $1) (AnnParen AnnParensSquare (glAA $1) (glAA $3)) cs) $2) }
| '(' ktype ')' {% acsA (\cs -> sLL $1 $> $ HsParTy (EpAnn (glR $1) (AnnParen AnnParens (glAA $1) (glAA $3)) cs) $2) }
| quasiquote { mapLocA (HsSpliceTy noExtField) $1 }
| splice_untyped { mapLocA (HsSpliceTy noExtField) $1 }
-- see Note [Promotion] for the followings
| SIMPLEQUOTE qcon_nowiredlist {% acsA (\cs -> sLL $1 (reLocN $>) $ HsTyVar (EpAnn (glR $1) [mj AnnSimpleQuote $1,mjN AnnName $2] cs) IsPromoted $2) }
| SIMPLEQUOTE '(' ktype ',' comma_types1 ')'
{% do { h <- addTrailingCommaA $3 (gl $4)
; acsA (\cs -> sLL $1 $> $ HsExplicitTupleTy (EpAnn (glR $1) [mj AnnSimpleQuote $1,mop $2,mcp $6] cs) (h : $5)) }}
| SIMPLEQUOTE '[' comma_types0 ']' {% acsA (\cs -> sLL $1 $> $ HsExplicitListTy (EpAnn (glR $1) [mj AnnSimpleQuote $1,mos $2,mcs $4] cs) IsPromoted $3) }
| SIMPLEQUOTE var {% acsA (\cs -> sLL $1 (reLocN $>) $ HsTyVar (EpAnn (glR $1) [mj AnnSimpleQuote $1,mjN AnnName $2] cs) IsPromoted $2) }
-- Two or more [ty, ty, ty] must be a promoted list type, just as
-- if you had written '[ty, ty, ty]
-- (One means a list type, zero means the list type constructor,
-- so you have to quote those.)
| '[' ktype ',' comma_types1 ']' {% do { h <- addTrailingCommaA $2 (gl $3)
; acsA (\cs -> sLL $1 $> $ HsExplicitListTy (EpAnn (glR $1) [mos $1,mcs $5] cs) NotPromoted (h:$4)) }}
| INTEGER { reLocA $ sLL $1 $> $ HsTyLit noExtField $ HsNumTy (getINTEGERs $1)
(il_value (getINTEGER $1)) }
| CHAR { reLocA $ sLL $1 $> $ HsTyLit noExtField $ HsCharTy (getCHARs $1)
(getCHAR $1) }
| STRING { reLocA $ sLL $1 $> $ HsTyLit noExtField $ HsStrTy (getSTRINGs $1)
(getSTRING $1) }
| '_' { reLocA $ sL1 $1 $ mkAnonWildCardTy }
-- An inst_type is what occurs in the head of an instance decl
-- e.g. (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type for convenience.
inst_type :: { LHsSigType GhcPs }
: sigtype { $1 }
deriv_types :: { [LHsSigType GhcPs] }
: sigktype { [$1] }
| sigktype ',' deriv_types {% do { h <- addTrailingCommaA $1 (gl $2)
; return (h : $3) } }
comma_types0 :: { [LHsType GhcPs] } -- Zero or more: ty,ty,ty
: comma_types1 { $1 }
| {- empty -} { [] }
comma_types1 :: { [LHsType GhcPs] } -- One or more: ty,ty,ty
: ktype { [$1] }
| ktype ',' comma_types1 {% do { h <- addTrailingCommaA $1 (gl $2)
; return (h : $3) }}
bar_types2 :: { [LHsType GhcPs] } -- Two or more: ty|ty|ty
: ktype '|' ktype {% do { h <- addTrailingVbarA $1 (gl $2)
; return [h,$3] }}
| ktype '|' bar_types2 {% do { h <- addTrailingVbarA $1 (gl $2)
; return (h : $3) }}
tv_bndrs :: { [LHsTyVarBndr Specificity GhcPs] }
: tv_bndr tv_bndrs { $1 : $2 }
| {- empty -} { [] }
tv_bndr :: { LHsTyVarBndr Specificity GhcPs }
: tv_bndr_no_braces { $1 }
| '{' tyvar '}' {% acsA (\cs -> sLL $1 $> (UserTyVar (EpAnn (glR $1) [moc $1, mcc $3] cs) InferredSpec $2)) }
| '{' tyvar '::' kind '}' {% acsA (\cs -> sLL $1 $> (KindedTyVar (EpAnn (glR $1) [moc $1,mu AnnDcolon $3 ,mcc $5] cs) InferredSpec $2 $4)) }
tv_bndr_no_braces :: { LHsTyVarBndr Specificity GhcPs }
: tyvar {% acsA (\cs -> (sL1 (reLocN $1) (UserTyVar (EpAnn (glNR $1) [] cs) SpecifiedSpec $1))) }
| '(' tyvar '::' kind ')' {% acsA (\cs -> (sLL $1 $> (KindedTyVar (EpAnn (glR $1) [mop $1,mu AnnDcolon $3 ,mcp $5] cs) SpecifiedSpec $2 $4))) }
fds :: { Located ([AddEpAnn],[LHsFunDep GhcPs]) }
: {- empty -} { noLoc ([],[]) }
| '|' fds1 { (sLL $1 $> ([mj AnnVbar $1]
,reverse (unLoc $2))) }
fds1 :: { Located [LHsFunDep GhcPs] }
: fds1 ',' fd {%
do { let (h:t) = unLoc $1 -- Safe from fds1 rules
; h' <- addTrailingCommaA h (gl $2)
; return (sLLlA $1 $> ($3 : h' : t)) }}
| fd { sL1A $1 [$1] }
fd :: { LHsFunDep GhcPs }
: varids0 '->' varids0 {% acsA (\cs -> L (comb3 $1 $2 $3)
(FunDep (EpAnn (glR $1) [mu AnnRarrow $2] cs)
(reverse (unLoc $1))
(reverse (unLoc $3)))) }
varids0 :: { Located [LocatedN RdrName] }
: {- empty -} { noLoc [] }
| varids0 tyvar { sLL $1 (reLocN $>) ($2 : (unLoc $1)) }
-----------------------------------------------------------------------------
-- Kinds
kind :: { LHsKind GhcPs }
: ctype { $1 }
{- Note [Promotion]
~~~~~~~~~~~~~~~~
- Syntax of promoted qualified names
We write 'Nat.Zero instead of Nat.'Zero when dealing with qualified
names. Moreover ticks are only allowed in types, not in kinds, for a
few reasons:
1. we don't need quotes since we cannot define names in kinds
2. if one day we merge types and kinds, tick would mean look in DataName
3. we don't have a kind namespace anyway
- Name resolution
When the user write Zero instead of 'Zero in types, we parse it a
HsTyVar ("Zero", TcClsName) instead of HsTyVar ("Zero", DataName). We
deal with this in the renamer. If a HsTyVar ("Zero", TcClsName) is not
bounded in the type level, then we look for it in the term level (we
change its namespace to DataName, see Note [Demotion] in GHC.Types.Names.OccName).
And both become a HsTyVar ("Zero", DataName) after the renamer.
-}
-----------------------------------------------------------------------------
-- Datatype declarations
gadt_constrlist :: { Located ([AddEpAnn]
,[LConDecl GhcPs]) } -- Returned in order
: 'where' '{' gadt_constrs '}' {% checkEmptyGADTs $
L (comb2 $1 $3)
([mj AnnWhere $1
,moc $2
,mcc $4]
, unLoc $3) }
| 'where' vocurly gadt_constrs close {% checkEmptyGADTs $
L (comb2 $1 $3)
([mj AnnWhere $1]
, unLoc $3) }
| {- empty -} { noLoc ([],[]) }
gadt_constrs :: { Located [LConDecl GhcPs] }
: gadt_constr ';' gadt_constrs
{% do { h <- addTrailingSemiA $1 (gl $2)
; return (L (comb2 (reLoc $1) $3) (h : unLoc $3)) }}
| gadt_constr { L (glA $1) [$1] }
| {- empty -} { noLoc [] }
-- We allow the following forms:
-- C :: Eq a => a -> T a
-- C :: forall a. Eq a => !a -> T a
-- D { x,y :: a } :: T a
-- forall a. Eq a => D { x,y :: a } :: T a
gadt_constr :: { LConDecl GhcPs }
-- see Note [Difference in parsing GADT and data constructors]
-- Returns a list because of: C,D :: ty
-- TODO:AZ capture the optSemi. Why leading?
: optSemi con_list '::' sigtype
{% mkGadtDecl (comb2A $2 $>) (unLoc $2) $4 [mu AnnDcolon $3] }
{- Note [Difference in parsing GADT and data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GADT constructors have simpler syntax than usual data constructors:
in GADTs, types cannot occur to the left of '::', so they cannot be mixed
with constructor names (see Note [Parsing data constructors is hard]).
Due to simplified syntax, GADT constructor names (left-hand side of '::')
use simpler grammar production than usual data constructor names. As a
consequence, GADT constructor names are restricted (names like '(*)' are
allowed in usual data constructors, but not in GADTs).
-}
constrs :: { Located ([AddEpAnn],[LConDecl GhcPs]) }
: '=' constrs1 { sLL $1 $2 ([mj AnnEqual $1],unLoc $2)}
constrs1 :: { Located [LConDecl GhcPs] }
: constrs1 '|' constr
{% do { let (h:t) = unLoc $1
; h' <- addTrailingVbarA h (gl $2)
; return (sLLlA $1 $> ($3 : h' : t)) }}
| constr { sL1A $1 [$1] }
constr :: { LConDecl GhcPs }
: forall context '=>' constr_stuff
{% acsA (\cs -> let (con,details) = unLoc $4 in
(L (comb4 $1 (reLoc $2) $3 $4) (mkConDeclH98
(EpAnn (spanAsAnchor (comb4 $1 (reLoc $2) $3 $4))
(mu AnnDarrow $3:(fst $ unLoc $1)) cs)
con
(snd $ unLoc $1)
(Just $2)
details))) }
| forall constr_stuff
{% acsA (\cs -> let (con,details) = unLoc $2 in
(L (comb2 $1 $2) (mkConDeclH98 (EpAnn (spanAsAnchor (comb2 $1 $2)) (fst $ unLoc $1) cs)
con
(snd $ unLoc $1)
Nothing -- No context
details))) }
forall :: { Located ([AddEpAnn], Maybe [LHsTyVarBndr Specificity GhcPs]) }
: 'forall' tv_bndrs '.' { sLL $1 $> ([mu AnnForall $1,mj AnnDot $3], Just $2) }
| {- empty -} { noLoc ([], Nothing) }
constr_stuff :: { Located (LocatedN RdrName, HsConDeclH98Details GhcPs) }
: infixtype {% fmap (reLoc. (mapLoc (\b -> (dataConBuilderCon b,
dataConBuilderDetails b))))
(runPV $1) }
fielddecls :: { [LConDeclField GhcPs] }
: {- empty -} { [] }
| fielddecls1 { $1 }
fielddecls1 :: { [LConDeclField GhcPs] }
: fielddecl ',' fielddecls1
{% do { h <- addTrailingCommaA $1 (gl $2)
; return (h : $3) }}
| fielddecl { [$1] }
fielddecl :: { LConDeclField GhcPs }
-- A list because of f,g :: Int
: sig_vars '::' ctype
{% acsA (\cs -> L (comb2 $1 (reLoc $3))
(ConDeclField (EpAnn (glR $1) [mu AnnDcolon $2] cs)
(reverse (map (\ln@(L l n) -> L (l2l l) $ FieldOcc noExtField ln) (unLoc $1))) $3 Nothing))}
-- Reversed!
maybe_derivings :: { Located (HsDeriving GhcPs) }
: {- empty -} { noLoc [] }
| derivings { $1 }
-- A list of one or more deriving clauses at the end of a datatype
derivings :: { Located (HsDeriving GhcPs) }
: derivings deriving { sLL $1 (reLoc $>) ($2 : unLoc $1) } -- AZ: order?
| deriving { sL1 (reLoc $>) [$1] }
-- The outer Located is just to allow the caller to
-- know the rightmost extremity of the 'deriving' clause
deriving :: { LHsDerivingClause GhcPs }
: 'deriving' deriv_clause_types
{% let { full_loc = comb2A $1 $> }
in acsA (\cs -> L full_loc $ HsDerivingClause (EpAnn (glR $1) [mj AnnDeriving $1] cs) Nothing $2) }
| 'deriving' deriv_strategy_no_via deriv_clause_types
{% let { full_loc = comb2A $1 $> }
in acsA (\cs -> L full_loc $ HsDerivingClause (EpAnn (glR $1) [mj AnnDeriving $1] cs) (Just $2) $3) }
| 'deriving' deriv_clause_types deriv_strategy_via
{% let { full_loc = comb2 $1 (reLoc $>) }
in acsA (\cs -> L full_loc $ HsDerivingClause (EpAnn (glR $1) [mj AnnDeriving $1] cs) (Just $3) $2) }
deriv_clause_types :: { LDerivClauseTys GhcPs }
: qtycon { let { tc = sL1 (reLocL $1) $ mkHsImplicitSigType $
sL1 (reLocL $1) $ HsTyVar noAnn NotPromoted $1 } in
sL1 (reLocC $1) (DctSingle noExtField tc) }
| '(' ')' {% amsrc (sLL $1 $> (DctMulti noExtField []))
(AnnContext Nothing [glAA $1] [glAA $2]) }
| '(' deriv_types ')' {% amsrc (sLL $1 $> (DctMulti noExtField $2))
(AnnContext Nothing [glAA $1] [glAA $3])}
-----------------------------------------------------------------------------
-- Value definitions
{- Note [Declaration/signature overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There's an awkward overlap with a type signature. Consider
f :: Int -> Int = ...rhs...
Then we can't tell whether it's a type signature or a value
definition with a result signature until we see the '='.
So we have to inline enough to postpone reductions until we know.
-}
{-
ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
instead of qvar, we get another shift/reduce-conflict. Consider the
following programs:
{ (^^) :: Int->Int ; } Type signature; only var allowed
{ (^^) :: Int->Int = ... ; } Value defn with result signature;
qvar allowed (because of instance decls)
We can't tell whether to reduce var to qvar until after we've read the signatures.
