1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- Functions over HsSyn specialised to RdrName.
module GHC.Parser.PostProcess (
mkRdrGetField, mkRdrProjection, Fbind, -- RecordDot
mkHsOpApp,
mkHsIntegral, mkHsFractional, mkHsIsString,
mkHsDo, mkSpliceDecl,
mkRoleAnnotDecl,
mkClassDecl,
mkTyData, mkDataFamInst,
mkTySynonym, mkTyFamInstEqn,
mkStandaloneKindSig,
mkTyFamInst,
mkFamDecl,
mkInlinePragma,
mkPatSynMatchGroup,
mkRecConstrOrUpdate,
mkTyClD, mkInstD,
mkRdrRecordCon, mkRdrRecordUpd,
setRdrNameSpace,
fromSpecTyVarBndr, fromSpecTyVarBndrs,
annBinds,
cvBindGroup,
cvBindsAndSigs,
cvTopDecls,
placeHolderPunRhs,
-- Stuff to do with Foreign declarations
mkImport,
parseCImport,
mkExport,
mkExtName, -- RdrName -> CLabelString
mkGadtDecl, -- [LocatedA RdrName] -> LHsType RdrName -> ConDecl RdrName
mkConDeclH98,
-- Bunch of functions in the parser monad for
-- checking and constructing values
checkImportDecl,
checkExpBlockArguments, checkCmdBlockArguments,
checkPrecP, -- Int -> P Int
checkContext, -- HsType -> P HsContext
checkPattern, -- HsExp -> P HsPat
checkPattern_hints,
checkMonadComp, -- P (HsStmtContext GhcPs)
checkValDef, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
checkValSigLhs,
LRuleTyTmVar, RuleTyTmVar(..),
mkRuleBndrs, mkRuleTyVarBndrs,
checkRuleTyVarBndrNames,
checkRecordSyntax,
checkEmptyGADTs,
addFatalError, hintBangPat,
mkBangTy,
UnpackednessPragma(..),
mkMultTy,
-- Help with processing exports
ImpExpSubSpec(..),
ImpExpQcSpec(..),
mkModuleImpExp,
mkTypeImpExp,
mkImpExpSubSpec,
checkImportSpec,
-- Token symbols
starSym,
-- Warnings and errors
warnStarIsType,
warnPrepositiveQualifiedModule,
failOpFewArgs,
failOpNotEnabledImportQualifiedPost,
failOpImportQualifiedTwice,
SumOrTuple (..),
-- Expression/command/pattern ambiguity resolution
PV,
runPV,
ECP(ECP, unECP),
DisambInfixOp(..),
DisambECP(..),
ecpFromExp,
ecpFromCmd,
PatBuilder,
-- Type/datacon ambiguity resolution
DisambTD(..),
addUnpackednessP,
dataConBuilderCon,
dataConBuilderDetails,
) where
import GHC.Prelude
import GHC.Hs -- Lots of it
import GHC.Core.TyCon ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
import GHC.Core.DataCon ( DataCon, dataConTyCon )
import GHC.Core.ConLike ( ConLike(..) )
import GHC.Core.Coercion.Axiom ( Role, fsFromRole )
import GHC.Types.Name.Reader
import GHC.Types.Name
import GHC.Unit.Module (ModuleName)
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Types.SourceText
import GHC.Parser.Types
import GHC.Parser.Lexer
import GHC.Parser.Errors
import GHC.Utils.Lexeme ( isLexCon )
import GHC.Types.TyThing
import GHC.Core.Type ( unrestrictedFunTyCon, Specificity(..) )
import GHC.Builtin.Types( cTupleTyConName, tupleTyCon, tupleDataCon,
nilDataConName, nilDataConKey,
listTyConName, listTyConKey, eqTyCon_RDR )
import GHC.Types.ForeignCall
import GHC.Types.SrcLoc
import GHC.Types.Unique ( hasKey )
import GHC.Data.OrdList
import GHC.Utils.Outputable as Outputable
import GHC.Data.FastString
import GHC.Data.Maybe
import GHC.Data.Bag
import GHC.Utils.Misc
import Data.Either
import Data.List ( findIndex )
import Data.Foldable
import GHC.Driver.Flags ( WarningFlag(..) )
import qualified Data.Semigroup as Semi
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad
import Text.ParserCombinators.ReadP as ReadP
import Data.Char
import Data.Data ( dataTypeOf, fromConstr, dataTypeConstrs )
import Data.Kind ( Type )
#include "HsVersions.h"
{- **********************************************************************
Construction functions for Rdr stuff
********************************************************************* -}
-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
-- datacon by deriving them from the name of the class. We fill in the names
-- for the tycon and datacon corresponding to the class, by deriving them
-- from the name of the class itself. This saves recording the names in the
-- interface file (which would be equally good).
-- Similarly for mkConDecl, mkClassOpSig and default-method names.
-- *** See Note [The Naming story] in GHC.Hs.Decls ****
mkTyClD :: LTyClDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkTyClD (L loc d) = L loc (TyClD noExtField d)
mkInstD :: LInstDecl (GhcPass p) -> LHsDecl (GhcPass p)
mkInstD (L loc d) = L loc (InstD noExtField d)
mkClassDecl :: SrcSpan
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Located (a,[LHsFunDep GhcPs])
-> OrdList (LHsDecl GhcPs)
-> LayoutInfo
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkClassDecl loc' (L _ (mcxt, tycl_hdr)) fds where_cls layoutInfo annsIn
= do { let loc = noAnnSrcSpan loc'
; (binds, sigs, ats, at_defs, _, docs) <- cvBindsAndSigs where_cls
; (cls, tparams, fixity, ann) <- checkTyClHdr True tycl_hdr
; (tyvars,annst) <- checkTyVars (text "class") whereDots cls tparams
; cs <- getCommentsFor (locA loc) -- Get any remaining comments
; let anns' = addAnns (EpAnn (spanAsAnchor $ locA loc) annsIn emptyComments) (ann++annst) cs
; return (L loc (ClassDecl { tcdCExt = (anns', NoAnnSortKey, layoutInfo)
, tcdCtxt = mcxt
, tcdLName = cls, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdFDs = snd (unLoc fds)
, tcdSigs = mkClassOpSigs sigs
, tcdMeths = binds
, tcdATs = ats, tcdATDefs = at_defs
, tcdDocs = docs })) }
mkTyData :: SrcSpan
-> NewOrData
-> Maybe (LocatedP CType)
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTyData loc' new_or_data cType (L _ (mcxt, tycl_hdr))
ksig data_cons (L _ maybe_deriv) annsIn
= do { let loc = noAnnSrcSpan loc'
; (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
; (tyvars, anns) <- checkTyVars (ppr new_or_data) equalsDots tc tparams
; cs <- getCommentsFor (locA loc) -- Get any remaining comments
; let anns' = addAnns (EpAnn (spanAsAnchor $ locA loc) annsIn emptyComments) (ann ++ anns) cs
; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv anns'
; return (L loc (DataDecl { tcdDExt = anns', -- AZ: do we need these?