-}
decl_no_th :: { LHsDecl GhcPs }
: sigdecl { $1 }
| infixexp opt_sig rhs {% runPV (unECP $1) >>= \ $1 ->
do { let { l = comb2Al $1 $> }
; r <- checkValDef l $1 $2 $3;
-- Depending upon what the pattern looks like we might get either
-- a FunBind or PatBind back from checkValDef. See Note
-- [FunBind vs PatBind]
; cs <- getCommentsFor l
; return $! (sL (commentsA l cs) $ ValD noExtField r) } }
| pattern_synonym_decl { $1 }
decl :: { LHsDecl GhcPs }
: decl_no_th { $1 }
-- Why do we only allow naked declaration splices in top-level
-- declarations and not here? Short answer: because readFail009
-- fails terribly with a panic in cvBindsAndSigs otherwise.
| splice_exp {% mkSpliceDecl $1 }
rhs :: { Located (GRHSs GhcPs (LHsExpr GhcPs)) }
: '=' exp wherebinds {% runPV (unECP $2) >>= \ $2 ->
do { let L l (bs, csw) = adaptWhereBinds $3
; let loc = (comb3 $1 (reLoc $2) (L l bs))
; acs (\cs ->
sL loc (GRHSs csw (unguardedRHS (EpAnn (anc $ rs loc) (GrhsAnn Nothing (mj AnnEqual $1)) cs) loc $2)
bs)) } }
| gdrhs wherebinds {% do { let {L l (bs, csw) = adaptWhereBinds $2}
; acs (\cs -> sL (comb2 $1 (L l bs))
(GRHSs (cs Semi.<> csw) (reverse (unLoc $1)) bs)) }}
gdrhs :: { Located [LGRHS GhcPs (LHsExpr GhcPs)] }
: gdrhs gdrh { sLL $1 (reLoc $>) ($2 : unLoc $1) }
| gdrh { sL1 (reLoc $1) [$1] }
gdrh :: { LGRHS GhcPs (LHsExpr GhcPs) }
: '|' guardquals '=' exp {% runPV (unECP $4) >>= \ $4 ->
acsA (\cs -> sL (comb2A $1 $>) $ GRHS (EpAnn (glR $1) (GrhsAnn (Just $ glAA $1) (mj AnnEqual $3)) cs) (unLoc $2) $4) }
sigdecl :: { LHsDecl GhcPs }
:
-- See Note [Declaration/signature overlap] for why we need infixexp here
infixexp '::' sigtype
{% do { $1 <- runPV (unECP $1)
; v <- checkValSigLhs $1
; acsA (\cs -> (sLLAl $1 (reLoc $>) $ SigD noExtField $
TypeSig (EpAnn (glAR $1) (AnnSig (mu AnnDcolon $2) []) cs) [v] (mkHsWildCardBndrs $3)))} }
| var ',' sig_vars '::' sigtype
{% do { v <- addTrailingCommaN $1 (gl $2)
; let sig cs = TypeSig (EpAnn (glNR $1) (AnnSig (mu AnnDcolon $4) []) cs) (v : reverse (unLoc $3))
(mkHsWildCardBndrs $5)
; acsA (\cs -> sLL (reLocN $1) (reLoc $>) $ SigD noExtField (sig cs) ) }}
| infix prec ops
{% checkPrecP $2 $3 >>
acsA (\cs -> sLL $1 $> $ SigD noExtField
(FixSig (EpAnn (glR $1) [mj AnnInfix $1,mj AnnVal $2] cs) (FixitySig noExtField (fromOL $ unLoc $3)
(Fixity (fst $ unLoc $2) (snd $ unLoc $2) (unLoc $1))))) }
| pattern_synonym_sig { sL1 $1 . SigD noExtField . unLoc $ $1 }
| '{-# COMPLETE' con_list opt_tyconsig '#-}'
{% let (dcolon, tc) = $3
in acsA
(\cs -> sLL $1 $>
(SigD noExtField (CompleteMatchSig (EpAnn (glR $1) ([ mo $1 ] ++ dcolon ++ [mc $4]) cs) (getCOMPLETE_PRAGs $1) $2 tc))) }
-- This rule is for both INLINE and INLINABLE pragmas
| '{-# INLINE' activation qvarcon '#-}'
{% acsA (\cs -> (sLL $1 $> $ SigD noExtField (InlineSig (EpAnn (glR $1) ((mo $1:fst $2) ++ [mc $4]) cs) $3
(mkInlinePragma (getINLINE_PRAGs $1) (getINLINE $1)
(snd $2))))) }
| '{-# SCC' qvar '#-}'
{% acsA (\cs -> sLL $1 $> (SigD noExtField (SCCFunSig (EpAnn (glR $1) [mo $1, mc $3] cs) (getSCC_PRAGs $1) $2 Nothing))) }
| '{-# SCC' qvar STRING '#-}'
{% do { scc <- getSCC $3
; let str_lit = StringLiteral (getSTRINGs $3) scc Nothing
; acsA (\cs -> sLL $1 $> (SigD noExtField (SCCFunSig (EpAnn (glR $1) [mo $1, mc $4] cs) (getSCC_PRAGs $1) $2 (Just ( sL1a $3 str_lit))))) }}
| '{-# SPECIALISE' activation qvar '::' sigtypes1 '#-}'
{% acsA (\cs ->
let inl_prag = mkInlinePragma (getSPEC_PRAGs $1)
(NoUserInlinePrag, FunLike) (snd $2)
in sLL $1 $> $ SigD noExtField (SpecSig (EpAnn (glR $1) (mo $1:mu AnnDcolon $4:mc $6:(fst $2)) cs) $3 (fromOL $5) inl_prag)) }
| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
{% acsA (\cs -> sLL $1 $> $ SigD noExtField (SpecSig (EpAnn (glR $1) (mo $1:mu AnnDcolon $4:mc $6:(fst $2)) cs) $3 (fromOL $5)
(mkInlinePragma (getSPEC_INLINE_PRAGs $1)
(getSPEC_INLINE $1) (snd $2)))) }
| '{-# SPECIALISE' 'instance' inst_type '#-}'
{% acsA (\cs -> sLL $1 $>
$ SigD noExtField (SpecInstSig (EpAnn (glR $1) [mo $1,mj AnnInstance $2,mc $4] cs) (getSPEC_PRAGs $1) $3)) }
-- A minimal complete definition
| '{-# MINIMAL' name_boolformula_opt '#-}'
{% acsA (\cs -> sLL $1 $> $ SigD noExtField (MinimalSig (EpAnn (glR $1) [mo $1,mc $3] cs) (getMINIMAL_PRAGs $1) $2)) }
activation :: { ([AddEpAnn],Maybe Activation) }
-- See Note [%shift: activation -> {- empty -}]
: {- empty -} %shift { ([],Nothing) }
| explicit_activation { (fst $1,Just (snd $1)) }
explicit_activation :: { ([AddEpAnn],Activation) } -- In brackets
: '[' INTEGER ']' { ([mj AnnOpenS $1,mj AnnVal $2,mj AnnCloseS $3]
,ActiveAfter (getINTEGERs $2) (fromInteger (il_value (getINTEGER $2)))) }
| '[' rule_activation_marker INTEGER ']'
{ ($2++[mj AnnOpenS $1,mj AnnVal $3,mj AnnCloseS $4]
,ActiveBefore (getINTEGERs $3) (fromInteger (il_value (getINTEGER $3)))) }
-----------------------------------------------------------------------------
-- Expressions
quasiquote :: { Located (HsSplice GhcPs) }
: TH_QUASIQUOTE { let { loc = getLoc $1
; ITquasiQuote (quoter, quote, quoteSpan) = unLoc $1
; quoterId = mkUnqual varName quoter }
in sL1 $1 (mkHsQuasiQuote quoterId (mkSrcSpanPs quoteSpan) quote) }
| TH_QQUASIQUOTE { let { loc = getLoc $1
; ITqQuasiQuote (qual, quoter, quote, quoteSpan) = unLoc $1
; quoterId = mkQual varName (qual, quoter) }
in sL1 $1 (mkHsQuasiQuote quoterId (mkSrcSpanPs quoteSpan) quote) }
exp :: { ECP }
: infixexp '::' ctype
{ ECP $
unECP $1 >>= \ $1 ->
rejectPragmaPV $1 >>
mkHsTySigPV (noAnnSrcSpan $ comb2Al $1 (reLoc $>)) $1 $3
[(mu AnnDcolon $2)] }
| infixexp '-<' exp {% runPV (unECP $1) >>= \ $1 ->
runPV (unECP $3) >>= \ $3 ->
fmap ecpFromCmd $
acsA (\cs -> sLLAA $1 $> $ HsCmdArrApp (EpAnn (glAR $1) (mu Annlarrowtail $2) cs) $1 $3
HsFirstOrderApp True) }
| infixexp '>-' exp {% runPV (unECP $1) >>= \ $1 ->
runPV (unECP $3) >>= \ $3 ->
fmap ecpFromCmd $
acsA (\cs -> sLLAA $1 $> $ HsCmdArrApp (EpAnn (glAR $1) (mu Annrarrowtail $2) cs) $3 $1
HsFirstOrderApp False) }
| infixexp '-<<' exp {% runPV (unECP $1) >>= \ $1 ->
runPV (unECP $3) >>= \ $3 ->
fmap ecpFromCmd $
acsA (\cs -> sLLAA $1 $> $ HsCmdArrApp (EpAnn (glAR $1) (mu AnnLarrowtail $2) cs) $1 $3
HsHigherOrderApp True) }
| infixexp '>>-' exp {% runPV (unECP $1) >>= \ $1 ->
runPV (unECP $3) >>= \ $3 ->
fmap ecpFromCmd $
acsA (\cs -> sLLAA $1 $> $ HsCmdArrApp (EpAnn (glAR $1) (mu AnnRarrowtail $2) cs) $3 $1
HsHigherOrderApp False) }
-- See Note [%shift: exp -> infixexp]
| infixexp %shift { $1 }
| exp_prag(exp) { $1 } -- See Note [Pragmas and operator fixity]
infixexp :: { ECP }
: exp10 { $1 }
| infixexp qop exp10p -- See Note [Pragmas and operator fixity]
{ ECP $
superInfixOp $
$2 >>= \ $2 ->
unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
rejectPragmaPV $1 >>
(mkHsOpAppPV (comb2A (reLoc $1) $3) $1 $2 $3) }
-- AnnVal annotation for NPlusKPat, which discards the operator
exp10p :: { ECP }
: exp10 { $1 }
| exp_prag(exp10p) { $1 } -- See Note [Pragmas and operator fixity]
exp_prag(e) :: { ECP }
: prag_e e -- See Note [Pragmas and operator fixity]
{% runPV (unECP $2) >>= \ $2 ->
fmap ecpFromExp $
return $ (reLocA $ sLLlA $1 $> $ HsPragE noExtField (unLoc $1) $2) }
exp10 :: { ECP }
-- See Note [%shift: exp10 -> '-' fexp]
: '-' fexp %shift { ECP $
unECP $2 >>= \ $2 ->
mkHsNegAppPV (comb2A $1 $>) $2
[mj AnnMinus $1] }
-- See Note [%shift: exp10 -> fexp]
| fexp %shift { $1 }
optSemi :: { (Maybe EpaLocation,Bool) }
: ';' { (msemim $1,True) }
| {- empty -} { (Nothing,False) }
{- Note [Pragmas and operator fixity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'prag_e' is an expression pragma, such as {-# SCC ... #-}.
It must be used with care, or else #15730 happens. Consider this infix
expression:
1 / 2 / 2
There are two ways to parse it:
1. (1 / 2) / 2 = 0.25
2. 1 / (2 / 2) = 1.0
Due to the fixity of the (/) operator (assuming it comes from Prelude),
option 1 is the correct parse. However, in the past GHC's parser used to get
confused by the SCC annotation when it occurred in the middle of an infix
expression:
1 / {-# SCC ann #-} 2 / 2 -- used to get parsed as option 2
There are several ways to address this issue, see GHC Proposal #176 for a
detailed exposition:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0176-scc-parsing.rst
The accepted fix is to disallow pragmas that occur within infix expressions.
Infix expressions are assembled out of 'exp10', so 'exp10' must not accept
pragmas. Instead, we accept them in exactly two places:
* at the start of an expression or a parenthesized subexpression:
f = {-# SCC ann #-} 1 / 2 / 2 -- at the start of the expression
g = 5 + ({-# SCC ann #-} 1 / 2 / 2) -- at the start of a parenthesized subexpression
* immediately after the last operator:
f = 1 / 2 / {-# SCC ann #-} 2
In both cases, the parse does not depend on operator fixity. The second case
may sound unnecessary, but it's actually needed to support a common idiom:
f $ {-# SCC ann $-} ...
-}
prag_e :: { Located (HsPragE GhcPs) }
: '{-# SCC' STRING '#-}' {% do { scc <- getSCC $2
; acs (\cs -> (sLL $1 $>
(HsPragSCC
(EpAnn (glR $1) (AnnPragma (mo $1) (mc $3) [mj AnnValStr $2]) cs)
(getSCC_PRAGs $1)
(StringLiteral (getSTRINGs $2) scc Nothing))))} }
| '{-# SCC' VARID '#-}' {% acs (\cs -> (sLL $1 $>
(HsPragSCC
(EpAnn (glR $1) (AnnPragma (mo $1) (mc $3) [mj AnnVal $2]) cs)
(getSCC_PRAGs $1)
(StringLiteral NoSourceText (getVARID $2) Nothing)))) }
fexp :: { ECP }
: fexp aexp { ECP $
superFunArg $
unECP $1 >>= \ $1 ->
unECP $2 >>= \ $2 ->
mkHsAppPV (noAnnSrcSpan $ comb2A (reLoc $1) $>) $1 $2 }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
| fexp PREFIX_AT atype { ECP $
unECP $1 >>= \ $1 ->
mkHsAppTypePV (noAnnSrcSpan $ comb2 (reLoc $1) (reLoc $>)) $1 (getLoc $2) $3 }
| 'static' aexp {% runPV (unECP $2) >>= \ $2 ->
fmap ecpFromExp $
acsA (\cs -> sLL $1 (reLoc $>) $ HsStatic (EpAnn (glR $1) [mj AnnStatic $1] cs) $2) }
| aexp { $1 }
aexp :: { ECP }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
: qvar TIGHT_INFIX_AT aexp
{ ECP $
unECP $3 >>= \ $3 ->
mkHsAsPatPV (comb2 (reLocN $1) (reLoc $>)) $1 $3 [mj AnnAt $2] }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
| PREFIX_TILDE aexp { ECP $
unECP $2 >>= \ $2 ->
mkHsLazyPatPV (comb2 $1 (reLoc $>)) $2 [mj AnnTilde $1] }
| PREFIX_BANG aexp { ECP $
unECP $2 >>= \ $2 ->
mkHsBangPatPV (comb2 $1 (reLoc $>)) $2 [mj AnnBang $1] }
| PREFIX_MINUS aexp { ECP $
unECP $2 >>= \ $2 ->
mkHsNegAppPV (comb2A $1 $>) $2 [mj AnnMinus $1] }
| '\\' apats '->' exp
{ ECP $
unECP $4 >>= \ $4 ->
mkHsLamPV (comb2 $1 (reLoc $>)) (\cs -> mkMatchGroup FromSource
(reLocA $ sLLlA $1 $>
[reLocA $ sLLlA $1 $>
$ Match { m_ext = EpAnn (glR $1) [mj AnnLam $1] cs
, m_ctxt = LambdaExpr
, m_pats = $2
, m_grhss = unguardedGRHSs (comb2 $3 (reLoc $4)) $4 (EpAnn (glR $3) (GrhsAnn Nothing (mu AnnRarrow $3)) emptyComments) }])) }
| 'let' binds 'in' exp { ECP $
unECP $4 >>= \ $4 ->
mkHsLetPV (comb2A $1 $>) (hsTok $1) (unLoc $2) (hsTok $3) $4 }
| '\\' 'lcase' altslist
{ ECP $ $3 >>= \ $3 ->
mkHsLamCasePV (comb2 $1 (reLoc $>)) $3 [mj AnnLam $1,mj AnnCase $2] }
| 'if' exp optSemi 'then' exp optSemi 'else' exp
{% runPV (unECP $2) >>= \ ($2 :: LHsExpr GhcPs) ->
return $ ECP $
unECP $5 >>= \ $5 ->
unECP $8 >>= \ $8 ->
mkHsIfPV (comb2A $1 $>) $2 (snd $3) $5 (snd $6) $8
(AnnsIf
{ aiIf = glAA $1
, aiThen = glAA $4
, aiElse = glAA $7
, aiThenSemi = fst $3
, aiElseSemi = fst $6})}
| 'if' ifgdpats {% hintMultiWayIf (getLoc $1) >>= \_ ->
fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsMultiIf (EpAnn (glR $1) (mj AnnIf $1:(fst $ unLoc $2)) cs)
(reverse $ snd $ unLoc $2)) }
| 'case' exp 'of' altslist {% runPV (unECP $2) >>= \ ($2 :: LHsExpr GhcPs) ->
return $ ECP $
$4 >>= \ $4 ->
mkHsCasePV (comb3 $1 $3 (reLoc $4)) $2 $4
(EpAnnHsCase (glAA $1) (glAA $3) []) }
-- QualifiedDo.
| DO stmtlist {% do
hintQualifiedDo $1
return $ ECP $
$2 >>= \ $2 ->
mkHsDoPV (comb2A $1 $2)
(fmap mkModuleNameFS (getDO $1))
$2
(AnnList (Just $ glAR $2) Nothing Nothing [mj AnnDo $1] []) }
| MDO stmtlist {% hintQualifiedDo $1 >> runPV $2 >>= \ $2 ->
fmap ecpFromExp $
acsA (\cs -> L (comb2A $1 $2)
(mkHsDoAnns (MDoExpr $
fmap mkModuleNameFS (getMDO $1))
$2
(EpAnn (glR $1) (AnnList (Just $ glAR $2) Nothing Nothing [mj AnnMdo $1] []) cs) )) }
| 'proc' aexp '->' exp
{% (checkPattern <=< runPV) (unECP $2) >>= \ p ->
runPV (unECP $4) >>= \ $4@cmd ->
fmap ecpFromExp $
acsA (\cs -> sLLlA $1 $> $ HsProc (EpAnn (glR $1) [mj AnnProc $1,mu AnnRarrow $3] cs) p (sLLa $1 (reLoc $>) $ HsCmdTop noExtField cmd)) }
| aexp1 { $1 }
aexp1 :: { ECP }
: aexp1 '{' fbinds '}' { ECP $
getBit OverloadedRecordUpdateBit >>= \ overloaded ->
unECP $1 >>= \ $1 ->
$3 >>= \ $3 ->
mkHsRecordPV overloaded (comb2 (reLoc $1) $>) (comb2 $2 $4) $1 $3
[moc $2,mcc $4]
}
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
| aexp1 TIGHT_INFIX_PROJ field
{% runPV (unECP $1) >>= \ $1 ->
fmap ecpFromExp $ acsa (\cs ->
let fl = sLLa $2 $> (DotFieldOcc ((EpAnn (glR $2) (AnnFieldLabel (Just $ glAA $2)) emptyComments)) (reLocA $3)) in
mkRdrGetField (noAnnSrcSpan $ comb2 (reLoc $1) $>) $1 fl (EpAnn (glAR $1) NoEpAnns cs)) }
| aexp2 { $1 }
aexp2 :: { ECP }
: qvar { ECP $ mkHsVarPV $! $1 }
| qcon { ECP $ mkHsVarPV $! $1 }
-- See Note [%shift: aexp2 -> ipvar]
| ipvar %shift {% acsExpr (\cs -> sL1a $1 (HsIPVar (comment (glRR $1) cs) $! unLoc $1)) }
| overloaded_label {% acsExpr (\cs -> sL1a $1 (HsOverLabel (comment (glRR $1) cs) $! unLoc $1)) }
| literal { ECP $ pvA (mkHsLitPV $! $1) }
-- This will enable overloaded strings permanently. Normally the renamer turns HsString
-- into HsOverLit when -foverloaded-strings is on.
-- | STRING { sL (getLoc $1) (HsOverLit $! mkHsIsString (getSTRINGs $1)
-- (getSTRING $1) noExtField) }
| INTEGER { ECP $ mkHsOverLitPV (sL1a $1 $ mkHsIntegral (getINTEGER $1)) }
| RATIONAL { ECP $ mkHsOverLitPV (sL1a $1 $ mkHsFractional (getRATIONAL $1)) }
-- N.B.: sections get parsed by these next two productions.
-- This allows you to write, e.g., '(+ 3, 4 -)', which isn't
-- correct Haskell (you'd have to write '((+ 3), (4 -))')
-- but the less cluttered version fell out of having texps.
| '(' texp ')' { ECP $
unECP $2 >>= \ $2 ->
mkHsParPV (comb2 $1 $>) (hsTok $1) $2 (hsTok $3) }
| '(' tup_exprs ')' { ECP $
$2 >>= \ $2 ->
mkSumOrTuplePV (noAnnSrcSpan $ comb2 $1 $>) Boxed $2
[mop $1,mcp $3]}
-- This case is only possible when 'OverloadedRecordDotBit' is enabled.
| '(' projection ')' { ECP $
acsA (\cs -> sLL $1 $> $ mkRdrProjection (NE.reverse (unLoc $2)) (EpAnn (glR $1) (AnnProjection (glAA $1) (glAA $3)) cs))
>>= ecpFromExp'
}
| '(#' texp '#)' { ECP $
unECP $2 >>= \ $2 ->
mkSumOrTuplePV (noAnnSrcSpan $ comb2 $1 $>) Unboxed (Tuple [Right $2])
[moh $1,mch $3] }
| '(#' tup_exprs '#)' { ECP $
$2 >>= \ $2 ->
mkSumOrTuplePV (noAnnSrcSpan $ comb2 $1 $>) Unboxed $2
[moh $1,mch $3] }
| '[' list ']' { ECP $ $2 (comb2 $1 $>) (mos $1,mcs $3) }
| '_' { ECP $ pvA $ mkHsWildCardPV (getLoc $1) }
-- Template Haskell Extension
| splice_untyped { ECP $ pvA $ mkHsSplicePV $1 }
| splice_typed { ecpFromExp $ mapLoc (HsSpliceE noAnn) (reLocA $1) }
| SIMPLEQUOTE qvar {% fmap ecpFromExp $ acsA (\cs -> sLL $1 (reLocN $>) $ HsBracket (EpAnn (glR $1) [mj AnnSimpleQuote $1] cs) (VarBr noExtField True $2)) }
| SIMPLEQUOTE qcon {% fmap ecpFromExp $ acsA (\cs -> sLL $1 (reLocN $>) $ HsBracket (EpAnn (glR $1) [mj AnnSimpleQuote $1] cs) (VarBr noExtField True $2)) }
| TH_TY_QUOTE tyvar {% fmap ecpFromExp $ acsA (\cs -> sLL $1 (reLocN $>) $ HsBracket (EpAnn (glR $1) [mj AnnThTyQuote $1 ] cs) (VarBr noExtField False $2)) }
| TH_TY_QUOTE gtycon {% fmap ecpFromExp $ acsA (\cs -> sLL $1 (reLocN $>) $ HsBracket (EpAnn (glR $1) [mj AnnThTyQuote $1 ] cs) (VarBr noExtField False $2)) }
-- See Note [%shift: aexp2 -> TH_TY_QUOTE]
| TH_TY_QUOTE %shift {% reportEmptyDoubleQuotes (getLoc $1) }
| '[|' exp '|]' {% runPV (unECP $2) >>= \ $2 ->
fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsBracket (EpAnn (glR $1) (if (hasE $1) then [mj AnnOpenE $1, mu AnnCloseQ $3]
else [mu AnnOpenEQ $1,mu AnnCloseQ $3]) cs) (ExpBr noExtField $2)) }
| '[||' exp '||]' {% runPV (unECP $2) >>= \ $2 ->
fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsBracket (EpAnn (glR $1) (if (hasE $1) then [mj AnnOpenE $1,mc $3] else [mo $1,mc $3]) cs) (TExpBr noExtField $2)) }
| '[t|' ktype '|]' {% fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsBracket (EpAnn (glR $1) [mo $1,mu AnnCloseQ $3] cs) (TypBr noExtField $2)) }
| '[p|' infixexp '|]' {% (checkPattern <=< runPV) (unECP $2) >>= \p ->
fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsBracket (EpAnn (glR $1) [mo $1,mu AnnCloseQ $3] cs) (PatBr noExtField p)) }
| '[d|' cvtopbody '|]' {% fmap ecpFromExp $
acsA (\cs -> sLL $1 $> $ HsBracket (EpAnn (glR $1) (mo $1:mu AnnCloseQ $3:fst $2) cs) (DecBrL noExtField (snd $2))) }
| quasiquote { ECP $ pvA $ mkHsSplicePV $1 }
-- arrow notation extension
| '(|' aexp cmdargs '|)' {% runPV (unECP $2) >>= \ $2 ->
fmap ecpFromCmd $
acsA (\cs -> sLL $1 $> $ HsCmdArrForm (EpAnn (glR $1) (AnnList (Just $ glR $1) (Just $ mu AnnOpenB $1) (Just $ mu AnnCloseB $4) [] []) cs) $2 Prefix
Nothing (reverse $3)) }
projection :: { Located (NonEmpty (LocatedAn NoEpAnns (DotFieldOcc GhcPs))) }
projection
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parsing.Lexer
: projection TIGHT_INFIX_PROJ field
{% acs (\cs -> sLL $1 $> ((sLLa $2 $> $ DotFieldOcc (EpAnn (glR $1) (AnnFieldLabel (Just $ glAA $2)) cs) (reLocA $3)) `NE.cons` unLoc $1)) }
| PREFIX_PROJ field {% acs (\cs -> sLL $1 $> ((sLLa $1 $> $ DotFieldOcc (EpAnn (glR $1) (AnnFieldLabel (Just $ glAA $1)) cs) (reLocA $2)) :| [])) }
splice_exp :: { LHsExpr GhcPs }
: splice_untyped { mapLoc (HsSpliceE noAnn) (reLocA $1) }
| splice_typed { mapLoc (HsSpliceE noAnn) (reLocA $1) }
splice_untyped :: { Located (HsSplice GhcPs) }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
: PREFIX_DOLLAR aexp2 {% runPV (unECP $2) >>= \ $2 ->
acs (\cs -> sLLlA $1 $> $ mkUntypedSplice (EpAnn (glR $1) [mj AnnDollar $1] cs) DollarSplice $2) }
splice_typed :: { Located (HsSplice GhcPs) }
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
: PREFIX_DOLLAR_DOLLAR aexp2
{% runPV (unECP $2) >>= \ $2 ->
acs (\cs -> sLLlA $1 $> $ mkTypedSplice (EpAnn (glR $1) [mj AnnDollarDollar $1] cs) DollarSplice $2) }
cmdargs :: { [LHsCmdTop GhcPs] }
: cmdargs acmd { $2 : $1 }
| {- empty -} { [] }
acmd :: { LHsCmdTop GhcPs }
: aexp {% runPV (unECP $1) >>= \ (cmd :: LHsCmd GhcPs) ->
runPV (checkCmdBlockArguments cmd) >>= \ _ ->
return (sL1a (reLoc cmd) $ HsCmdTop noExtField cmd) }
cvtopbody :: { ([AddEpAnn],[LHsDecl GhcPs]) }
: '{' cvtopdecls0 '}' { ([mj AnnOpenC $1
,mj AnnCloseC $3],$2) }
| vocurly cvtopdecls0 close { ([],$2) }
cvtopdecls0 :: { [LHsDecl GhcPs] }
: topdecls_semi { cvTopDecls $1 }
| topdecls { cvTopDecls $1 }
-----------------------------------------------------------------------------
-- Tuple expressions
-- "texp" is short for tuple expressions:
-- things that can appear unparenthesized as long as they're
-- inside parens or delimited by commas
texp :: { ECP }
: exp { $1 }
-- Note [Parsing sections]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- We include left and right sections here, which isn't
-- technically right according to the Haskell standard.