tcdLName = tc, tcdTyVars = tyvars,
tcdFixity = fixity,
tcdDataDefn = defn })) }
mkDataDefn :: NewOrData
-> Maybe (LocatedP CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> HsDeriving GhcPs
-> EpAnn [AddEpAnn]
-> P (HsDataDefn GhcPs)
mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv ann
= do { checkDatatypeContext mcxt
; return (HsDataDefn { dd_ext = ann
, dd_ND = new_or_data, dd_cType = cType
, dd_ctxt = mcxt
, dd_cons = data_cons
, dd_kindSig = ksig
, dd_derivs = maybe_deriv }) }
mkTySynonym :: SrcSpan
-> LHsType GhcPs -- LHS
-> LHsType GhcPs -- RHS
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkTySynonym loc lhs rhs annsIn
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; cs1 <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan [temp]
; (tyvars, anns) <- checkTyVars (text "type") equalsDots tc tparams
; cs2 <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan [temp]
; let anns' = addAnns (EpAnn (spanAsAnchor loc) annsIn emptyComments) (ann ++ anns) (cs1 Semi.<> cs2)
; return (L (noAnnSrcSpan loc) (SynDecl
{ tcdSExt = anns'
, tcdLName = tc, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdRhs = rhs })) }
mkStandaloneKindSig
:: SrcSpan
-> Located [LocatedN RdrName] -- LHS
-> LHsSigType GhcPs -- RHS
-> [AddEpAnn]
-> P (LStandaloneKindSig GhcPs)
mkStandaloneKindSig loc lhs rhs anns =
do { vs <- mapM check_lhs_name (unLoc lhs)
; v <- check_singular_lhs (reverse vs)
; cs <- getCommentsFor loc
; return $ L (noAnnSrcSpan loc)
$ StandaloneKindSig (EpAnn (spanAsAnchor loc) anns cs) v rhs }
where
check_lhs_name v@(unLoc->name) =
if isUnqual name && isTcOcc (rdrNameOcc name)
then return v
else addFatalError $ PsError (PsErrUnexpectedQualifiedConstructor (unLoc v)) [] (getLocA v)
check_singular_lhs vs =
case vs of
[] -> panic "mkStandaloneKindSig: empty left-hand side"
[v] -> return v
_ -> addFatalError $ PsError (PsErrMultipleNamesInStandaloneKindSignature vs) [] (getLoc lhs)
mkTyFamInstEqn :: SrcSpan
-> HsOuterFamEqnTyVarBndrs GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
-> [AddEpAnn]
-> P (LTyFamInstEqn GhcPs)
mkTyFamInstEqn loc bndrs lhs rhs anns
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; cs <- getCommentsFor loc
; return (L (noAnnSrcSpan loc) $ FamEqn
{ feqn_ext = EpAnn (spanAsAnchor loc) (anns `mappend` ann) cs
, feqn_tycon = tc
, feqn_bndrs = bndrs
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = rhs })}
mkDataFamInst :: SrcSpan
-> NewOrData
-> Maybe (LocatedP CType)
-> (Maybe ( LHsContext GhcPs), HsOuterFamEqnTyVarBndrs GhcPs
, LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> Located (HsDeriving GhcPs)
-> [AddEpAnn]
-> P (LInstDecl GhcPs)
mkDataFamInst loc new_or_data cType (mcxt, bndrs, tycl_hdr)
ksig data_cons (L _ maybe_deriv) anns
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
; -- AZ:TODO: deal with these comments
; cs <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan [temp]
; let anns' = addAnns (EpAnn (spanAsAnchor loc) ann cs) anns emptyComments
; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv anns'
; return (L (noAnnSrcSpan loc) (DataFamInstD anns' (DataFamInstDecl
(FamEqn { feqn_ext = noAnn -- AZ: get anns
, feqn_tycon = tc
, feqn_bndrs = bndrs
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = defn })))) }
mkTyFamInst :: SrcSpan
-> TyFamInstEqn GhcPs
-> [AddEpAnn]
-> P (LInstDecl GhcPs)
mkTyFamInst loc eqn anns = do
cs <- getCommentsFor loc
return (L (noAnnSrcSpan loc) (TyFamInstD noExtField
(TyFamInstDecl (EpAnn (spanAsAnchor loc) anns cs) eqn)))
mkFamDecl :: SrcSpan
-> FamilyInfo GhcPs
-> TopLevelFlag
-> LHsType GhcPs -- LHS
-> Located (FamilyResultSig GhcPs) -- Optional result signature
-> Maybe (LInjectivityAnn GhcPs) -- Injectivity annotation
-> [AddEpAnn]
-> P (LTyClDecl GhcPs)
mkFamDecl loc info topLevel lhs ksig injAnn annsIn
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; cs1 <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan [temp]
; (tyvars, anns) <- checkTyVars (ppr info) equals_or_where tc tparams
; cs2 <- getCommentsFor loc -- Add any API Annotations to the top SrcSpan [temp]
; let anns' = addAnns (EpAnn (spanAsAnchor loc) annsIn emptyComments) (ann++anns) (cs1 Semi.<> cs2)
; return (L (noAnnSrcSpan loc) (FamDecl noExtField
(FamilyDecl
{ fdExt = anns'
, fdTopLevel = topLevel
, fdInfo = info, fdLName = tc
, fdTyVars = tyvars
, fdFixity = fixity
, fdResultSig = ksig
, fdInjectivityAnn = injAnn }))) }
where
equals_or_where = case info of
DataFamily -> empty
OpenTypeFamily -> empty
ClosedTypeFamily {} -> whereDots
mkSpliceDecl :: LHsExpr GhcPs -> P (LHsDecl GhcPs)
-- If the user wrote
-- [pads| ... ] then return a QuasiQuoteD
-- $(e) then return a SpliceD
-- but if they wrote, say,
-- f x then behave as if they'd written $(f x)
-- ie a SpliceD
--
-- Typed splices are not allowed at the top level, thus we do not represent them
-- as spliced declaration. See #10945
mkSpliceDecl lexpr@(L loc expr)
| HsSpliceE _ splice@(HsUntypedSplice {}) <- expr = do
cs <- getCommentsFor (locA loc)
return $ L (addCommentsToSrcAnn loc cs) $ SpliceD noExtField (SpliceDecl noExtField (L loc splice) ExplicitSplice)
| HsSpliceE _ splice@(HsQuasiQuote {}) <- expr = do
cs <- getCommentsFor (locA loc)
return $ L (addCommentsToSrcAnn loc cs) $ SpliceD noExtField (SpliceDecl noExtField (L loc splice) ExplicitSplice)
| otherwise = do
cs <- getCommentsFor (locA loc)
return $ L (addCommentsToSrcAnn loc cs) $ SpliceD noExtField (SpliceDecl noExtField
(L loc (mkUntypedSplice noAnn BareSplice lexpr))
ImplicitSplice)
mkRoleAnnotDecl :: SrcSpan
-> LocatedN RdrName -- type being annotated
-> [Located (Maybe FastString)] -- roles
-> [AddEpAnn]
-> P (LRoleAnnotDecl GhcPs)
mkRoleAnnotDecl loc tycon roles anns
= do { roles' <- mapM parse_role roles
; cs <- getCommentsFor loc
; return $ L (noAnnSrcSpan loc)
$ RoleAnnotDecl (EpAnn (spanAsAnchor loc) anns cs) tycon roles' }
where
role_data_type = dataTypeOf (undefined :: Role)
all_roles = map fromConstr $ dataTypeConstrs role_data_type
possible_roles = [(fsFromRole role, role) | role <- all_roles]
parse_role (L loc_role Nothing) = return $ L loc_role Nothing
parse_role (L loc_role (Just role))
= case lookup role possible_roles of
Just found_role -> return $ L loc_role $ Just found_role
Nothing ->
let nearby = fuzzyLookup (unpackFS role)
(mapFst unpackFS possible_roles)
in
addFatalError $ PsError (PsErrIllegalRoleName role nearby) [] loc_role
-- | Converts a list of 'LHsTyVarBndr's annotated with their 'Specificity' to
-- binders without annotations. Only accepts specified variables, and errors if
-- any of the provided binders has an 'InferredSpec' annotation.
fromSpecTyVarBndrs :: [LHsTyVarBndr Specificity GhcPs] -> P [LHsTyVarBndr () GhcPs]
fromSpecTyVarBndrs = mapM fromSpecTyVarBndr
-- | Converts 'LHsTyVarBndr' annotated with its 'Specificity' to one without
-- annotations. Only accepts specified variables, and errors if the provided
-- binder has an 'InferredSpec' annotation.
fromSpecTyVarBndr :: LHsTyVarBndr Specificity GhcPs -> P (LHsTyVarBndr () GhcPs)
fromSpecTyVarBndr bndr = case bndr of
(L loc (UserTyVar xtv flag idp)) -> (check_spec flag loc)
>> return (L loc $ UserTyVar xtv () idp)
(L loc (KindedTyVar xtv flag idp k)) -> (check_spec flag loc)
>> return (L loc $ KindedTyVar xtv () idp k)
where
check_spec :: Specificity -> SrcSpanAnnA -> P ()
check_spec SpecifiedSpec _ = return ()
check_spec InferredSpec loc = addFatalError $ PsError PsErrInferredTypeVarNotAllowed [] (locA loc)
-- | Add the annotation for a 'where' keyword to existing @HsLocalBinds@
annBinds :: AddEpAnn -> HsLocalBinds GhcPs -> HsLocalBinds GhcPs
annBinds a (HsValBinds an bs) = (HsValBinds (add_where a an) bs)
annBinds a (HsIPBinds an bs) = (HsIPBinds (add_where a an) bs)
annBinds _ (EmptyLocalBinds x) = (EmptyLocalBinds x)
add_where :: AddEpAnn -> EpAnn AnnList -> EpAnn AnnList
add_where an@(AddEpAnn _ (EpaSpan rs)) (EpAnn a (AnnList anc o c r t) cs)
| valid_anchor (anchor a)
= EpAnn (widenAnchor a [an]) (AnnList anc o c (an:r) t) cs
| otherwise
= EpAnn (patch_anchor rs a) (AnnList (fmap (patch_anchor rs) anc) o c (an:r) t) cs
add_where an@(AddEpAnn _ (EpaSpan rs)) EpAnnNotUsed
= EpAnn (Anchor rs UnchangedAnchor)
(AnnList (Just $ Anchor rs UnchangedAnchor) Nothing Nothing [an] []) emptyComments
add_where (AddEpAnn _ (EpaDelta _)) _ = panic "add_where"
-- EpaDelta should only be used for transformations
valid_anchor :: RealSrcSpan -> Bool
valid_anchor r = srcSpanStartLine r >= 0
-- If the decl list for where binds is empty, the anchor ends up
-- invalid. In this case, use the parent one
patch_anchor :: RealSrcSpan -> Anchor -> Anchor
patch_anchor r1 (Anchor r0 op) = Anchor r op
where
r = if srcSpanStartLine r0 < 0 then r1 else r0
{- **********************************************************************
#cvBinds-etc# Converting to @HsBinds@, etc.
********************************************************************* -}
-- | Function definitions are restructured here. Each is assumed to be recursive
-- initially, and non recursive definitions are discovered by the dependency
-- analyser.
-- | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
cvTopDecls decls = getMonoBindAll (fromOL decls)
-- Declaration list may only contain value bindings and signatures.
cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBinds GhcPs)
cvBindGroup binding
= do { (mbs, sigs, fam_ds, tfam_insts
, dfam_insts, _) <- cvBindsAndSigs binding
; massert (null fam_ds && null tfam_insts && null dfam_insts)
; return $ ValBinds NoAnnSortKey mbs sigs }
cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs]
, [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl GhcPs])
-- Input decls contain just value bindings and signatures
-- and in case of class or instance declarations also
-- associated type declarations. They might also contain Haddock comments.
cvBindsAndSigs fb = do
fb' <- drop_bad_decls (fromOL fb)
return (partitionBindsAndSigs (getMonoBindAll fb'))
where
-- cvBindsAndSigs is called in several places in the parser,
-- and its items can be produced by various productions:
--
-- * decl (when parsing a where clause or a let-expression)
-- * decl_inst (when parsing an instance declaration)
-- * decl_cls (when parsing a class declaration)
--
-- partitionBindsAndSigs can handle almost all declaration forms produced
-- by the aforementioned productions, except for SpliceD, which we filter
-- out here (in drop_bad_decls).
--
-- We're not concerned with every declaration form possible, such as those
-- produced by the topdecl parser production, because cvBindsAndSigs is not
-- called on top-level declarations.
drop_bad_decls [] = return []
drop_bad_decls (L l (SpliceD _ d) : ds) = do
addError $ PsError (PsErrDeclSpliceNotAtTopLevel d) [] (locA l)
drop_bad_decls ds
drop_bad_decls (d:ds) = (d:) <$> drop_bad_decls ds
-----------------------------------------------------------------------------
-- Group function bindings into equation groups
getMonoBind :: LHsBind GhcPs -> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
-- Suppose (b',ds') = getMonoBind b ds
-- ds is a list of parsed bindings
-- b is a MonoBinds that has just been read off the front
-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- All Haddock comments between equations inside the group are
-- discarded.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations
getMonoBind (L loc1 (FunBind { fun_id = fun_id1@(L _ f1)
, fun_matches =
MG { mg_alts = (L _ m1@[L _ mtchs1]) } }))
binds
| has_args m1
= go [L (removeCommentsA loc1) mtchs1] (commentsOnlyA loc1) binds []
where
go :: [LMatch GhcPs (LHsExpr GhcPs)] -> SrcSpanAnnA
-> [LHsDecl GhcPs] -> [LHsDecl GhcPs]
-> (LHsBind GhcPs,[LHsDecl GhcPs]) -- AZ
go mtchs loc
((L loc2 (ValD _ (FunBind { fun_id = (L _ f2)
, fun_matches =
MG { mg_alts = (L _ [L lm2 mtchs2]) } })))
: binds) _
| f1 == f2 =
let (loc2', lm2') = transferAnnsA loc2 lm2
in go (L lm2' mtchs2 : mtchs)
(combineSrcSpansA loc loc2') binds []
go mtchs loc (doc_decl@(L loc2 (DocD {})) : binds) doc_decls
= let doc_decls' = doc_decl : doc_decls
in go mtchs (combineSrcSpansA loc loc2) binds doc_decls'
go mtchs loc binds doc_decls
= ( L loc (makeFunBind fun_id1 (mkLocatedList $ reverse mtchs))
, (reverse doc_decls) ++ binds)
-- Reverse the final matches, to get it back in the right order
-- Do the same thing with the trailing doc comments
getMonoBind bind binds = (bind, binds)
-- Group together adjacent FunBinds for every function.
getMonoBindAll :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
getMonoBindAll [] = []
getMonoBindAll (L l (ValD _ b) : ds) =
let (L l' b', ds') = getMonoBind (L l b) ds
in L l' (ValD noExtField b') : getMonoBindAll ds'
getMonoBindAll (d : ds) = d : getMonoBindAll ds
has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args [] = panic "GHC.Parser.PostProcess.has_args"
has_args (L _ (Match { m_pats = args }) : _) = not (null args)
-- Don't group together FunBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
{- **********************************************************************
#PrefixToHS-utils# Utilities for conversion
********************************************************************* -}
{- Note [Parsing data constructors is hard]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The problem with parsing data constructors is that they look a lot like types.
Compare:
(s1) data T = C t1 t2
(s2) type T = C t1 t2
Syntactically, there's little difference between these declarations, except in
(s1) 'C' is a data constructor, but in (s2) 'C' is a type constructor.
This similarity would pose no problem if we knew ahead of time if we are
parsing a type or a constructor declaration. Looking at (s1) and (s2), a simple
(but wrong!) rule comes to mind: in 'data' declarations assume we are parsing
data constructors, and in other contexts (e.g. 'type' declarations) assume we
are parsing type constructors.
This simple rule does not work because of two problematic cases:
(p1) data T = C t1 t2 :+ t3
(p2) data T = C t1 t2 => t3
In (p1) we encounter (:+) and it turns out we are parsing an infix data
declaration, so (C t1 t2) is a type and 'C' is a type constructor.
In (p2) we encounter (=>) and it turns out we are parsing an existential
context, so (C t1 t2) is a constraint and 'C' is a type constructor.
As the result, in order to determine whether (C t1 t2) declares a data
constructor, a type, or a context, we would need unlimited lookahead which
'happy' is not so happy with.
-}
-- | Reinterpret a type constructor, including type operators, as a data
-- constructor.
-- See Note [Parsing data constructors is hard]
tyConToDataCon :: LocatedN RdrName -> Either PsError (LocatedN RdrName)
tyConToDataCon (L loc tc)
| isTcOcc occ || isDataOcc occ
, isLexCon (occNameFS occ)
= return (L loc (setRdrNameSpace tc srcDataName))
| otherwise
= Left $ PsError (PsErrNotADataCon tc) [] (locA loc)
where
occ = rdrNameOcc tc
mkPatSynMatchGroup :: LocatedN RdrName
-> LocatedL (OrdList (LHsDecl GhcPs))
-> P (MatchGroup GhcPs (LHsExpr GhcPs))
mkPatSynMatchGroup (L loc patsyn_name) (L ld decls) =
do { matches <- mapM fromDecl (fromOL decls)
; when (null matches) (wrongNumberErr (locA loc))
; return $ mkMatchGroup FromSource (L ld matches) }
where
fromDecl (L loc decl@(ValD _ (PatBind _
-- AZ: where should these anns come from?
pat@(L _ (ConPat noAnn ln@(L _ name) details))
rhs _))) =
do { unless (name == patsyn_name) $
wrongNameBindingErr (locA loc) decl
; match <- case details of
PrefixCon _ pats -> return $ Match { m_ext = noAnn
, m_ctxt = ctxt, m_pats = pats
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln
, mc_fixity = Prefix
, mc_strictness = NoSrcStrict }
InfixCon p1 p2 -> return $ Match { m_ext = noAnn
, m_ctxt = ctxt
, m_pats = [p1, p2]
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln
, mc_fixity = Infix
, mc_strictness = NoSrcStrict }
RecCon{} -> recordPatSynErr (locA loc) pat
; return $ L loc match }
fromDecl (L loc decl) = extraDeclErr (locA loc) decl
extraDeclErr loc decl =
addFatalError $ PsError (PsErrNoSingleWhereBindInPatSynDecl patsyn_name decl) [] loc
wrongNameBindingErr loc decl =
addFatalError $ PsError (PsErrInvalidWhereBindInPatSynDecl patsyn_name decl) [] loc
wrongNumberErr loc =
addFatalError $ PsError (PsErrEmptyWhereInPatSynDecl patsyn_name) [] loc
recordPatSynErr :: SrcSpan -> LPat GhcPs -> P a
recordPatSynErr loc pat =
addFatalError $ PsError (PsErrRecordSyntaxInPatSynDecl pat) [] loc
mkConDeclH98 :: EpAnn [AddEpAnn] -> LocatedN RdrName -> Maybe [LHsTyVarBndr Specificity GhcPs]
-> Maybe (LHsContext GhcPs) -> HsConDeclH98Details GhcPs
-> ConDecl GhcPs
mkConDeclH98 ann name mb_forall mb_cxt args
= ConDeclH98 { con_ext = ann
, con_name = name
, con_forall = isJust mb_forall
, con_ex_tvs = mb_forall `orElse` []
, con_mb_cxt = mb_cxt
, con_args = args
, con_doc = Nothing }
-- | Construct a GADT-style data constructor from the constructor names and
-- their type. Some interesting aspects of this function:
--
-- * This splits up the constructor type into its quantified type variables (if
-- provided), context (if provided), argument types, and result type, and
-- records whether this is a prefix or record GADT constructor. See
-- Note [GADT abstract syntax] in "GHC.Hs.Decls" for more details.
mkGadtDecl :: SrcSpan
-> [LocatedN RdrName]
-> LHsSigType GhcPs
-> [AddEpAnn]
-> P (LConDecl GhcPs)
mkGadtDecl loc names ty annsIn = do
cs <- getCommentsFor loc
let l = noAnnSrcSpan loc
let (args, res_ty, annsa, csa)
| L ll (HsFunTy af _w (L loc' (HsRecTy an rf)) res_ty) <- body_ty
= let
an' = addTrailingAnnToL (locA loc') (anns af) (comments af) an
in ( RecConGADT (L (SrcSpanAnn an' (locA loc')) rf), res_ty
, [], epAnnComments (ann ll))
| otherwise
= let (anns, cs, arg_types, res_type) = splitHsFunType body_ty
in (PrefixConGADT arg_types, res_type, anns, cs)
an = case outer_bndrs of
_ -> EpAnn (spanAsAnchor loc) (annsIn ++ annsa) (cs Semi.<> csa)
pure $ L l ConDeclGADT
{ con_g_ext = an
, con_names = names
, con_bndrs = L (getLoc ty) outer_bndrs
, con_mb_cxt = mcxt
, con_g_args = args
, con_res_ty = res_ty
, con_doc = Nothing }
where
(outer_bndrs, mcxt, body_ty) = splitLHsGadtTy ty
setRdrNameSpace :: RdrName -> NameSpace -> RdrName
-- ^ This rather gruesome function is used mainly by the parser.