-- For example (3 +, True) isn't legal.
-- However, we want to parse bang patterns like
-- (!x, !y)
-- and it's convenient to do so here as a section
-- Then when converting expr to pattern we unravel it again
-- Meanwhile, the renamer checks that real sections appear
-- inside parens.
| infixexp qop
{% runPV (unECP $1) >>= \ $1 ->
runPV (rejectPragmaPV $1) >>
runPV $2 >>= \ $2 ->
return $ ecpFromExp $
reLocA $ sLL (reLoc $1) (reLocN $>) $ SectionL noAnn $1 (n2l $2) }
| qopm infixexp { ECP $
superInfixOp $
unECP $2 >>= \ $2 ->
$1 >>= \ $1 ->
pvA $ mkHsSectionR_PV (comb2 (reLocN $1) (reLoc $>)) (n2l $1) $2 }
-- View patterns get parenthesized above
| exp '->' texp { ECP $
unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
mkHsViewPatPV (comb2 (reLoc $1) (reLoc $>)) $1 $3 [mu AnnRarrow $2] }
-- Always at least one comma or bar.
-- Though this can parse just commas (without any expressions), it won't
-- in practice, because (,,,) is parsed as a name. See Note [ExplicitTuple]
-- in GHC.Hs.Expr.
tup_exprs :: { forall b. DisambECP b => PV (SumOrTuple b) }
: texp commas_tup_tail
{ unECP $1 >>= \ $1 ->
$2 >>= \ $2 ->
do { t <- amsA $1 [AddCommaAnn (EpaSpan $ rs $ fst $2)]
; return (Tuple (Right t : snd $2)) } }
| commas tup_tail
{ $2 >>= \ $2 ->
do { let {cos = map (\ll -> (Left (EpAnn (anc $ rs ll) (EpaSpan $ rs ll) emptyComments))) (fst $1) }
; return (Tuple (cos ++ $2)) } }
| texp bars { unECP $1 >>= \ $1 -> return $
(Sum 1 (snd $2 + 1) $1 [] (fst $2)) }
| bars texp bars0
{ unECP $2 >>= \ $2 -> return $
(Sum (snd $1 + 1) (snd $1 + snd $3 + 1) $2 (fst $1) (fst $3)) }
-- Always starts with commas; always follows an expr
commas_tup_tail :: { forall b. DisambECP b => PV (SrcSpan,[Either (EpAnn EpaLocation) (LocatedA b)]) }
commas_tup_tail : commas tup_tail
{ $2 >>= \ $2 ->
do { let {cos = map (\l -> (Left (EpAnn (anc $ rs l) (EpaSpan $ rs l) emptyComments))) (tail $ fst $1) }
; return ((head $ fst $1, cos ++ $2)) } }
-- Always follows a comma
tup_tail :: { forall b. DisambECP b => PV [Either (EpAnn EpaLocation) (LocatedA b)] }
: texp commas_tup_tail { unECP $1 >>= \ $1 ->
$2 >>= \ $2 ->
do { t <- amsA $1 [AddCommaAnn (EpaSpan $ rs $ fst $2)]
; return (Right t : snd $2) } }
| texp { unECP $1 >>= \ $1 ->
return [Right $1] }
-- See Note [%shift: tup_tail -> {- empty -}]
| {- empty -} %shift { return [Left noAnn] }
-----------------------------------------------------------------------------
-- List expressions
-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.
-- Never empty.
list :: { forall b. DisambECP b => SrcSpan -> (AddEpAnn, AddEpAnn) -> PV (LocatedA b) }
: texp { \loc (ao,ac) -> unECP $1 >>= \ $1 ->
mkHsExplicitListPV loc [$1] (AnnList Nothing (Just ao) (Just ac) [] []) }
| lexps { \loc (ao,ac) -> $1 >>= \ $1 ->
mkHsExplicitListPV loc (reverse $1) (AnnList Nothing (Just ao) (Just ac) [] []) }
| texp '..' { \loc (ao,ac) -> unECP $1 >>= \ $1 ->
acsA (\cs -> L loc $ ArithSeq (EpAnn (spanAsAnchor loc) [ao,mj AnnDotdot $2,ac] cs) Nothing (From $1))
>>= ecpFromExp' }
| texp ',' exp '..' { \loc (ao,ac) ->
unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
acsA (\cs -> L loc $ ArithSeq (EpAnn (spanAsAnchor loc) [ao,mj AnnComma $2,mj AnnDotdot $4,ac] cs) Nothing (FromThen $1 $3))
>>= ecpFromExp' }
| texp '..' exp { \loc (ao,ac) ->
unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
acsA (\cs -> L loc $ ArithSeq (EpAnn (spanAsAnchor loc) [ao,mj AnnDotdot $2,ac] cs) Nothing (FromTo $1 $3))
>>= ecpFromExp' }
| texp ',' exp '..' exp { \loc (ao,ac) ->
unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
unECP $5 >>= \ $5 ->
acsA (\cs -> L loc $ ArithSeq (EpAnn (spanAsAnchor loc) [ao,mj AnnComma $2,mj AnnDotdot $4,ac] cs) Nothing (FromThenTo $1 $3 $5))
>>= ecpFromExp' }
| texp '|' flattenedpquals
{ \loc (ao,ac) ->
checkMonadComp >>= \ ctxt ->
unECP $1 >>= \ $1 -> do { t <- addTrailingVbarA $1 (gl $2)
; acsA (\cs -> L loc $ mkHsCompAnns ctxt (unLoc $3) t (EpAnn (spanAsAnchor loc) (AnnList Nothing (Just ao) (Just ac) [] []) cs))
>>= ecpFromExp' } }
lexps :: { forall b. DisambECP b => PV [LocatedA b] }
: lexps ',' texp { $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
case $1 of
(h:t) -> do
h' <- addTrailingCommaA h (gl $2)
return (((:) $! $3) $! (h':t)) }
| texp ',' texp { unECP $1 >>= \ $1 ->
unECP $3 >>= \ $3 ->
do { h <- addTrailingCommaA $1 (gl $2)
; return [$3,h] }}
-----------------------------------------------------------------------------
-- List Comprehensions
flattenedpquals :: { Located [LStmt GhcPs (LHsExpr GhcPs)] }
: pquals { case (unLoc $1) of
[qs] -> sL1 $1 qs
-- We just had one thing in our "parallel" list so
-- we simply return that thing directly
qss -> sL1 $1 [sL1a $1 $ ParStmt noExtField [ParStmtBlock noExtField qs [] noSyntaxExpr |
qs <- qss]
noExpr noSyntaxExpr]
-- We actually found some actual parallel lists so
-- we wrap them into as a ParStmt
}
pquals :: { Located [[LStmt GhcPs (LHsExpr GhcPs)]] }
: squals '|' pquals
{% case unLoc $1 of
(h:t) -> do
h' <- addTrailingVbarA h (gl $2)
return (sLL $1 $> (reverse (h':t) : unLoc $3)) }
| squals { L (getLoc $1) [reverse (unLoc $1)] }
squals :: { Located [LStmt GhcPs (LHsExpr GhcPs)] } -- In reverse order, because the last
-- one can "grab" the earlier ones
: squals ',' transformqual
{% case unLoc $1 of
(h:t) -> do
h' <- addTrailingCommaA h (gl $2)
return (sLL $1 $> [sLLa $1 $> ((unLoc $3) (glRR $1) (reverse (h':t)))]) }
| squals ',' qual
{% runPV $3 >>= \ $3 ->
case unLoc $1 of
(h:t) -> do
h' <- addTrailingCommaA h (gl $2)
return (sLL $1 (reLoc $>) ($3 : (h':t))) }
| transformqual {% return (sLL $1 $> [L (getLocAnn $1) ((unLoc $1) (glRR $1) [])]) }
| qual {% runPV $1 >>= \ $1 ->
return $ sL1A $1 [$1] }
-- | transformquals1 ',' '{|' pquals '|}' { sLL $1 $> ($4 : unLoc $1) }
-- | '{|' pquals '|}' { sL1 $1 [$2] }
-- It is possible to enable bracketing (associating) qualifier lists
-- by uncommenting the lines with {| |} above. Due to a lack of
-- consensus on the syntax, this feature is not being used until we
-- get user demand.
transformqual :: { Located (RealSrcSpan -> [LStmt GhcPs (LHsExpr GhcPs)] -> Stmt GhcPs (LHsExpr GhcPs)) }
-- Function is applied to a list of stmts *in order*
: 'then' exp {% runPV (unECP $2) >>= \ $2 ->
acs (\cs->
sLLlA $1 $> (\r ss -> (mkTransformStmt (EpAnn (anc r) [mj AnnThen $1] cs) ss $2))) }
| 'then' exp 'by' exp {% runPV (unECP $2) >>= \ $2 ->
runPV (unECP $4) >>= \ $4 ->
acs (\cs -> sLLlA $1 $> (
\r ss -> (mkTransformByStmt (EpAnn (anc r) [mj AnnThen $1,mj AnnBy $3] cs) ss $2 $4))) }
| 'then' 'group' 'using' exp
{% runPV (unECP $4) >>= \ $4 ->
acs (\cs -> sLLlA $1 $> (
\r ss -> (mkGroupUsingStmt (EpAnn (anc r) [mj AnnThen $1,mj AnnGroup $2,mj AnnUsing $3] cs) ss $4))) }
| 'then' 'group' 'by' exp 'using' exp
{% runPV (unECP $4) >>= \ $4 ->
runPV (unECP $6) >>= \ $6 ->
acs (\cs -> sLLlA $1 $> (
\r ss -> (mkGroupByUsingStmt (EpAnn (anc r) [mj AnnThen $1,mj AnnGroup $2,mj AnnBy $3,mj AnnUsing $5] cs) ss $4 $6))) }
-- Note that 'group' is a special_id, which means that you can enable
-- TransformListComp while still using Data.List.group. However, this
-- introduces a shift/reduce conflict. Happy chooses to resolve the conflict
-- in by choosing the "group by" variant, which is what we want.
-----------------------------------------------------------------------------
-- Guards
guardquals :: { Located [LStmt GhcPs (LHsExpr GhcPs)] }
: guardquals1 { L (getLoc $1) (reverse (unLoc $1)) }
guardquals1 :: { Located [LStmt GhcPs (LHsExpr GhcPs)] }
: guardquals1 ',' qual {% runPV $3 >>= \ $3 ->
case unLoc $1 of
(h:t) -> do
h' <- addTrailingCommaA h (gl $2)
return (sLL $1 (reLoc $>) ($3 : (h':t))) }
| qual {% runPV $1 >>= \ $1 ->
return $ sL1A $1 [$1] }
-----------------------------------------------------------------------------
-- Case alternatives
altslist :: { forall b. DisambECP b => PV (LocatedL [LMatch GhcPs (LocatedA b)]) }
: '{' alts '}' { $2 >>= \ $2 -> amsrl
(sLL $1 $> (reverse (snd $ unLoc $2)))
(AnnList (Just $ glR $2) (Just $ moc $1) (Just $ mcc $3) (fst $ unLoc $2) []) }
| vocurly alts close { $2 >>= \ $2 -> amsrl
(L (getLoc $2) (reverse (snd $ unLoc $2)))
(AnnList (Just $ glR $2) Nothing Nothing (fst $ unLoc $2) []) }
| '{' '}' { amsrl (sLL $1 $> []) (AnnList Nothing (Just $ moc $1) (Just $ mcc $2) [] []) }
| vocurly close { return $ noLocA [] }
alts :: { forall b. DisambECP b => PV (Located ([AddEpAnn],[LMatch GhcPs (LocatedA b)])) }
: alts1 { $1 >>= \ $1 -> return $
sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { $2 >>= \ $2 -> return $
sLL $1 $> (((mz AnnSemi $1) ++ (fst $ unLoc $2) )
,snd $ unLoc $2) }
alts1 :: { forall b. DisambECP b => PV (Located ([AddEpAnn],[LMatch GhcPs (LocatedA b)])) }
: alts1 ';' alt { $1 >>= \ $1 ->
$3 >>= \ $3 ->
case snd $ unLoc $1 of
[] -> return (sLL $1 (reLoc $>) ((fst $ unLoc $1) ++ (mz AnnSemi $2)
,[$3]))
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (sLL $1 (reLoc $>) (fst $ unLoc $1,$3 : h' : t)) }
| alts1 ';' { $1 >>= \ $1 ->
case snd $ unLoc $1 of
[] -> return (sLL $1 $> ((fst $ unLoc $1) ++ (mz AnnSemi $2)
,[]))
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (sLL $1 $> (fst $ unLoc $1, h' : t)) }
| alt { $1 >>= \ $1 -> return $ sL1 (reLoc $1) ([],[$1]) }
alt :: { forall b. DisambECP b => PV (LMatch GhcPs (LocatedA b)) }
: pat alt_rhs { $2 >>= \ $2 ->
acsA (\cs -> sLL (reLoc $1) $>
(Match { m_ext = (EpAnn (glAR $1) [] cs)
, m_ctxt = CaseAlt
, m_pats = [$1]
, m_grhss = unLoc $2 }))}
alt_rhs :: { forall b. DisambECP b => PV (Located (GRHSs GhcPs (LocatedA b))) }
: ralt wherebinds { $1 >>= \alt ->
do { let {L l (bs, csw) = adaptWhereBinds $2}
; acs (\cs -> sLL alt (L l bs) (GRHSs (cs Semi.<> csw) (unLoc alt) bs)) }}
ralt :: { forall b. DisambECP b => PV (Located [LGRHS GhcPs (LocatedA b)]) }
: '->' exp { unECP $2 >>= \ $2 ->
acs (\cs -> sLLlA $1 $> (unguardedRHS (EpAnn (glR $1) (GrhsAnn Nothing (mu AnnRarrow $1)) cs) (comb2 $1 (reLoc $2)) $2)) }
| gdpats { $1 >>= \gdpats ->
return $ sL1 gdpats (reverse (unLoc gdpats)) }
gdpats :: { forall b. DisambECP b => PV (Located [LGRHS GhcPs (LocatedA b)]) }
: gdpats gdpat { $1 >>= \gdpats ->
$2 >>= \gdpat ->
return $ sLL gdpats (reLoc gdpat) (gdpat : unLoc gdpats) }
| gdpat { $1 >>= \gdpat -> return $ sL1A gdpat [gdpat] }
-- layout for MultiWayIf doesn't begin with an open brace, because it's hard to
-- generate the open brace in addition to the vertical bar in the lexer, and
-- we don't need it.
ifgdpats :: { Located ([AddEpAnn],[LGRHS GhcPs (LHsExpr GhcPs)]) }
: '{' gdpats '}' {% runPV $2 >>= \ $2 ->
return $ sLL $1 $> ([moc $1,mcc $3],unLoc $2) }
| gdpats close {% runPV $1 >>= \ $1 ->
return $ sL1 $1 ([],unLoc $1) }
gdpat :: { forall b. DisambECP b => PV (LGRHS GhcPs (LocatedA b)) }
: '|' guardquals '->' exp
{ unECP $4 >>= \ $4 ->
acsA (\cs -> sL (comb2A $1 $>) $ GRHS (EpAnn (glR $1) (GrhsAnn (Just $ glAA $1) (mu AnnRarrow $3)) cs) (unLoc $2) $4) }
-- 'pat' recognises a pattern, including one with a bang at the top
-- e.g. "!x" or "!(x,y)" or "C a b" etc
-- Bangs inside are parsed as infix operator applications, so that
-- we parse them right when bang-patterns are off
pat :: { LPat GhcPs }
pat : exp {% (checkPattern <=< runPV) (unECP $1) }
bindpat :: { LPat GhcPs }
bindpat : exp {% -- See Note [Parser-Validator Details] in GHC.Parser.PostProcess
checkPattern_details incompleteDoBlock
(unECP $1) }
apat :: { LPat GhcPs }
apat : aexp {% (checkPattern <=< runPV) (unECP $1) }
apats :: { [LPat GhcPs] }
: apat apats { $1 : $2 }
| {- empty -} { [] }
-----------------------------------------------------------------------------
-- Statement sequences
stmtlist :: { forall b. DisambECP b => PV (LocatedL [LocatedA (Stmt GhcPs (LocatedA b))]) }
: '{' stmts '}' { $2 >>= \ $2 -> amsrl
(sLL $1 $> (reverse $ snd $ unLoc $2)) (AnnList (Just $ glR $2) (Just $ moc $1) (Just $ mcc $3) (fromOL $ fst $ unLoc $2) []) }
| vocurly stmts close { $2 >>= \ $2 -> amsrl
(L (gl $2) (reverse $ snd $ unLoc $2)) (AnnList (Just $ glR $2) Nothing Nothing (fromOL $ fst $ unLoc $2) []) }
-- do { ;; s ; s ; ; s ;; }
-- The last Stmt should be an expression, but that's hard to enforce
-- here, because we need too much lookahead if we see do { e ; }
-- So we use BodyStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { forall b. DisambECP b => PV (Located (OrdList AddEpAnn,[LStmt GhcPs (LocatedA b)])) }
: stmts ';' stmt { $1 >>= \ $1 ->
$3 >>= \ ($3 :: LStmt GhcPs (LocatedA b)) ->
case (snd $ unLoc $1) of
[] -> return (sLL $1 (reLoc $>) ((fst $ unLoc $1) `snocOL` (mj AnnSemi $2)
,$3 : (snd $ unLoc $1)))
(h:t) -> do
{ h' <- addTrailingSemiA h (gl $2)
; return $ sLL $1 (reLoc $>) (fst $ unLoc $1,$3 :(h':t)) }}
| stmts ';' { $1 >>= \ $1 ->
case (snd $ unLoc $1) of
[] -> return (sLL $1 $> ((fst $ unLoc $1) `snocOL` (mj AnnSemi $2),snd $ unLoc $1))
(h:t) -> do
{ h' <- addTrailingSemiA h (gl $2)
; return $ sL1 $1 (fst $ unLoc $1,h':t) }}
| stmt { $1 >>= \ $1 ->
return $ sL1A $1 (nilOL,[$1]) }
| {- empty -} { return $ noLoc (nilOL,[]) }
-- For typing stmts at the GHCi prompt, where
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt GhcPs (LHsExpr GhcPs)) }
: stmt {% fmap Just (runPV $1) }
| {- nothing -} { Nothing }
-- For GHC API.
e_stmt :: { LStmt GhcPs (LHsExpr GhcPs) }
: stmt {% runPV $1 }
stmt :: { forall b. DisambECP b => PV (LStmt GhcPs (LocatedA b)) }
: qual { $1 }
| 'rec' stmtlist { $2 >>= \ $2 ->
acsA (\cs -> (sLL $1 (reLoc $>) $ mkRecStmt
(EpAnn (glR $1) (hsDoAnn $1 $2 AnnRec) cs)
$2)) }
qual :: { forall b. DisambECP b => PV (LStmt GhcPs (LocatedA b)) }
: bindpat '<-' exp { unECP $3 >>= \ $3 ->
acsA (\cs -> sLLlA (reLoc $1) $>
$ mkPsBindStmt (EpAnn (glAR $1) [mu AnnLarrow $2] cs) $1 $3) }
| exp { unECP $1 >>= \ $1 ->
return $ sL1 $1 $ mkBodyStmt $1 }
| 'let' binds { acsA (\cs -> (sLL $1 $>
$ mkLetStmt (EpAnn (glR $1) [mj AnnLet $1] cs) (unLoc $2))) }
-----------------------------------------------------------------------------
-- Record Field Update/Construction
fbinds :: { forall b. DisambECP b => PV ([Fbind b], Maybe SrcSpan) }
: fbinds1 { $1 }
| {- empty -} { return ([], Nothing) }
fbinds1 :: { forall b. DisambECP b => PV ([Fbind b], Maybe SrcSpan) }
: fbind ',' fbinds1
{ $1 >>= \ $1 ->
$3 >>= \ $3 -> do
h <- addTrailingCommaFBind $1 (gl $2)
return (case $3 of (flds, dd) -> (h : flds, dd)) }
| fbind { $1 >>= \ $1 ->
return ([$1], Nothing) }
| '..' { return ([], Just (getLoc $1)) }
fbind :: { forall b. DisambECP b => PV (Fbind b) }
: qvar '=' texp { unECP $3 >>= \ $3 ->
fmap Left $ acsA (\cs -> sLL (reLocN $1) (reLoc $>) $ HsFieldBind (EpAnn (glNR $1) [mj AnnEqual $2] cs) (sL1l $1 $ mkFieldOcc $1) $3 False) }
-- RHS is a 'texp', allowing view patterns (#6038)
-- and, incidentally, sections. Eg
-- f (R { x = show -> s }) = ...
| qvar { placeHolderPunRhs >>= \rhs ->
fmap Left $ acsa (\cs -> sL1a (reLocN $1) $ HsFieldBind (EpAnn (glNR $1) [] cs) (sL1l $1 $ mkFieldOcc $1) rhs True) }
-- In the punning case, use a place-holder
-- The renamer fills in the final value
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
-- AZ: need to pull out the let block into a helper
| field TIGHT_INFIX_PROJ fieldToUpdate '=' texp
{ do
let top = sL1a $1 $ DotFieldOcc noAnn (reLocA $1)
((L lf (DotFieldOcc _ f)):t) = reverse (unLoc $3)
lf' = comb2 $2 (reLoc $ L lf ())
fields = top : L (noAnnSrcSpan lf') (DotFieldOcc (EpAnn (spanAsAnchor lf') (AnnFieldLabel (Just $ glAA $2)) emptyComments) f) : t
final = last fields
l = comb2 $1 $3
isPun = False
$5 <- unECP $5
fmap Right $ mkHsProjUpdatePV (comb2 $1 (reLoc $5)) (L l fields) $5 isPun
[mj AnnEqual $4]
}
-- See Note [Whitespace-sensitive operator parsing] in GHC.Parser.Lexer
-- AZ: need to pull out the let block into a helper
| field TIGHT_INFIX_PROJ fieldToUpdate
{ do
let top = sL1a $1 $ DotFieldOcc noAnn (reLocA $1)
((L lf (DotFieldOcc _ f)):t) = reverse (unLoc $3)
lf' = comb2 $2 (reLoc $ L lf ())
fields = top : L (noAnnSrcSpan lf') (DotFieldOcc (EpAnn (spanAsAnchor lf') (AnnFieldLabel (Just $ glAA $2)) emptyComments) f) : t
final = last fields
l = comb2 $1 $3
isPun = True
var <- mkHsVarPV (L (noAnnSrcSpan $ getLocA final) (mkRdrUnqual . mkVarOcc . unpackFS . unLoc . dfoLabel . unLoc $ final))
fmap Right $ mkHsProjUpdatePV l (L l fields) var isPun []
}
fieldToUpdate :: { Located [LocatedAn NoEpAnns (DotFieldOcc GhcPs)] }
fieldToUpdate
-- See Note [Whitespace-sensitive operator parsing] in Lexer.x
: fieldToUpdate TIGHT_INFIX_PROJ field {% getCommentsFor (getLoc $3) >>= \cs ->
return (sLL $1 $> ((sLLa $2 $> (DotFieldOcc (EpAnn (glR $2) (AnnFieldLabel $ Just $ glAA $2) cs) (reLocA $3))) : unLoc $1)) }
| field {% getCommentsFor (getLoc $1) >>= \cs ->
return (sL1 $1 [sL1a $1 (DotFieldOcc (EpAnn (glR $1) (AnnFieldLabel Nothing) cs) (reLocA $1))]) }
-----------------------------------------------------------------------------
-- Implicit Parameter Bindings
dbinds :: { Located [LIPBind GhcPs] } -- reversed
: dbinds ';' dbind
{% case unLoc $1 of
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (let { this = $3; rest = h':t }
in rest `seq` this `seq` sLL $1 (reLoc $>) (this : rest)) }
| dbinds ';' {% case unLoc $1 of
(h:t) -> do
h' <- addTrailingSemiA h (gl $2)
return (sLL $1 $> (h':t)) }
| dbind { let this = $1 in this `seq` (sL1 (reLoc $1) [this]) }
-- | {- empty -} { [] }
dbind :: { LIPBind GhcPs }
dbind : ipvar '=' exp {% runPV (unECP $3) >>= \ $3 ->
acsA (\cs -> sLLlA $1 $> (IPBind (EpAnn (glR $1) [mj AnnEqual $2] cs) (Left (reLocA $1)) $3)) }
ipvar :: { Located HsIPName }
: IPDUPVARID { sL1 $1 (HsIPName (getIPDUPVARID $1)) }
-----------------------------------------------------------------------------
-- Overloaded labels
overloaded_label :: { Located FastString }
: LABELVARID { sL1 $1 (getLABELVARID $1) }
-----------------------------------------------------------------------------
-- Warnings and deprecations
name_boolformula_opt :: { LBooleanFormula (LocatedN RdrName) }
: name_boolformula { $1 }
| {- empty -} { noLocA mkTrue }
name_boolformula :: { LBooleanFormula (LocatedN RdrName) }
: name_boolformula_and { $1 }
| name_boolformula_and '|' name_boolformula
{% do { h <- addTrailingVbarL $1 (gl $2)
; return (reLocA $ sLLAA $1 $> (Or [h,$3])) } }
name_boolformula_and :: { LBooleanFormula (LocatedN RdrName) }
: name_boolformula_and_list
{ reLocA $ sLLAA (head $1) (last $1) (And ($1)) }
name_boolformula_and_list :: { [LBooleanFormula (LocatedN RdrName)] }
: name_boolformula_atom { [$1] }
| name_boolformula_atom ',' name_boolformula_and_list
{% do { h <- addTrailingCommaL $1 (gl $2)
; return (h : $3) } }
name_boolformula_atom :: { LBooleanFormula (LocatedN RdrName) }
: '(' name_boolformula ')' {% amsrl (sLL $1 $> (Parens $2))
(AnnList Nothing (Just (mop $1)) (Just (mcp $3)) [] []) }
| name_var { reLocA $ sL1N $1 (Var $1) }
namelist :: { Located [LocatedN RdrName] }
namelist : name_var { sL1N $1 [$1] }
| name_var ',' namelist {% do { h <- addTrailingCommaN $1 (gl $2)
; return (sLL (reLocN $1) $> (h : unLoc $3)) }}
name_var :: { LocatedN RdrName }
name_var : var { $1 }
| con { $1 }
-----------------------------------------
-- Data constructors
-- There are two different productions here as lifted list constructors
-- are parsed differently.