-- When parsing:
--
-- > data T a = T | T1 Int
--
-- we parse the data constructors as /types/ because of parser ambiguities,
-- so then we need to change the /type constr/ to a /data constr/
--
-- The exact-name case /can/ occur when parsing:
--
-- > data [] a = [] | a : [a]
--
-- For the exact-name case we return an original name.
setRdrNameSpace (Unqual occ) ns = Unqual (setOccNameSpace ns occ)
setRdrNameSpace (Qual m occ) ns = Qual m (setOccNameSpace ns occ)
setRdrNameSpace (Orig m occ) ns = Orig m (setOccNameSpace ns occ)
setRdrNameSpace (Exact n) ns
| Just thing <- wiredInNameTyThing_maybe n
= setWiredInNameSpace thing ns
-- Preserve Exact Names for wired-in things,
-- notably tuples and lists
| isExternalName n
= Orig (nameModule n) occ
| otherwise -- This can happen when quoting and then
-- splicing a fixity declaration for a type
= Exact (mkSystemNameAt (nameUnique n) occ (nameSrcSpan n))
where
occ = setOccNameSpace ns (nameOccName n)
setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace (ATyCon tc) ns
| isDataConNameSpace ns
= ty_con_data_con tc
| isTcClsNameSpace ns
= Exact (getName tc) -- No-op
setWiredInNameSpace (AConLike (RealDataCon dc)) ns
| isTcClsNameSpace ns
= data_con_ty_con dc
| isDataConNameSpace ns
= Exact (getName dc) -- No-op
setWiredInNameSpace thing ns
= pprPanic "setWiredinNameSpace" (pprNameSpace ns <+> ppr thing)
ty_con_data_con :: TyCon -> RdrName
ty_con_data_con tc
| isTupleTyCon tc
, Just dc <- tyConSingleDataCon_maybe tc
= Exact (getName dc)
| tc `hasKey` listTyConKey
= Exact nilDataConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace srcDataName (getOccName tc))
data_con_ty_con :: DataCon -> RdrName
data_con_ty_con dc
| let tc = dataConTyCon dc
, isTupleTyCon tc
= Exact (getName tc)
| dc `hasKey` nilDataConKey
= Exact listTyConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace tcClsName (getOccName dc))
{- Note [setRdrNameSpace for wired-in names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC.Types, which declares (:), we have
infixr 5 :
The ambiguity about which ":" is meant is resolved by parsing it as a
data constructor, but then using dataTcOccs to try the type constructor too;
and that in turn calls setRdrNameSpace to change the name-space of ":" to
tcClsName. There isn't a corresponding ":" type constructor, but it's painful
to make setRdrNameSpace partial, so we just make an Unqual name instead. It
really doesn't matter!
-}
eitherToP :: MonadP m => Either PsError a -> m a
-- Adapts the Either monad to the P monad
eitherToP (Left err) = addFatalError err
eitherToP (Right thing) = return thing
checkTyVars :: SDoc -> SDoc -> LocatedN RdrName -> [LHsTypeArg GhcPs]
-> P ( LHsQTyVars GhcPs -- the synthesized type variables
, [AddEpAnn] ) -- action which adds annotations
-- ^ Check whether the given list of type parameters are all type variables
-- (possibly with a kind signature).
checkTyVars pp_what equals_or_where tc tparms
= do { (tvs, anns) <- fmap unzip $ mapM check tparms
; return (mkHsQTvs tvs, concat anns) }
where
check (HsTypeArg _ ki@(L loc _)) = addFatalError $ PsError (PsErrUnexpectedTypeAppInDecl ki pp_what (unLoc tc)) [] (locA loc)
check (HsValArg ty) = chkParens [] emptyComments ty
check (HsArgPar sp) = addFatalError $ PsError (PsErrMalformedDecl pp_what (unLoc tc)) [] sp
-- Keep around an action for adjusting the annotations of extra parens
chkParens :: [AddEpAnn] -> EpAnnComments -> LHsType GhcPs
-> P (LHsTyVarBndr () GhcPs, [AddEpAnn])
chkParens acc cs (L l (HsParTy an ty))
= chkParens (mkParensEpAnn (locA l) ++ acc) (cs Semi.<> epAnnComments an) ty
chkParens acc cs ty = do
tv <- chk acc cs ty
return (tv, reverse acc)
-- Check that the name space is correct!
chk :: [AddEpAnn] -> EpAnnComments -> LHsType GhcPs -> P (LHsTyVarBndr () GhcPs)
chk an cs (L l (HsKindSig annk (L annt (HsTyVar ann _ (L lv tv))) k))
| isRdrTyVar tv
= return (L (widenLocatedAn (l Semi.<> annt) an)
(KindedTyVar (addAnns (annk Semi.<> ann) an cs) () (L lv tv) k))
chk an cs (L l (HsTyVar ann _ (L ltv tv)))
| isRdrTyVar tv = return (L (widenLocatedAn l an)
(UserTyVar (addAnns ann an cs) () (L ltv tv)))
chk _ _ t@(L loc _)
= addFatalError $ PsError (PsErrUnexpectedTypeInDecl t pp_what (unLoc tc) tparms equals_or_where) [] (locA loc)
whereDots, equalsDots :: SDoc
-- Second argument to checkTyVars
whereDots = text "where ..."
equalsDots = text "= ..."
checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext Nothing = return ()
checkDatatypeContext (Just c)
= do allowed <- getBit DatatypeContextsBit
unless allowed $ addError $ PsError (PsErrIllegalDataTypeContext c) [] (getLocA c)
type LRuleTyTmVar = Located RuleTyTmVar
data RuleTyTmVar = RuleTyTmVar (EpAnn [AddEpAnn]) (LocatedN RdrName) (Maybe (LHsType GhcPs))
-- ^ Essentially a wrapper for a @RuleBndr GhcPs@
-- turns RuleTyTmVars into RuleBnrs - this is straightforward
mkRuleBndrs :: [LRuleTyTmVar] -> [LRuleBndr GhcPs]
mkRuleBndrs = fmap (fmap cvt_one)
where cvt_one (RuleTyTmVar ann v Nothing) = RuleBndr ann v
cvt_one (RuleTyTmVar ann v (Just sig)) =
RuleBndrSig ann v (mkHsPatSigType sig)
-- turns RuleTyTmVars into HsTyVarBndrs - this is more interesting
mkRuleTyVarBndrs :: [LRuleTyTmVar] -> [LHsTyVarBndr () GhcPs]
mkRuleTyVarBndrs = fmap cvt_one
where cvt_one (L l (RuleTyTmVar ann v Nothing))
= L (noAnnSrcSpan l) (UserTyVar ann () (fmap tm_to_ty v))
cvt_one (L l (RuleTyTmVar ann v (Just sig)))
= L (noAnnSrcSpan l) (KindedTyVar ann () (fmap tm_to_ty v) sig)
-- takes something in namespace 'varName' to something in namespace 'tvName'
tm_to_ty (Unqual occ) = Unqual (setOccNameSpace tvName occ)
tm_to_ty _ = panic "mkRuleTyVarBndrs"
-- See note [Parsing explicit foralls in Rules] in Parser.y
checkRuleTyVarBndrNames :: [LHsTyVarBndr flag GhcPs] -> P ()
checkRuleTyVarBndrNames = mapM_ (check . fmap hsTyVarName)
where check (L loc (Unqual occ)) =
-- TODO: don't use string here, OccName has a Unique/FastString
when ((occNameString occ ==) `any` ["forall","family","role"])
(addFatalError $ PsError (PsErrParseErrorOnInput occ) [] (locA loc))
check _ = panic "checkRuleTyVarBndrNames"
checkRecordSyntax :: (MonadP m, Outputable a) => LocatedA a -> m (LocatedA a)
checkRecordSyntax lr@(L loc r)
= do allowed <- getBit TraditionalRecordSyntaxBit
unless allowed $ addError $ PsError (PsErrIllegalTraditionalRecordSyntax (ppr r)) [] (locA loc)
return lr
-- | Check if the gadt_constrlist is empty. Only raise parse error for
-- `data T where` to avoid affecting existing error message, see #8258.
checkEmptyGADTs :: Located ([AddEpAnn], [LConDecl GhcPs])
-> P (Located ([AddEpAnn], [LConDecl GhcPs]))
checkEmptyGADTs gadts@(L span (_, [])) -- Empty GADT declaration.