qcon_nowiredlist :: { LocatedN RdrName }
: gen_qcon { $1 }
| sysdcon_nolist { L (getLoc $1) $ nameRdrName (dataConName (unLoc $1)) }
qcon :: { LocatedN RdrName }
: gen_qcon { $1}
| sysdcon { L (getLoc $1) $ nameRdrName (dataConName (unLoc $1)) }
gen_qcon :: { LocatedN RdrName }
: qconid { $1 }
| '(' qconsym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
con :: { LocatedN RdrName }
: conid { $1 }
| '(' consym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
| sysdcon { L (getLoc $1) $ nameRdrName (dataConName (unLoc $1)) }
con_list :: { Located [LocatedN RdrName] }
con_list : con { sL1N $1 [$1] }
| con ',' con_list {% do { h <- addTrailingCommaN $1 (gl $2)
; return (sLL (reLocN $1) $> (h : unLoc $3)) }}
-- See Note [ExplicitTuple] in GHC.Hs.Expr
sysdcon_nolist :: { LocatedN DataCon } -- Wired in data constructors
: '(' ')' {% amsrn (sLL $1 $> unitDataCon) (NameAnnOnly NameParens (glAA $1) (glAA $2) []) }
| '(' commas ')' {% amsrn (sLL $1 $> $ tupleDataCon Boxed (snd $2 + 1))
(NameAnnCommas NameParens (glAA $1) (map (EpaSpan . realSrcSpan) (fst $2)) (glAA $3) []) }
| '(#' '#)' {% amsrn (sLL $1 $> $ unboxedUnitDataCon) (NameAnnOnly NameParensHash (glAA $1) (glAA $2) []) }
| '(#' commas '#)' {% amsrn (sLL $1 $> $ tupleDataCon Unboxed (snd $2 + 1))
(NameAnnCommas NameParensHash (glAA $1) (map (EpaSpan . realSrcSpan) (fst $2)) (glAA $3) []) }
-- See Note [Empty lists] in GHC.Hs.Expr
sysdcon :: { LocatedN DataCon }
: sysdcon_nolist { $1 }
| '[' ']' {% amsrn (sLL $1 $> nilDataCon) (NameAnnOnly NameSquare (glAA $1) (glAA $2) []) }
conop :: { LocatedN RdrName }
: consym { $1 }
| '`' conid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
qconop :: { LocatedN RdrName }
: qconsym { $1 }
| '`' qconid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
----------------------------------------------------------------------------
-- Type constructors
-- See Note [Unit tuples] in GHC.Hs.Type for the distinction
-- between gtycon and ntgtycon
gtycon :: { LocatedN RdrName } -- A "general" qualified tycon, including unit tuples
: ntgtycon { $1 }
| '(' ')' {% amsrn (sLL $1 $> $ getRdrName unitTyCon)
(NameAnnOnly NameParens (glAA $1) (glAA $2) []) }
| '(#' '#)' {% amsrn (sLL $1 $> $ getRdrName unboxedUnitTyCon)
(NameAnnOnly NameParensHash (glAA $1) (glAA $2) []) }
ntgtycon :: { LocatedN RdrName } -- A "general" qualified tycon, excluding unit tuples
: oqtycon { $1 }
| '(' commas ')' {% amsrn (sLL $1 $> $ getRdrName (tupleTyCon Boxed
(snd $2 + 1)))
(NameAnnCommas NameParens (glAA $1) (map (EpaSpan . realSrcSpan) (fst $2)) (glAA $3) []) }
| '(#' commas '#)' {% amsrn (sLL $1 $> $ getRdrName (tupleTyCon Unboxed
(snd $2 + 1)))
(NameAnnCommas NameParensHash (glAA $1) (map (EpaSpan . realSrcSpan) (fst $2)) (glAA $3) []) }
| '(' '->' ')' {% amsrn (sLL $1 $> $ getRdrName unrestrictedFunTyCon)
(NameAnn NameParens (glAA $1) (glAA $2) (glAA $3) []) }
| '[' ']' {% amsrn (sLL $1 $> $ listTyCon_RDR)
(NameAnnOnly NameSquare (glAA $1) (glAA $2) []) }
oqtycon :: { LocatedN RdrName } -- An "ordinary" qualified tycon;
-- These can appear in export lists
: qtycon { $1 }
| '(' qtyconsym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
oqtycon_no_varcon :: { LocatedN RdrName } -- Type constructor which cannot be mistaken
-- for variable constructor in export lists
-- see Note [Type constructors in export list]
: qtycon { $1 }
| '(' QCONSYM ')' {% let { name :: Located RdrName
; name = sL1 $2 $! mkQual tcClsName (getQCONSYM $2) }
in amsrn (sLL $1 $> (unLoc name)) (NameAnn NameParens (glAA $1) (glAA $2) (glAA $3) []) }
| '(' CONSYM ')' {% let { name :: Located RdrName
; name = sL1 $2 $! mkUnqual tcClsName (getCONSYM $2) }
in amsrn (sLL $1 $> (unLoc name)) (NameAnn NameParens (glAA $1) (glAA $2) (glAA $3) []) }
| '(' ':' ')' {% let { name :: Located RdrName
; name = sL1 $2 $! consDataCon_RDR }
in amsrn (sLL $1 $> (unLoc name)) (NameAnn NameParens (glAA $1) (glAA $2) (glAA $3) []) }
{- Note [Type constructors in export list]
~~~~~~~~~~~~~~~~~~~~~
Mixing type constructors and data constructors in export lists introduces
ambiguity in grammar: e.g. (*) may be both a type constructor and a function.
-XExplicitNamespaces allows to disambiguate by explicitly prefixing type
constructors with 'type' keyword.
This ambiguity causes reduce/reduce conflicts in parser, which are always
resolved in favour of data constructors. To get rid of conflicts we demand
that ambiguous type constructors (those, which are formed by the same
productions as variable constructors) are always prefixed with 'type' keyword.
Unambiguous type constructors may occur both with or without 'type' keyword.
Note that in the parser we still parse data constructors as type
constructors. As such, they still end up in the type constructor namespace
until after renaming when we resolve the proper namespace for each exported
child.
-}
qtyconop :: { LocatedN RdrName } -- Qualified or unqualified
-- See Note [%shift: qtyconop -> qtyconsym]
: qtyconsym %shift { $1 }
| '`' qtycon '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
qtycon :: { LocatedN RdrName } -- Qualified or unqualified
: QCONID { sL1n $1 $! mkQual tcClsName (getQCONID $1) }
| tycon { $1 }
tycon :: { LocatedN RdrName } -- Unqualified
: CONID { sL1n $1 $! mkUnqual tcClsName (getCONID $1) }
qtyconsym :: { LocatedN RdrName }
: QCONSYM { sL1n $1 $! mkQual tcClsName (getQCONSYM $1) }
| QVARSYM { sL1n $1 $! mkQual tcClsName (getQVARSYM $1) }
| tyconsym { $1 }
tyconsym :: { LocatedN RdrName }
: CONSYM { sL1n $1 $! mkUnqual tcClsName (getCONSYM $1) }
| VARSYM { sL1n $1 $!
-- See Note [eqTyCon (~) is built-in syntax] in GHC.Builtin.Types
if getVARSYM $1 == fsLit "~"
then eqTyCon_RDR
else mkUnqual tcClsName (getVARSYM $1) }
| ':' { sL1n $1 $! consDataCon_RDR }
| '-' { sL1n $1 $! mkUnqual tcClsName (fsLit "-") }
| '.' { sL1n $1 $! mkUnqual tcClsName (fsLit ".") }
-- An "ordinary" unqualified tycon. See `oqtycon` for the qualified version.
-- These can appear in `ANN type` declarations (#19374).
otycon :: { LocatedN RdrName }
: tycon { $1 }
| '(' tyconsym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
-----------------------------------------------------------------------------
-- Operators
op :: { LocatedN RdrName } -- used in infix decls
: varop { $1 }
| conop { $1 }
| '->' { sL1n $1 $ getRdrName unrestrictedFunTyCon }
varop :: { LocatedN RdrName }
: varsym { $1 }
| '`' varid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
qop :: { forall b. DisambInfixOp b => PV (LocatedN b) } -- used in sections
: qvarop { mkHsVarOpPV $1 }
| qconop { mkHsConOpPV $1 }
| hole_op { pvN $1 }
qopm :: { forall b. DisambInfixOp b => PV (LocatedN b) } -- used in sections
: qvaropm { mkHsVarOpPV $1 }
| qconop { mkHsConOpPV $1 }
| hole_op { pvN $1 }
hole_op :: { forall b. DisambInfixOp b => PV (Located b) } -- used in sections
hole_op : '`' '_' '`' { mkHsInfixHolePV (comb2 $1 $>)
(\cs -> EpAnn (glR $1) (EpAnnUnboundVar (glAA $1, glAA $3) (glAA $2)) cs) }
qvarop :: { LocatedN RdrName }
: qvarsym { $1 }
| '`' qvarid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
qvaropm :: { LocatedN RdrName }
: qvarsym_no_minus { $1 }
| '`' qvarid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
-----------------------------------------------------------------------------
-- Type variables
tyvar :: { LocatedN RdrName }
tyvar : tyvarid { $1 }
tyvarop :: { LocatedN RdrName }
tyvarop : '`' tyvarid '`' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameBackquotes (glAA $1) (glNRR $2) (glAA $3) []) }
tyvarid :: { LocatedN RdrName }
: VARID { sL1n $1 $! mkUnqual tvName (getVARID $1) }
| special_id { sL1n $1 $! mkUnqual tvName (unLoc $1) }
| 'unsafe' { sL1n $1 $! mkUnqual tvName (fsLit "unsafe") }
| 'safe' { sL1n $1 $! mkUnqual tvName (fsLit "safe") }
| 'interruptible' { sL1n $1 $! mkUnqual tvName (fsLit "interruptible") }
-- If this changes relative to varid, update 'checkRuleTyVarBndrNames'
-- in GHC.Parser.PostProcess
-- See Note [Parsing explicit foralls in Rules]
-----------------------------------------------------------------------------
-- Variables
var :: { LocatedN RdrName }
: varid { $1 }
| '(' varsym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
qvar :: { LocatedN RdrName }
: qvarid { $1 }
| '(' varsym ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
| '(' qvarsym1 ')' {% amsrn (sLL $1 $> (unLoc $2))
(NameAnn NameParens (glAA $1) (glNRR $2) (glAA $3) []) }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.
field :: { Located FastString }
: VARID { sL1 $1 $! getVARID $1 }
qvarid :: { LocatedN RdrName }
: varid { $1 }
| QVARID { sL1n $1 $! mkQual varName (getQVARID $1) }
-- Note that 'role' and 'family' get lexed separately regardless of
-- the use of extensions. However, because they are listed here,
-- this is OK and they can be used as normal varids.
-- See Note [Lexing type pseudo-keywords] in GHC.Parser.Lexer
varid :: { LocatedN RdrName }
: VARID { sL1n $1 $! mkUnqual varName (getVARID $1) }
| special_id { sL1n $1 $! mkUnqual varName (unLoc $1) }
| 'unsafe' { sL1n $1 $! mkUnqual varName (fsLit "unsafe") }
| 'safe' { sL1n $1 $! mkUnqual varName (fsLit "safe") }
| 'interruptible' { sL1n $1 $! mkUnqual varName (fsLit "interruptible")}
| 'forall' { sL1n $1 $! mkUnqual varName (fsLit "forall") }
| 'family' { sL1n $1 $! mkUnqual varName (fsLit "family") }
| 'role' { sL1n $1 $! mkUnqual varName (fsLit "role") }
-- If this changes relative to tyvarid, update 'checkRuleTyVarBndrNames'
-- in GHC.Parser.PostProcess
-- See Note [Parsing explicit foralls in Rules]
qvarsym :: { LocatedN RdrName }
: varsym { $1 }
| qvarsym1 { $1 }
qvarsym_no_minus :: { LocatedN RdrName }
: varsym_no_minus { $1 }
| qvarsym1 { $1 }
qvarsym1 :: { LocatedN RdrName }
qvarsym1 : QVARSYM { sL1n $1 $ mkQual varName (getQVARSYM $1) }
varsym :: { LocatedN RdrName }
: varsym_no_minus { $1 }
| '-' { sL1n $1 $ mkUnqual varName (fsLit "-") }
varsym_no_minus :: { LocatedN RdrName } -- varsym not including '-'
: VARSYM { sL1n $1 $ mkUnqual varName (getVARSYM $1) }
| special_sym { sL1n $1 $ mkUnqual varName (unLoc $1) }
-- These special_ids are treated as keywords in various places,
-- but as ordinary ids elsewhere. 'special_id' collects all these
-- except 'unsafe', 'interruptible', 'forall', 'family', 'role', 'stock', and
-- 'anyclass', whose treatment differs depending on context
special_id :: { Located FastString }
special_id
: 'as' { sL1 $1 (fsLit "as") }
| 'qualified' { sL1 $1 (fsLit "qualified") }
| 'hiding' { sL1 $1 (fsLit "hiding") }
| 'export' { sL1 $1 (fsLit "export") }
| 'label' { sL1 $1 (fsLit "label") }
| 'dynamic' { sL1 $1 (fsLit "dynamic") }
| 'stdcall' { sL1 $1 (fsLit "stdcall") }
| 'ccall' { sL1 $1 (fsLit "ccall") }
| 'capi' { sL1 $1 (fsLit "capi") }
| 'prim' { sL1 $1 (fsLit "prim") }
| 'javascript' { sL1 $1 (fsLit "javascript") }
-- See Note [%shift: special_id -> 'group']
| 'group' %shift { sL1 $1 (fsLit "group") }
| 'stock' { sL1 $1 (fsLit "stock") }
| 'anyclass' { sL1 $1 (fsLit "anyclass") }
| 'via' { sL1 $1 (fsLit "via") }
| 'unit' { sL1 $1 (fsLit "unit") }
| 'dependency' { sL1 $1 (fsLit "dependency") }
| 'signature' { sL1 $1 (fsLit "signature") }
special_sym :: { Located FastString }
special_sym : '.' { sL1 $1 (fsLit ".") }
| '*' { sL1 $1 (fsLit (starSym (isUnicode $1))) }
-----------------------------------------------------------------------------
-- Data constructors
qconid :: { LocatedN RdrName } -- Qualified or unqualified
: conid { $1 }
| QCONID { sL1n $1 $! mkQual dataName (getQCONID $1) }
conid :: { LocatedN RdrName }
: CONID { sL1n $1 $ mkUnqual dataName (getCONID $1) }
qconsym :: { LocatedN RdrName } -- Qualified or unqualified
: consym { $1 }
| QCONSYM { sL1n $1 $ mkQual dataName (getQCONSYM $1) }
consym :: { LocatedN RdrName }
: CONSYM { sL1n $1 $ mkUnqual dataName (getCONSYM $1) }
-- ':' means only list cons
| ':' { sL1n $1 $ consDataCon_RDR }
-----------------------------------------------------------------------------
-- Literals
literal :: { Located (HsLit GhcPs) }
: CHAR { sL1 $1 $ HsChar (getCHARs $1) $ getCHAR $1 }
| STRING { sL1 $1 $ HsString (getSTRINGs $1)
$ getSTRING $1 }
| PRIMINTEGER { sL1 $1 $ HsIntPrim (getPRIMINTEGERs $1)
$ getPRIMINTEGER $1 }
| PRIMWORD { sL1 $1 $ HsWordPrim (getPRIMWORDs $1)
$ getPRIMWORD $1 }
| PRIMCHAR { sL1 $1 $ HsCharPrim (getPRIMCHARs $1)
$ getPRIMCHAR $1 }
| PRIMSTRING { sL1 $1 $ HsStringPrim (getPRIMSTRINGs $1)
$ getPRIMSTRING $1 }
| PRIMFLOAT { sL1 $1 $ HsFloatPrim noExtField $ getPRIMFLOAT $1 }
| PRIMDOUBLE { sL1 $1 $ HsDoublePrim noExtField $ getPRIMDOUBLE $1 }
-----------------------------------------------------------------------------
-- Layout
close :: { () }
: vccurly { () } -- context popped in lexer.
| error {% popContext }
-----------------------------------------------------------------------------
-- Miscellaneous (mostly renamings)
modid :: { LocatedA ModuleName }
: CONID { sL1a $1 $ mkModuleNameFS (getCONID $1) }
| QCONID { sL1a $1 $ let (mod,c) = getQCONID $1 in
mkModuleNameFS
(mkFastString
(unpackFS mod ++ '.':unpackFS c))
}
commas :: { ([SrcSpan],Int) } -- One or more commas
: commas ',' { ((fst $1)++[gl $2],snd $1 + 1) }
| ',' { ([gl $1],1) }
bars0 :: { ([EpaLocation],Int) } -- Zero or more bars
: bars { $1 }
| { ([], 0) }
bars :: { ([EpaLocation],Int) } -- One or more bars
: bars '|' { ((fst $1)++[glAA $2],snd $1 + 1) }
| '|' { ([glAA $1],1) }
{
happyError :: P a
happyError = srcParseFail
getVARID (L _ (ITvarid x)) = x
getCONID (L _ (ITconid x)) = x
getVARSYM (L _ (ITvarsym x)) = x
getCONSYM (L _ (ITconsym x)) = x
getDO (L _ (ITdo x)) = x
getMDO (L _ (ITmdo x)) = x
getQVARID (L _ (ITqvarid x)) = x
getQCONID (L _ (ITqconid x)) = x
getQVARSYM (L _ (ITqvarsym x)) = x
getQCONSYM (L _ (ITqconsym x)) = x
getIPDUPVARID (L _ (ITdupipvarid x)) = x
getLABELVARID (L _ (ITlabelvarid x)) = x
getCHAR (L _ (ITchar _ x)) = x
getSTRING (L _ (ITstring _ x)) = x
getINTEGER (L _ (ITinteger x)) = x
getRATIONAL (L _ (ITrational x)) = x
getPRIMCHAR (L _ (ITprimchar _ x)) = x
getPRIMSTRING (L _ (ITprimstring _ x)) = x
getPRIMINTEGER (L _ (ITprimint _ x)) = x
getPRIMWORD (L _ (ITprimword _ x)) = x
getPRIMFLOAT (L _ (ITprimfloat x)) = x
getPRIMDOUBLE (L _ (ITprimdouble x)) = x
getINLINE (L _ (ITinline_prag _ inl conl)) = (inl,conl)
getSPEC_INLINE (L _ (ITspec_inline_prag src True)) = (Inline src,FunLike)
getSPEC_INLINE (L _ (ITspec_inline_prag src False)) = (NoInline src,FunLike)
getCOMPLETE_PRAGs (L _ (ITcomplete_prag x)) = x
getVOCURLY (L (RealSrcSpan l _) ITvocurly) = srcSpanStartCol l
getINTEGERs (L _ (ITinteger (IL src _ _))) = src
getCHARs (L _ (ITchar src _)) = src
getSTRINGs (L _ (ITstring src _)) = src
getPRIMCHARs (L _ (ITprimchar src _)) = src
getPRIMSTRINGs (L _ (ITprimstring src _)) = src
getPRIMINTEGERs (L _ (ITprimint src _)) = src
getPRIMWORDs (L _ (ITprimword src _)) = src
-- See Note [Pragma source text] in "GHC.Types.Basic" for the following
getINLINE_PRAGs (L _ (ITinline_prag _ inl _)) = inlineSpecSource inl
getSPEC_PRAGs (L _ (ITspec_prag src)) = src
getSPEC_INLINE_PRAGs (L _ (ITspec_inline_prag src _)) = src
getSOURCE_PRAGs (L _ (ITsource_prag src)) = src
getRULES_PRAGs (L _ (ITrules_prag src)) = src
getWARNING_PRAGs (L _ (ITwarning_prag src)) = src
getDEPRECATED_PRAGs (L _ (ITdeprecated_prag src)) = src
getSCC_PRAGs (L _ (ITscc_prag src)) = src
getUNPACK_PRAGs (L _ (ITunpack_prag src)) = src
getNOUNPACK_PRAGs (L _ (ITnounpack_prag src)) = src
getANN_PRAGs (L _ (ITann_prag src)) = src
getMINIMAL_PRAGs (L _ (ITminimal_prag src)) = src
getOVERLAPPABLE_PRAGs (L _ (IToverlappable_prag src)) = src
getOVERLAPPING_PRAGs (L _ (IToverlapping_prag src)) = src
getOVERLAPS_PRAGs (L _ (IToverlaps_prag src)) = src
getINCOHERENT_PRAGs (L _ (ITincoherent_prag src)) = src
getCTYPEs (L _ (ITctype src)) = src
getStringLiteral l = StringLiteral (getSTRINGs l) (getSTRING l) Nothing
isUnicode :: Located Token -> Bool
isUnicode (L _ (ITforall iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITdarrow iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITdcolon iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITlarrow iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITrarrow iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITlarrowtail iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITrarrowtail iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITLarrowtail iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITRarrowtail iu)) = iu == UnicodeSyntax
isUnicode (L _ (IToparenbar iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITcparenbar iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITopenExpQuote _ iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITcloseQuote iu)) = iu == UnicodeSyntax
isUnicode (L _ (ITstar iu)) = iu == UnicodeSyntax
isUnicode (L _ ITlolly) = True
isUnicode _ = False
hasE :: Located Token -> Bool
hasE (L _ (ITopenExpQuote HasE _)) = True
hasE (L _ (ITopenTExpQuote HasE)) = True
hasE _ = False
getSCC :: Located Token -> P FastString
getSCC lt = do let s = getSTRING lt
-- We probably actually want to be more restrictive than this
if ' ' `elem` unpackFS s
then addFatalError $ mkPlainErrorMsgEnvelope (getLoc lt) $ PsErrSpaceInSCC
else return s
-- Utilities for combining source spans
comb2 :: Located a -> Located b -> SrcSpan
comb2 a b = a `seq` b `seq` combineLocs a b
-- Utilities for combining source spans
comb2A :: Located a -> LocatedAn t b -> SrcSpan
comb2A a b = a `seq` b `seq` combineLocs a (reLoc b)
comb2N :: Located a -> LocatedN b -> SrcSpan
comb2N a b = a `seq` b `seq` combineLocs a (reLocN b)
comb2Al :: LocatedAn t a -> Located b -> SrcSpan
comb2Al a b = a `seq` b `seq` combineLocs (reLoc a) b
comb3 :: Located a -> Located b -> Located c -> SrcSpan
comb3 a b c = a `seq` b `seq` c `seq`
combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLoc c))
comb3A :: Located a -> Located b -> LocatedAn t c -> SrcSpan
comb3A a b c = a `seq` b `seq` c `seq`
combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLocA c))
comb3N :: Located a -> Located b -> LocatedN c -> SrcSpan
comb3N a b c = a `seq` b `seq` c `seq`
combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLocA c))
comb4 :: Located a -> Located b -> Located c -> Located d -> SrcSpan
comb4 a b c d = a `seq` b `seq` c `seq` d `seq`
(combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
combineSrcSpans (getLoc c) (getLoc d))
comb5 :: Located a -> Located b -> Located c -> Located d -> Located e -> SrcSpan
comb5 a b c d e = a `seq` b `seq` c `seq` d `seq` e `seq`
(combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
combineSrcSpans (getLoc c) $ combineSrcSpans (getLoc d) (getLoc e))
-- strict constructor version:
{-# INLINE sL #-}
sL :: l -> a -> GenLocated l a
sL loc a = loc `seq` a `seq` L loc a
-- See Note [Adding location info] for how these utility functions are used
-- replaced last 3 CPP macros in this file
{-# INLINE sL0 #-}
sL0 :: a -> Located a
sL0 = L noSrcSpan -- #define L0 L noSrcSpan
{-# INLINE sL1 #-}
sL1 :: GenLocated l a -> b -> GenLocated l b
sL1 x = sL (getLoc x) -- #define sL1 sL (getLoc $1)
{-# INLINE sL1A #-}
sL1A :: LocatedAn t a -> b -> Located b
sL1A x = sL (getLocA x) -- #define sL1 sL (getLoc $1)
{-# INLINE sL1N #-}
sL1N :: LocatedN a -> b -> Located b
sL1N x = sL (getLocA x) -- #define sL1 sL (getLoc $1)
{-# INLINE sL1a #-}
sL1a :: Located a -> b -> LocatedAn t b
sL1a x = sL (noAnnSrcSpan $ getLoc x) -- #define sL1 sL (getLoc $1)
{-# INLINE sL1l #-}
sL1l :: LocatedAn t a -> b -> LocatedAn u b
sL1l x = sL (l2l $ getLoc x) -- #define sL1 sL (getLoc $1)
{-# INLINE sL1n #-}
sL1n :: Located a -> b -> LocatedN b
sL1n x = L (noAnnSrcSpan $ getLoc x) -- #define sL1 sL (getLoc $1)
{-# INLINE sLL #-}
sLL :: Located a -> Located b -> c -> Located c
sLL x y = sL (comb2 x y) -- #define LL sL (comb2 $1 $>)
{-# INLINE sLLa #-}
sLLa :: Located a -> Located b -> c -> LocatedAn t c
sLLa x y = sL (noAnnSrcSpan $ comb2 x y) -- #define LL sL (comb2 $1 $>)
{-# INLINE sLLlA #-}
sLLlA :: Located a -> LocatedAn t b -> c -> Located c
sLLlA x y = sL (comb2A x y) -- #define LL sL (comb2 $1 $>)
{-# INLINE sLLAl #-}
sLLAl :: LocatedAn t a -> Located b -> c -> Located c
sLLAl x y = sL (comb2A y x) -- #define LL sL (comb2 $1 $>)
{-# INLINE sLLAA #-}
sLLAA :: LocatedAn t a -> LocatedAn u b -> c -> Located c
sLLAA x y = sL (comb2 (reLoc y) (reLoc x)) -- #define LL sL (comb2 $1 $>)
{- Note [Adding location info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is done using the three functions below, sL0, sL1
and sLL. Note that these functions were mechanically
converted from the three macros that used to exist before,
namely L0, L1 and LL.
They each add a SrcSpan to their argument.
sL0 adds 'noSrcSpan', used for empty productions
-- This doesn't seem to work anymore -=chak
sL1 for a production with a single token on the lhs. Grabs the SrcSpan
from that token.
sLL for a production with >1 token on the lhs. Makes up a SrcSpan from
the first and last tokens.
These suffice for the majority of cases. However, we must be
especially careful with empty productions: sLL won't work if the first
or last token on the lhs can represent an empty span. In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.
| 'newtype' tycl_hdr '=' newconstr deriving
{ L (comb3 $1 $4 $5)
(mkTyData NewType (unLoc $2) $4 (unLoc $5)) }
We provide comb3 and comb4 functions which are useful in such cases.
Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.
-}
-- Make a source location for the file. We're a bit lazy here and just
-- make a point SrcSpan at line 1, column 0. Strictly speaking we should
-- try to find the span of the whole file (ToDo).
fileSrcSpan :: P SrcSpan
fileSrcSpan = do
l <- getRealSrcLoc;
let loc = mkSrcLoc (srcLocFile l) 1 1;
return (mkSrcSpan loc loc)
-- Hint about linear types
hintLinear :: MonadP m => SrcSpan -> m ()
hintLinear span = do
linearEnabled <- getBit LinearTypesBit
unless linearEnabled $ addError $ mkPlainErrorMsgEnvelope span $ PsErrLinearFunction
-- Does this look like (a %m)?
looksLikeMult :: LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> Bool
looksLikeMult ty1 l_op ty2
| Unqual op_name <- unLoc l_op
, occNameFS op_name == fsLit "%"
, Strict.Just ty1_pos <- getBufSpan (getLocA ty1)
, Strict.Just pct_pos <- getBufSpan (getLocA l_op)
, Strict.Just ty2_pos <- getBufSpan (getLocA ty2)
, bufSpanEnd ty1_pos /= bufSpanStart pct_pos
, bufSpanEnd pct_pos == bufSpanStart ty2_pos
= True
| otherwise = False
-- Hint about the MultiWayIf extension
hintMultiWayIf :: SrcSpan -> P ()
hintMultiWayIf span = do
mwiEnabled <- getBit MultiWayIfBit
unless mwiEnabled $ addError $ mkPlainErrorMsgEnvelope span PsErrMultiWayIf
-- Hint about explicit-forall
hintExplicitForall :: Located Token -> P ()
hintExplicitForall tok = do
forall <- getBit ExplicitForallBit
rulePrag <- getBit InRulePragBit
unless (forall || rulePrag) $ addError $ mkPlainErrorMsgEnvelope (getLoc tok) $
(PsErrExplicitForall (isUnicode tok))
-- Hint about qualified-do
hintQualifiedDo :: Located Token -> P ()
hintQualifiedDo tok = do
qualifiedDo <- getBit QualifiedDoBit
case maybeQDoDoc of
Just qdoDoc | not qualifiedDo ->
addError $ mkPlainErrorMsgEnvelope (getLoc tok) $
(PsErrIllegalQualifiedDo qdoDoc)
_ -> return ()
where
maybeQDoDoc = case unLoc tok of
ITdo (Just m) -> Just $ ftext m <> text ".do"
ITmdo (Just m) -> Just $ ftext m <> text ".mdo"
t -> Nothing
-- When two single quotes don't followed by tyvar or gtycon, we report the
-- error as empty character literal, or TH quote that missing proper type
-- variable or constructor. See #13450.