= do gadtSyntax <- getBit GadtSyntaxBit -- GADTs implies GADTSyntax
unless gadtSyntax $ addError $ PsError PsErrIllegalWhereInDataDecl [] span
return gadts
checkEmptyGADTs gadts = return gadts -- Ordinary GADT declaration.
checkTyClHdr :: Bool -- True <=> class header
-- False <=> type header
-> LHsType GhcPs
-> P (LocatedN RdrName, -- the head symbol (type or class name)
[LHsTypeArg GhcPs], -- parameters of head symbol
LexicalFixity, -- the declaration is in infix format
[AddEpAnn]) -- API Annotation for HsParTy
-- when stripping parens
-- Well-formedness check and decomposition of type and class heads.
-- Decomposes T ty1 .. tyn into (T, [ty1, ..., tyn])
-- Int :*: Bool into (:*:, [Int, Bool])
-- returning the pieces
checkTyClHdr is_cls ty
= goL ty [] [] Prefix
where
goL (L l ty) acc ann fix = go (locA l) ty acc ann fix
-- workaround to define '*' despite StarIsType
go _ (HsParTy an (L l (HsStarTy _ isUni))) acc ann' fix
= do { addWarning Opt_WarnStarBinder (PsWarnStarBinder (locA l))
; let name = mkOccName tcClsName (starSym isUni)
; let a' = newAnns l an
; return (L a' (Unqual name), acc, fix
, ann') }
go _ (HsTyVar _ _ ltc@(L _ tc)) acc ann fix
| isRdrTc tc = return (ltc, acc, fix, ann)
go _ (HsOpTy _ t1 ltc@(L _ tc) t2) acc ann _fix
| isRdrTc tc = return (ltc, HsValArg t1:HsValArg t2:acc, Infix, ann)
go l (HsParTy _ ty) acc ann fix = goL ty acc (ann ++mkParensEpAnn l) fix
go _ (HsAppTy _ t1 t2) acc ann fix = goL t1 (HsValArg t2:acc) ann fix
go _ (HsAppKindTy l ty ki) acc ann fix = goL ty (HsTypeArg l ki:acc) ann fix
go l (HsTupleTy _ HsBoxedOrConstraintTuple ts) [] ann fix
= return (L (noAnnSrcSpan l) (nameRdrName tup_name)
, map HsValArg ts, fix, ann)
where
arity = length ts
tup_name | is_cls = cTupleTyConName arity
| otherwise = getName (tupleTyCon Boxed arity)
-- See Note [Unit tuples] in GHC.Hs.Type (TODO: is this still relevant?)
go l _ _ _ _
= addFatalError $ PsError (PsErrMalformedTyOrClDecl ty) [] l
-- Combine the annotations from the HsParTy and HsStarTy into a
-- new one for the LocatedN RdrName
newAnns :: SrcSpanAnnA -> EpAnn AnnParen -> SrcSpanAnnN
newAnns (SrcSpanAnn EpAnnNotUsed l) (EpAnn as (AnnParen _ o c) cs) =
let
lr = combineRealSrcSpans (realSrcSpan l) (anchor as)
-- lr = widenAnchorR as (realSrcSpan l)
an = (EpAnn (Anchor lr UnchangedAnchor) (NameAnn NameParens o (EpaSpan $ realSrcSpan l) c []) cs)
in SrcSpanAnn an (RealSrcSpan lr Nothing)
newAnns _ EpAnnNotUsed = panic "missing AnnParen"
newAnns (SrcSpanAnn (EpAnn ap (AnnListItem ta) csp) l) (EpAnn as (AnnParen _ o c) cs) =
let
lr = combineRealSrcSpans (anchor ap) (anchor as)
an = (EpAnn (Anchor lr UnchangedAnchor) (NameAnn NameParens o (EpaSpan $ realSrcSpan l) c ta) (csp Semi.<> cs))
in SrcSpanAnn an (RealSrcSpan lr Nothing)
-- | Yield a parse error if we have a function applied directly to a do block
-- etc. and BlockArguments is not enabled.
checkExpBlockArguments :: LHsExpr GhcPs -> PV ()
checkCmdBlockArguments :: LHsCmd GhcPs -> PV ()
(checkExpBlockArguments, checkCmdBlockArguments) = (checkExpr, checkCmd)
where
checkExpr :: LHsExpr GhcPs -> PV ()
checkExpr expr = case unLoc expr of
HsDo _ (DoExpr m) _ -> check (PsErrDoInFunAppExpr m) expr
HsDo _ (MDoExpr m) _ -> check (PsErrMDoInFunAppExpr m) expr
HsLam {} -> check PsErrLambdaInFunAppExpr expr
HsCase {} -> check PsErrCaseInFunAppExpr expr
HsLamCase {} -> check PsErrLambdaCaseInFunAppExpr expr
HsLet {} -> check PsErrLetInFunAppExpr expr
HsIf {} -> check PsErrIfInFunAppExpr expr
HsProc {} -> check PsErrProcInFunAppExpr expr
_ -> return ()
checkCmd :: LHsCmd GhcPs -> PV ()
checkCmd cmd = case unLoc cmd of
HsCmdLam {} -> check PsErrLambdaCmdInFunAppCmd cmd
HsCmdCase {} -> check PsErrCaseCmdInFunAppCmd cmd
HsCmdIf {} -> check PsErrIfCmdInFunAppCmd cmd
HsCmdLet {} -> check PsErrLetCmdInFunAppCmd cmd
HsCmdDo {} -> check PsErrDoCmdInFunAppCmd cmd
_ -> return ()
check err a = do
blockArguments <- getBit BlockArgumentsBit
unless blockArguments $
addError $ PsError (err a) [] (getLocA a)
-- | Validate the context constraints and break up a context into a list
-- of predicates.
--
-- @
-- (Eq a, Ord b) --> [Eq a, Ord b]
-- Eq a --> [Eq a]
-- (Eq a) --> [Eq a]
-- (((Eq a))) --> [Eq a]
-- @
checkContext :: LHsType GhcPs -> P (LHsContext GhcPs)
checkContext orig_t@(L (SrcSpanAnn _ l) _orig_t) =
check ([],[],emptyComments) orig_t
where
check :: ([EpaLocation],[EpaLocation],EpAnnComments)
-> LHsType GhcPs -> P (LHsContext GhcPs)
check (oparens,cparens,cs) (L _l (HsTupleTy ann' HsBoxedOrConstraintTuple ts))
-- (Eq a, Ord b) shows up as a tuple type. Only boxed tuples can
-- be used as context constraints.
-- Ditto ()
= do
let (op,cp,cs') = case ann' of
EpAnnNotUsed -> ([],[],emptyComments)
EpAnn _ (AnnParen _ o c) cs -> ([o],[c],cs)
return (L (SrcSpanAnn (EpAnn (spanAsAnchor l)
(AnnContext Nothing (op Semi.<> oparens) (cp Semi.<> cparens)) (cs Semi.<> cs')) l) ts)
check (opi,cpi,csi) (L _lp1 (HsParTy ann' ty))
-- to be sure HsParTy doesn't get into the way
= do
let (op,cp,cs') = case ann' of
EpAnnNotUsed -> ([],[],emptyComments)
EpAnn _ (AnnParen _ open close ) cs -> ([open],[close],cs)
check (op++opi,cp++cpi,cs' Semi.<> csi) ty
-- No need for anns, returning original
check (_opi,_cpi,_csi) _t =
return (L (SrcSpanAnn (EpAnn (spanAsAnchor l) (AnnContext Nothing [] []) emptyComments) l) [orig_t])
checkImportDecl :: Maybe EpaLocation
-> Maybe EpaLocation
-> P ()
checkImportDecl mPre mPost = do
let whenJust mg f = maybe (pure ()) f mg
importQualifiedPostEnabled <- getBit ImportQualifiedPostBit
-- Error if 'qualified' found in postpositive position and
-- 'ImportQualifiedPost' is not in effect.
whenJust mPost $ \post ->
when (not importQualifiedPostEnabled) $
failOpNotEnabledImportQualifiedPost (RealSrcSpan (epaLocationRealSrcSpan post) Nothing)
-- Error if 'qualified' occurs in both pre and postpositive
-- positions.
whenJust mPost $ \post ->
when (isJust mPre) $
failOpImportQualifiedTwice (RealSrcSpan (epaLocationRealSrcSpan post) Nothing)
-- Warn if 'qualified' found in prepositive position and
-- 'Opt_WarnPrepositiveQualifiedModule' is enabled.
whenJust mPre $ \pre ->
warnPrepositiveQualifiedModule (RealSrcSpan (epaLocationRealSrcSpan pre) Nothing)
-- -------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: LocatedA (PatBuilder GhcPs) -> P (LPat GhcPs)
checkPattern = runPV . checkLPat
checkPattern_hints :: [PsHint] -> PV (LocatedA (PatBuilder GhcPs)) -> P (LPat GhcPs)
checkPattern_hints hints pp = runPV_hints hints (pp >>= checkLPat)
checkLPat :: LocatedA (PatBuilder GhcPs) -> PV (LPat GhcPs)
checkLPat e@(L l _) = checkPat l e [] []
checkPat :: SrcSpanAnnA -> LocatedA (PatBuilder GhcPs) -> [HsPatSigType GhcPs] -> [LPat GhcPs]
-> PV (LPat GhcPs)
checkPat loc (L l e@(PatBuilderVar (L ln c))) tyargs args
| isRdrDataCon c = return . L loc $ ConPat
{ pat_con_ext = noAnn -- AZ: where should this come from?
, pat_con = L ln c
, pat_args = PrefixCon tyargs args
}
| not (null tyargs) =
add_hint TypeApplicationsInPatternsOnlyDataCons $
patFail (locA l) (ppr e <+> hsep [text "@" <> ppr t | t <- tyargs])
| not (null args) && patIsRec c =
add_hint SuggestRecursiveDo $
patFail (locA l) (ppr e)
checkPat loc (L _ (PatBuilderAppType f _ t)) tyargs args =
checkPat loc f (t : tyargs) args
checkPat loc (L _ (PatBuilderApp f e)) [] args = do
p <- checkLPat e
checkPat loc f [] (p : args)
checkPat loc (L l e) [] [] = do
p <- checkAPat loc e
return (L l p)
checkPat loc e _ _ = patFail (locA loc) (ppr e)
checkAPat :: SrcSpanAnnA -> PatBuilder GhcPs -> PV (Pat GhcPs)
checkAPat loc e0 = do
nPlusKPatterns <- getBit NPlusKPatternsBit
case e0 of
PatBuilderPat p -> return p
PatBuilderVar x -> return (VarPat noExtField x)
-- Overloaded numeric patterns (e.g. f 0 x = x)
-- Negation is recorded separately, so that the literal is zero or +ve
-- NB. Negative *primitive* literals are already handled by the lexer
PatBuilderOverLit pos_lit -> return (mkNPat (L (locA loc) pos_lit) Nothing noAnn)
-- n+k patterns
PatBuilderOpApp
(L _ (PatBuilderVar (L nloc n)))
(L _ plus)
(L lloc (PatBuilderOverLit lit@(OverLit {ol_val = HsIntegral {}})))
anns
| nPlusKPatterns && (plus == plus_RDR)
-> return (mkNPlusKPat (L nloc n) (L (locA lloc) lit) anns)
-- Improve error messages for the @-operator when the user meant an @-pattern
PatBuilderOpApp _ op _ _ | opIsAt (unLoc op) -> do
addError $ PsError PsErrAtInPatPos [] (getLocA op)
return (WildPat noExtField)
PatBuilderOpApp l (L cl c) r anns
| isRdrDataCon c -> do
l <- checkLPat l
r <- checkLPat r
return $ ConPat
{ pat_con_ext = anns
, pat_con = L cl c
, pat_args = InfixCon l r
}
PatBuilderPar e an@(AnnParen pt o c) -> do
(L l p) <- checkLPat e
let aa = [AddEpAnn ai o, AddEpAnn ac c]
(ai,ac) = parenTypeKws pt
return (ParPat (EpAnn (spanAsAnchor $ (widenSpan (locA l) aa)) an emptyComments) (L l p))
_ -> patFail (locA loc) (ppr e0)
placeHolderPunRhs :: DisambECP b => PV (LocatedA b)
-- The RHS of a punned record field will be filled in by the renamer
-- It's better not to make it an error, in case we want to print it when
-- debugging
placeHolderPunRhs = mkHsVarPV (noLocA pun_RDR)
plus_RDR, pun_RDR :: RdrName
plus_RDR = mkUnqual varName (fsLit "+") -- Hack
pun_RDR = mkUnqual varName (fsLit "pun-right-hand-side")
checkPatField :: LHsRecField GhcPs (LocatedA (PatBuilder GhcPs))
-> PV (LHsRecField GhcPs (LPat GhcPs))
checkPatField (L l fld) = do p <- checkLPat (hsRecFieldArg fld)
return (L l (fld { hsRecFieldArg = p }))
patFail :: SrcSpan -> SDoc -> PV a
patFail loc e = addFatalError $ PsError (PsErrParseErrorInPat e) [] loc
patIsRec :: RdrName -> Bool
patIsRec e = e == mkUnqual varName (fsLit "rec")
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef :: SrcSpan
-> LocatedA (PatBuilder GhcPs)
-> Maybe (AddEpAnn, LHsType GhcPs)
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBind GhcPs)
checkValDef loc lhs (Just (sigAnn, sig)) grhss
-- x :: ty = rhs parses as a *pattern* binding
= do lhs' <- runPV $ mkHsTySigPV (combineLocsA lhs sig) lhs sig [sigAnn]
>>= checkLPat
checkPatBind loc [] lhs' grhss
checkValDef loc lhs Nothing g
= do { mb_fun <- isFunLhs lhs
; case mb_fun of
Just (fun, is_infix, pats, ann) ->
checkFunBind NoSrcStrict loc ann
fun is_infix pats g
Nothing -> do
lhs' <- checkPattern lhs
checkPatBind loc [] lhs' g }
checkFunBind :: SrcStrictness
-> SrcSpan
-> [AddEpAnn]
-> LocatedN RdrName
-> LexicalFixity
-> [LocatedA (PatBuilder GhcPs)]
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBind GhcPs)
checkFunBind strictness locF ann fun is_infix pats (L _ grhss)
= do ps <- runPV_hints param_hints (mapM checkLPat pats)
let match_span = noAnnSrcSpan $ locF
cs <- getCommentsFor locF
return (makeFunBind fun (L (noAnnSrcSpan $ locA match_span)
[L match_span (Match { m_ext = EpAnn (spanAsAnchor locF) ann cs
, m_ctxt = FunRhs
{ mc_fun = fun
, mc_fixity = is_infix
, mc_strictness = strictness }
, m_pats = ps
, m_grhss = grhss })]))
-- The span of the match covers the entire equation.
-- That isn't quite right, but it'll do for now.
where
param_hints
| Infix <- is_infix = [SuggestInfixBindMaybeAtPat (unLoc fun)]
| otherwise = []
makeFunBind :: LocatedN RdrName -> LocatedL [LMatch GhcPs (LHsExpr GhcPs)]
-> HsBind GhcPs
-- Like GHC.Hs.Utils.mkFunBind, but we need to be able to set the fixity too
makeFunBind fn ms
= FunBind { fun_ext = noExtField,
fun_id = fn,
fun_matches = mkMatchGroup FromSource ms,
fun_tick = [] }
-- See Note [FunBind vs PatBind]
checkPatBind :: SrcSpan
-> [AddEpAnn]
-> LPat GhcPs
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P (HsBind GhcPs)
checkPatBind loc annsIn (L _ (BangPat (EpAnn _ ans cs) (L _ (VarPat _ v))))
(L _match_span grhss)
= return (makeFunBind v (L (noAnnSrcSpan loc)
[L (noAnnSrcSpan loc) (m (EpAnn (spanAsAnchor loc) (ans++annsIn) cs) v)]))
where
m a v = Match { m_ext = a
, m_ctxt = FunRhs { mc_fun = v
, mc_fixity = Prefix
, mc_strictness = SrcStrict }
, m_pats = []
, m_grhss = grhss }
checkPatBind loc annsIn lhs (L _ grhss) = do
cs <- getCommentsFor loc
return (PatBind (EpAnn (spanAsAnchor loc) annsIn cs) lhs grhss ([],[]))
checkValSigLhs :: LHsExpr GhcPs -> P (LocatedN RdrName)
checkValSigLhs (L _ (HsVar _ lrdr@(L _ v)))
| isUnqual v
, not (isDataOcc (rdrNameOcc v))
= return lrdr
checkValSigLhs lhs@(L l _)
= addFatalError $ PsError (PsErrInvalidTypeSignature lhs) [] (locA l)
checkDoAndIfThenElse
:: (Outputable a, Outputable b, Outputable c)
=> (a -> Bool -> b -> Bool -> c -> PsErrorDesc)
-> LocatedA a -> Bool -> LocatedA b -> Bool -> LocatedA c -> PV ()
checkDoAndIfThenElse err guardExpr semiThen thenExpr semiElse elseExpr
| semiThen || semiElse = do
doAndIfThenElse <- getBit DoAndIfThenElseBit
let e = err (unLoc guardExpr)
semiThen (unLoc thenExpr)
semiElse (unLoc elseExpr)
loc = combineLocs (reLoc guardExpr) (reLoc elseExpr)
unless doAndIfThenElse $ addError (PsError e [] loc)
| otherwise = return ()
isFunLhs :: LocatedA (PatBuilder GhcPs)
-> P (Maybe (LocatedN RdrName, LexicalFixity,
[LocatedA (PatBuilder GhcPs)],[AddEpAnn]))
-- A variable binding is parsed as a FunBind.