reportEmptyDoubleQuotes :: SrcSpan -> P a
reportEmptyDoubleQuotes span = do
thQuotes <- getBit ThQuotesBit
addFatalError $ mkPlainErrorMsgEnvelope span $ PsErrEmptyDoubleQuotes thQuotes
{-
%************************************************************************
%* *
Helper functions for generating annotations in the parser
%* *
%************************************************************************
For the general principles of the following routines, see Note [exact print annotations]
in GHC.Parser.Annotation
-}
-- |Construct an AddEpAnn from the annotation keyword and the location
-- of the keyword itself
mj :: AnnKeywordId -> Located e -> AddEpAnn
mj a l = AddEpAnn a (EpaSpan $ rs $ gl l)
mjN :: AnnKeywordId -> LocatedN e -> AddEpAnn
mjN a l = AddEpAnn a (EpaSpan $ rs $ glN l)
-- |Construct an AddEpAnn from the annotation keyword and the location
-- of the keyword itself, provided the span is not zero width
mz :: AnnKeywordId -> Located e -> [AddEpAnn]
mz a l = if isZeroWidthSpan (gl l) then [] else [AddEpAnn a (EpaSpan $ rs $ gl l)]
msemi :: Located e -> [TrailingAnn]
msemi l = if isZeroWidthSpan (gl l) then [] else [AddSemiAnn (EpaSpan $ rs $ gl l)]
msemim :: Located e -> Maybe EpaLocation
msemim l = if isZeroWidthSpan (gl l) then Nothing else Just (EpaSpan $ rs $ gl l)
-- |Construct an AddEpAnn from the annotation keyword and the Located Token. If
-- the token has a unicode equivalent and this has been used, provide the
-- unicode variant of the annotation.
mu :: AnnKeywordId -> Located Token -> AddEpAnn
mu a lt@(L l t) = AddEpAnn (toUnicodeAnn a lt) (EpaSpan $ rs l)
-- | If the 'Token' is using its unicode variant return the unicode variant of
-- the annotation
toUnicodeAnn :: AnnKeywordId -> Located Token -> AnnKeywordId
toUnicodeAnn a t = if isUnicode t then unicodeAnn a else a
toUnicode :: Located Token -> IsUnicodeSyntax
toUnicode t = if isUnicode t then UnicodeSyntax else NormalSyntax
gl :: GenLocated l a -> l
gl = getLoc
glA :: LocatedAn t a -> SrcSpan
glA = getLocA
glN :: LocatedN a -> SrcSpan
glN = getLocA
glR :: Located a -> Anchor
glR la = Anchor (realSrcSpan $ getLoc la) UnchangedAnchor
glAA :: Located a -> EpaLocation
glAA = EpaSpan <$> realSrcSpan . getLoc
glRR :: Located a -> RealSrcSpan
glRR = realSrcSpan . getLoc
glAR :: LocatedAn t a -> Anchor
glAR la = Anchor (realSrcSpan $ getLocA la) UnchangedAnchor
glNR :: LocatedN a -> Anchor
glNR ln = Anchor (realSrcSpan $ getLocA ln) UnchangedAnchor
glNRR :: LocatedN a -> EpaLocation
glNRR = EpaSpan <$> realSrcSpan . getLocA
anc :: RealSrcSpan -> Anchor
anc r = Anchor r UnchangedAnchor
acs :: MonadP m => (EpAnnComments -> Located a) -> m (Located a)
acs a = do
let (L l _) = a emptyComments
cs <- getCommentsFor l
return (a cs)
-- Called at the very end to pick up the EOF position, as well as any comments not allocated yet.
acsFinal :: (EpAnnComments -> Located a) -> P (Located a)
acsFinal a = do
let (L l _) = a emptyComments
cs <- getCommentsFor l
csf <- getFinalCommentsFor l
meof <- getEofPos
let ce = case meof of
Strict.Nothing -> EpaComments []
Strict.Just (pos `Strict.And` gap) ->
EpaCommentsBalanced [] [L (realSpanAsAnchor pos) (EpaComment EpaEofComment gap)]
return (a (cs Semi.<> csf Semi.<> ce))
acsa :: MonadP m => (EpAnnComments -> LocatedAn t a) -> m (LocatedAn t a)
acsa a = do
let (L l _) = a emptyComments
cs <- getCommentsFor (locA l)
return (a cs)
acsA :: MonadP m => (EpAnnComments -> Located a) -> m (LocatedAn t a)
acsA a = reLocA <$> acs a
acsExpr :: (EpAnnComments -> LHsExpr GhcPs) -> P ECP
acsExpr a = do { expr :: (LHsExpr GhcPs) <- runPV $ acsa a
; return (ecpFromExp $ expr) }
amsA :: MonadP m => LocatedA a -> [TrailingAnn] -> m (LocatedA a)
amsA (L l a) bs = do
cs <- getCommentsFor (locA l)
return (L (addAnnsA l bs cs) a)
amsAl :: MonadP m => LocatedA a -> SrcSpan -> [TrailingAnn] -> m (LocatedA a)
amsAl (L l a) loc bs = do
cs <- getCommentsFor loc
return (L (addAnnsA l bs cs) a)
amsrc :: MonadP m => Located a -> AnnContext -> m (LocatedC a)
amsrc a@(L l _) bs = do
cs <- getCommentsFor l
return (reAnnC bs cs a)
amsrl :: MonadP m => Located a -> AnnList -> m (LocatedL a)
amsrl a@(L l _) bs = do
cs <- getCommentsFor l
return (reAnnL bs cs a)
amsrp :: MonadP m => Located a -> AnnPragma -> m (LocatedP a)
amsrp a@(L l _) bs = do
cs <- getCommentsFor l
return (reAnnL bs cs a)
amsrn :: MonadP m => Located a -> NameAnn -> m (LocatedN a)
amsrn (L l a) an = do
cs <- getCommentsFor l
let ann = (EpAnn (spanAsAnchor l) an cs)
return (L (SrcSpanAnn ann l) a)
-- |Synonyms for AddEpAnn versions of AnnOpen and AnnClose
mo,mc :: Located Token -> AddEpAnn
mo ll = mj AnnOpen ll
mc ll = mj AnnClose ll
moc,mcc :: Located Token -> AddEpAnn
moc ll = mj AnnOpenC ll
mcc ll = mj AnnCloseC ll
mop,mcp :: Located Token -> AddEpAnn
mop ll = mj AnnOpenP ll
mcp ll = mj AnnCloseP ll
moh,mch :: Located Token -> AddEpAnn
moh ll = mj AnnOpenPH ll
mch ll = mj AnnClosePH ll
mos,mcs :: Located Token -> AddEpAnn
mos ll = mj AnnOpenS ll
mcs ll = mj AnnCloseS ll
pvA :: MonadP m => m (Located a) -> m (LocatedAn t a)
pvA a = do { av <- a
; return (reLocA av) }
pvN :: MonadP m => m (Located a) -> m (LocatedN a)
pvN a = do { (L l av) <- a
; return (L (noAnnSrcSpan l) av) }
pvL :: MonadP m => m (LocatedAn t a) -> m (Located a)
pvL a = do { av <- a
; return (reLoc av) }
-- | Parse a Haskell module with Haddock comments.
-- This is done in two steps:
--
-- * 'parseModuleNoHaddock' to build the AST
-- * 'addHaddockToModule' to insert Haddock comments into it
--
-- This is the only parser entry point that deals with Haddock comments.
-- The other entry points ('parseDeclaration', 'parseExpression', etc) do
-- not insert them into the AST.
parseModule :: P (Located HsModule)
parseModule = parseModuleNoHaddock >>= addHaddockToModule
commentsA :: (Monoid ann) => SrcSpan -> EpAnnComments -> SrcSpanAnn' (EpAnn ann)
commentsA loc cs = SrcSpanAnn (EpAnn (Anchor (rs loc) UnchangedAnchor) mempty cs) loc
-- | Instead of getting the *enclosed* comments, this includes the
-- *preceding* ones. It is used at the top level to get comments
-- between top level declarations.
commentsPA :: (Monoid ann) => LocatedAn ann a -> P (LocatedAn ann a)
commentsPA la@(L l a) = do
cs <- getPriorCommentsFor (getLocA la)
return (L (addCommentsToSrcAnn l cs) a)
rs :: SrcSpan -> RealSrcSpan
rs (RealSrcSpan l _) = l
rs _ = panic "Parser should only have RealSrcSpan"
hsDoAnn :: Located a -> LocatedAn t b -> AnnKeywordId -> AnnList
hsDoAnn (L l _) (L ll _) kw
= AnnList (Just $ spanAsAnchor (locA ll)) Nothing Nothing [AddEpAnn kw (EpaSpan $ rs l)] []
listAsAnchor :: [LocatedAn t a] -> Anchor
listAsAnchor [] = spanAsAnchor noSrcSpan
listAsAnchor (L l _:_) = spanAsAnchor (locA l)
hsTok :: Located Token -> LHsToken tok GhcPs
hsTok (L l _) = L (mkTokenLocation l) HsTok
hsUniTok :: Located Token -> LHsUniToken tok utok GhcPs
hsUniTok t@(L l _) =
L (mkTokenLocation l)
(if isUnicode t then HsUnicodeTok else HsNormalTok)
-- -------------------------------------
addTrailingCommaFBind :: MonadP m => Fbind b -> SrcSpan -> m (Fbind b)
addTrailingCommaFBind (Left b) l = fmap Left (addTrailingCommaA b l)
addTrailingCommaFBind (Right b) l = fmap Right (addTrailingCommaA b l)
addTrailingVbarA :: MonadP m => LocatedA a -> SrcSpan -> m (LocatedA a)
addTrailingVbarA la span = addTrailingAnnA la span AddVbarAnn
addTrailingSemiA :: MonadP m => LocatedA a -> SrcSpan -> m (LocatedA a)
addTrailingSemiA la span = addTrailingAnnA la span AddSemiAnn
addTrailingCommaA :: MonadP m => LocatedA a -> SrcSpan -> m (LocatedA a)
addTrailingCommaA la span = addTrailingAnnA la span AddCommaAnn
addTrailingAnnA :: MonadP m => LocatedA a -> SrcSpan -> (EpaLocation -> TrailingAnn) -> m (LocatedA a)
addTrailingAnnA (L (SrcSpanAnn anns l) a) ss ta = do
-- cs <- getCommentsFor l
let cs = emptyComments
-- AZ:TODO: generalise updating comments into an annotation
let
anns' = if isZeroWidthSpan ss
then anns
else addTrailingAnnToA l (ta (EpaSpan $ rs ss)) cs anns
return (L (SrcSpanAnn anns' l) a)
-- -------------------------------------
addTrailingVbarL :: MonadP m => LocatedL a -> SrcSpan -> m (LocatedL a)
addTrailingVbarL la span = addTrailingAnnL la (AddVbarAnn (EpaSpan $ rs span))
addTrailingCommaL :: MonadP m => LocatedL a -> SrcSpan -> m (LocatedL a)
addTrailingCommaL la span = addTrailingAnnL la (AddCommaAnn (EpaSpan $ rs span))
addTrailingAnnL :: MonadP m => LocatedL a -> TrailingAnn -> m (LocatedL a)
addTrailingAnnL (L (SrcSpanAnn anns l) a) ta = do
cs <- getCommentsFor l
let anns' = addTrailingAnnToL l ta cs anns
return (L (SrcSpanAnn anns' l) a)
-- -------------------------------------
-- Mostly use to add AnnComma, special case it to NOP if adding a zero-width annotation
addTrailingCommaN :: MonadP m => LocatedN a -> SrcSpan -> m (LocatedN a)
addTrailingCommaN (L (SrcSpanAnn anns l) a) span = do
-- cs <- getCommentsFor l
let cs = emptyComments
-- AZ:TODO: generalise updating comments into an annotation
let anns' = if isZeroWidthSpan span
then anns
else addTrailingCommaToN l anns (EpaSpan $ rs span)
return (L (SrcSpanAnn anns' l) a)
addTrailingCommaS :: Located StringLiteral -> EpaLocation -> Located StringLiteral
addTrailingCommaS (L l sl) span = L l (sl { sl_tc = Just (epaLocationRealSrcSpan span) })
-- -------------------------------------
addTrailingDarrowC :: LocatedC a -> Located Token -> EpAnnComments -> LocatedC a
addTrailingDarrowC (L (SrcSpanAnn EpAnnNotUsed l) a) lt cs =
let
u = if (isUnicode lt) then UnicodeSyntax else NormalSyntax
in L (SrcSpanAnn (EpAnn (spanAsAnchor l) (AnnContext (Just (u,glAA lt)) [] []) cs) l) a
addTrailingDarrowC (L (SrcSpanAnn (EpAnn lr (AnnContext _ o c) csc) l) a) lt cs =
let
u = if (isUnicode lt) then UnicodeSyntax else NormalSyntax
in L (SrcSpanAnn (EpAnn lr (AnnContext (Just (u,glAA lt)) o c) (cs Semi.<> csc)) l) a
-- -------------------------------------
-- We need a location for the where binds, when computing the SrcSpan
-- for the AST element using them. Where there is a span, we return
-- it, else noLoc, which is ignored in the comb2 call.
adaptWhereBinds :: Maybe (Located (HsLocalBinds GhcPs, Maybe EpAnnComments))
-> Located (HsLocalBinds GhcPs, EpAnnComments)
adaptWhereBinds Nothing = noLoc (EmptyLocalBinds noExtField, emptyComments)
adaptWhereBinds (Just (L l (b, mc))) = L l (b, maybe emptyComments id mc)
}
|