-- Just (fun, is_infix, arg_pats) if e is a function LHS
isFunLhs e = go e [] []
where
go (L _ (PatBuilderVar (L loc f))) es ann
| not (isRdrDataCon f) = return (Just (L loc f, Prefix, es, ann))
go (L _ (PatBuilderApp f e)) es ann = go f (e:es) ann
go (L l (PatBuilderPar e _an)) es@(_:_) ann
= go e es (ann ++ mkParensEpAnn (locA l))
go (L loc (PatBuilderOpApp l (L loc' op) r (EpAnn loca anns cs))) es ann
| not (isRdrDataCon op) -- We have found the function!
= return (Just (L loc' op, Infix, (l:r:es), (anns ++ ann)))
| otherwise -- Infix data con; keep going
= do { mb_l <- go l es ann
; case mb_l of
Just (op', Infix, j : k : es', ann')
-> return (Just (op', Infix, j : op_app : es', ann'))
where
op_app = L loc (PatBuilderOpApp k
(L loc' op) r (EpAnn loca anns cs))
_ -> return Nothing }
go _ _ _ = return Nothing
mkBangTy :: EpAnn [AddEpAnn] -> SrcStrictness -> LHsType GhcPs -> HsType GhcPs
mkBangTy anns strictness =
HsBangTy anns (HsSrcBang NoSourceText NoSrcUnpack strictness)
-- | Result of parsing @{-\# UNPACK \#-}@ or @{-\# NOUNPACK \#-}@.
data UnpackednessPragma =
UnpackednessPragma [AddEpAnn] SourceText SrcUnpackedness
-- | Annotate a type with either an @{-\# UNPACK \#-}@ or a @{-\# NOUNPACK \#-}@ pragma.
addUnpackednessP :: MonadP m => Located UnpackednessPragma -> LHsType GhcPs -> m (LHsType GhcPs)
addUnpackednessP (L lprag (UnpackednessPragma anns prag unpk)) ty = do
let l' = combineSrcSpans lprag (getLocA ty)
cs <- getCommentsFor l'
let an = EpAnn (spanAsAnchor l') anns cs
t' = addUnpackedness an ty
return (L (noAnnSrcSpan l') t')
where
-- If we have a HsBangTy that only has a strictness annotation,
-- such as ~T or !T, then add the pragma to the existing HsBangTy.
--
-- Otherwise, wrap the type in a new HsBangTy constructor.
addUnpackedness an (L _ (HsBangTy x bang t))
| HsSrcBang NoSourceText NoSrcUnpack strictness <- bang
= HsBangTy (addAnns an (epAnnAnns x) (epAnnComments x)) (HsSrcBang prag unpk strictness) t
addUnpackedness an t
= HsBangTy an (HsSrcBang prag unpk NoSrcStrict) t
---------------------------------------------------------------------------
-- | Check for monad comprehensions
--
-- If the flag MonadComprehensions is set, return a 'MonadComp' context,
-- otherwise use the usual 'ListComp' context
checkMonadComp :: PV (HsStmtContext GhcRn)
checkMonadComp = do
monadComprehensions <- getBit MonadComprehensionsBit
return $ if monadComprehensions
then MonadComp
else ListComp
-- -------------------------------------------------------------------------
-- Expression/command/pattern ambiguity.
-- See Note [Ambiguous syntactic categories]
--
-- See Note [Ambiguous syntactic categories]
--
-- This newtype is required to avoid impredicative types in monadic
-- productions. That is, in a production that looks like
--
-- | ... {% return (ECP ...) }
--
-- we are dealing with
-- P ECP
-- whereas without a newtype we would be dealing with
-- P (forall b. DisambECP b => PV (Located b))
--
newtype ECP =
ECP { unECP :: forall b. DisambECP b => PV (LocatedA b) }
ecpFromExp :: LHsExpr GhcPs -> ECP
ecpFromExp a = ECP (ecpFromExp' a)
ecpFromCmd :: LHsCmd GhcPs -> ECP
ecpFromCmd a = ECP (ecpFromCmd' a)
-- The 'fbinds' parser rule produces values of this type. See Note
-- [RecordDotSyntax field updates].
type Fbind b = Either (LHsRecField GhcPs (LocatedA b)) (LHsRecProj GhcPs (LocatedA b))
-- | Disambiguate infix operators.
-- See Note [Ambiguous syntactic categories]
class DisambInfixOp b where
mkHsVarOpPV :: LocatedN RdrName -> PV (LocatedN b)
mkHsConOpPV :: LocatedN RdrName -> PV (LocatedN b)
mkHsInfixHolePV :: SrcSpan -> (EpAnnComments -> EpAnn EpAnnUnboundVar) -> PV (Located b)
instance DisambInfixOp (HsExpr GhcPs) where
mkHsVarOpPV v = return $ L (getLoc v) (HsVar noExtField v)
mkHsConOpPV v = return $ L (getLoc v) (HsVar noExtField v)
mkHsInfixHolePV l ann = do
cs <- getCommentsFor l
return $ L l (hsHoleExpr (ann cs))
instance DisambInfixOp RdrName where
mkHsConOpPV (L l v) = return $ L l v
mkHsVarOpPV (L l v) = return $ L l v
mkHsInfixHolePV l _ = addFatalError $ PsError PsErrInvalidInfixHole [] l
type AnnoBody b
= ( Anno (GRHS GhcPs (LocatedA (Body b GhcPs))) ~ SrcSpan
, Anno [LocatedA (Match GhcPs (LocatedA (Body b GhcPs)))] ~ SrcSpanAnnL
, Anno (Match GhcPs (LocatedA (Body b GhcPs))) ~ SrcSpanAnnA
, Anno (StmtLR GhcPs GhcPs (LocatedA (Body (Body b GhcPs) GhcPs))) ~ SrcSpanAnnA
, Anno [LocatedA (StmtLR GhcPs GhcPs
(LocatedA (Body (Body (Body b GhcPs) GhcPs) GhcPs)))] ~ SrcSpanAnnL
)
-- | Disambiguate constructs that may appear when we do not know ahead of time whether we are
-- parsing an expression, a command, or a pattern.
-- See Note [Ambiguous syntactic categories]
class (b ~ (Body b) GhcPs, AnnoBody b) => DisambECP b where
-- | See Note [Body in DisambECP]
type Body b :: Type -> Type
-- | Return a command without ambiguity, or fail in a non-command context.
ecpFromCmd' :: LHsCmd GhcPs -> PV (LocatedA b)
-- | Return an expression without ambiguity, or fail in a non-expression context.
ecpFromExp' :: LHsExpr GhcPs -> PV (LocatedA b)
mkHsProjUpdatePV :: SrcSpan -> Located [Located (HsFieldLabel GhcPs)]
-> LocatedA b -> Bool -> [AddEpAnn] -> PV (LHsRecProj GhcPs (LocatedA b))
-- | Disambiguate "\... -> ..." (lambda)
mkHsLamPV
:: SrcSpan -> (EpAnnComments -> MatchGroup GhcPs (LocatedA b)) -> PV (LocatedA b)
-- | Disambiguate "let ... in ..."
mkHsLetPV
:: SrcSpan -> HsLocalBinds GhcPs -> LocatedA b -> AnnsLet -> PV (LocatedA b)
-- | Infix operator representation
type InfixOp b
-- | Bring superclass constraints on InfixOp into scope.
-- See Note [UndecidableSuperClasses for associated types]
superInfixOp
:: (DisambInfixOp (InfixOp b) => PV (LocatedA b )) -> PV (LocatedA b)
-- | Disambiguate "f # x" (infix operator)
mkHsOpAppPV :: SrcSpan -> LocatedA b -> LocatedN (InfixOp b) -> LocatedA b
-> PV (LocatedA b)
-- | Disambiguate "case ... of ..."
mkHsCasePV :: SrcSpan -> LHsExpr GhcPs -> (LocatedL [LMatch GhcPs (LocatedA b)])
-> EpAnnHsCase -> PV (LocatedA b)
mkHsLamCasePV :: SrcSpan -> (LocatedL [LMatch GhcPs (LocatedA b)])
-> [AddEpAnn]
-> PV (LocatedA b)
-- | Function argument representation
type FunArg b
-- | Bring superclass constraints on FunArg into scope.
-- See Note [UndecidableSuperClasses for associated types]
superFunArg :: (DisambECP (FunArg b) => PV (LocatedA b)) -> PV (LocatedA b)
-- | Disambiguate "f x" (function application)
mkHsAppPV :: SrcSpanAnnA -> LocatedA b -> LocatedA (FunArg b) -> PV (LocatedA b)
-- | Disambiguate "f @t" (visible type application)
mkHsAppTypePV :: SrcSpanAnnA -> LocatedA b -> SrcSpan -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate "if ... then ... else ..."
mkHsIfPV :: SrcSpan
-> LHsExpr GhcPs
-> Bool -- semicolon?
-> LocatedA b
-> Bool -- semicolon?
-> LocatedA b
-> AnnsIf
-> PV (LocatedA b)
-- | Disambiguate "do { ... }" (do notation)
mkHsDoPV ::
SrcSpan ->
Maybe ModuleName ->
LocatedL [LStmt GhcPs (LocatedA b)] ->
AnnList ->
PV (LocatedA b)
-- | Disambiguate "( ... )" (parentheses)
mkHsParPV :: SrcSpan -> LocatedA b -> AnnParen -> PV (LocatedA b)
-- | Disambiguate a variable "f" or a data constructor "MkF".
mkHsVarPV :: LocatedN RdrName -> PV (LocatedA b)
-- | Disambiguate a monomorphic literal
mkHsLitPV :: Located (HsLit GhcPs) -> PV (Located b)
-- | Disambiguate an overloaded literal
mkHsOverLitPV :: Located (HsOverLit GhcPs) -> PV (Located b)
-- | Disambiguate a wildcard
mkHsWildCardPV :: SrcSpan -> PV (Located b)
-- | Disambiguate "a :: t" (type annotation)
mkHsTySigPV
:: SrcSpanAnnA -> LocatedA b -> LHsType GhcPs -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "[a,b,c]" (list syntax)
mkHsExplicitListPV :: SrcSpan -> [LocatedA b] -> AnnList -> PV (LocatedA b)
-- | Disambiguate "$(...)" and "[quasi|...|]" (TH splices)
mkHsSplicePV :: Located (HsSplice GhcPs) -> PV (Located b)
-- | Disambiguate "f { a = b, ... }" syntax (record construction and record updates)
mkHsRecordPV ::
Bool -> -- Is OverloadedRecordUpdate in effect?
SrcSpan ->
SrcSpan ->
LocatedA b ->
([Fbind b], Maybe SrcSpan) ->
[AddEpAnn] ->
PV (LocatedA b)
-- | Disambiguate "-a" (negation)
mkHsNegAppPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "(# a)" (right operator section)
mkHsSectionR_PV
:: SrcSpan -> LocatedA (InfixOp b) -> LocatedA b -> PV (Located b)
-- | Disambiguate "(a -> b)" (view pattern)
mkHsViewPatPV
:: SrcSpan -> LHsExpr GhcPs -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "a@b" (as-pattern)
mkHsAsPatPV
:: SrcSpan -> LocatedN RdrName -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "~a" (lazy pattern)
mkHsLazyPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate "!a" (bang pattern)
mkHsBangPatPV :: SrcSpan -> LocatedA b -> [AddEpAnn] -> PV (LocatedA b)
-- | Disambiguate tuple sections and unboxed sums
mkSumOrTuplePV
:: SrcSpanAnnA -> Boxity -> SumOrTuple b -> [AddEpAnn] -> PV (LocatedA b)
-- | Validate infixexp LHS to reject unwanted {-# SCC ... #-} pragmas
rejectPragmaPV :: LocatedA b -> PV ()
{- Note [UndecidableSuperClasses for associated types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This Note is about the code in GHC, not about the user code that we are parsing)
Assume we have a class C with an associated type T:
class C a where
type T a
...
If we want to add 'C (T a)' as a superclass, we need -XUndecidableSuperClasses:
{-# LANGUAGE UndecidableSuperClasses #-}
class C (T a) => C a where
type T a
...
Unfortunately, -XUndecidableSuperClasses don't work all that well, sometimes
making GHC loop. The workaround is to bring this constraint into scope
manually with a helper method:
class C a where
type T a
superT :: (C (T a) => r) -> r
In order to avoid ambiguous types, 'r' must mention 'a'.
For consistency, we use this approach for all constraints on associated types,
even when -XUndecidableSuperClasses are not required.
-}
{- Note [Body in DisambECP]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are helper functions (mkBodyStmt, mkBindStmt, unguardedRHS, etc) that
require their argument to take a form of (body GhcPs) for some (body :: Type ->
*). To satisfy this requirement, we say that (b ~ Body b GhcPs) in the
superclass constraints of DisambECP.
The alternative is to change mkBodyStmt, mkBindStmt, unguardedRHS, etc, to drop
this requirement. It is possible and would allow removing the type index of
PatBuilder, but leads to worse type inference, breaking some code in the
typechecker.
-}
instance DisambECP (HsCmd GhcPs) where
type Body (HsCmd GhcPs) = HsCmd
ecpFromCmd' = return
ecpFromExp' (L l e) = cmdFail (locA l) (ppr e)
mkHsProjUpdatePV l _ _ _ _ = addFatalError $ PsError PsErrOverloadedRecordDotInvalid [] l
mkHsLamPV l mg = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsCmdLam NoExtField (mg cs))
mkHsLetPV l bs e anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsCmdLet (EpAnn (spanAsAnchor l) anns cs) bs e)
type InfixOp (HsCmd GhcPs) = HsExpr GhcPs
superInfixOp m = m
mkHsOpAppPV l c1 op c2 = do
let cmdArg c = L (getLocA c) $ HsCmdTop noExtField c
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) $ HsCmdArrForm (EpAnn (spanAsAnchor l) (AnnList Nothing Nothing Nothing [] []) cs) (reLocL op) Infix Nothing [cmdArg c1, cmdArg c2]
mkHsCasePV l c (L lm m) anns = do
cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (noAnnSrcSpan l) (HsCmdCase (EpAnn (spanAsAnchor l) anns cs) c mg)
mkHsLamCasePV l (L lm m) anns = do
cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (noAnnSrcSpan l) (HsCmdLamCase (EpAnn (spanAsAnchor l) anns cs) mg)
type FunArg (HsCmd GhcPs) = HsExpr GhcPs
superFunArg m = m
mkHsAppPV l c e = do
cs <- getCommentsFor (locA l)
checkCmdBlockArguments c
checkExpBlockArguments e
return $ L l (HsCmdApp (comment (realSrcSpan $ locA l) cs) c e)
mkHsAppTypePV l c _ t = cmdFail (locA l) (ppr c <+> text "@" <> ppr t)
mkHsIfPV l c semi1 a semi2 b anns = do
checkDoAndIfThenElse PsErrSemiColonsInCondCmd c semi1 a semi2 b
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (mkHsCmdIf c a b (EpAnn (spanAsAnchor l) anns cs))
mkHsDoPV l Nothing stmts anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsCmdDo (EpAnn (spanAsAnchor l) anns cs) stmts)
mkHsDoPV l (Just m) _ _ = addFatalError $ PsError (PsErrQualifiedDoInCmd m) [] l
mkHsParPV l c ann = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsCmdPar (EpAnn (spanAsAnchor l) ann cs) c)
mkHsVarPV (L l v) = cmdFail (locA l) (ppr v)
mkHsLitPV (L l a) = cmdFail l (ppr a)
mkHsOverLitPV (L l a) = cmdFail l (ppr a)
mkHsWildCardPV l = cmdFail l (text "_")
mkHsTySigPV l a sig _ = cmdFail (locA l) (ppr a <+> text "::" <+> ppr sig)
mkHsExplicitListPV l xs _ = cmdFail l $
brackets (fsep (punctuate comma (map ppr xs)))
mkHsSplicePV (L l sp) = cmdFail l (ppr sp)
mkHsRecordPV _ l _ a (fbinds, ddLoc) _ = do
let (fs, ps) = partitionEithers fbinds
if not (null ps)
then addFatalError $ PsError PsErrOverloadedRecordDotInvalid [] l
else cmdFail l $ ppr a <+> ppr (mk_rec_fields fs ddLoc)
mkHsNegAppPV l a _ = cmdFail l (text "-" <> ppr a)
mkHsSectionR_PV l op c = cmdFail l $
let pp_op = fromMaybe (panic "cannot print infix operator")
(ppr_infix_expr (unLoc op))
in pp_op <> ppr c
mkHsViewPatPV l a b _ = cmdFail l $
ppr a <+> text "->" <+> ppr b
mkHsAsPatPV l v c _ = cmdFail l $
pprPrefixOcc (unLoc v) <> text "@" <> ppr c
mkHsLazyPatPV l c _ = cmdFail l $
text "~" <> ppr c
mkHsBangPatPV l c _ = cmdFail l $
text "!" <> ppr c
mkSumOrTuplePV l boxity a _ = cmdFail (locA l) (pprSumOrTuple boxity a)
rejectPragmaPV _ = return ()
cmdFail :: SrcSpan -> SDoc -> PV a
cmdFail loc e = addFatalError $ PsError (PsErrParseErrorInCmd e) [] loc
checkLamMatchGroup :: SrcSpan -> MatchGroup GhcPs (LHsExpr GhcPs) -> PV ()
checkLamMatchGroup l (MG { mg_alts = (L _ (matches:_))}) = do
when (null (hsLMatchPats matches)) $ addError $ PsError PsErrEmptyLambda [] l
checkLamMatchGroup _ _ = return ()
instance DisambECP (HsExpr GhcPs) where
type Body (HsExpr GhcPs) = HsExpr
ecpFromCmd' (L l c) = do
addError $ PsError (PsErrArrowCmdInExpr c) [] (locA l)
return (L l (hsHoleExpr noAnn))
ecpFromExp' = return
mkHsProjUpdatePV l fields arg isPun anns = do
cs <- getCommentsFor l
return $ mkRdrProjUpdate (noAnnSrcSpan l) fields arg isPun (EpAnn (spanAsAnchor l) anns cs)
mkHsLamPV l mg = do
cs <- getCommentsFor l
let mg' = mg cs
checkLamMatchGroup l mg'
return $ L (noAnnSrcSpan l) (HsLam NoExtField mg')
mkHsLetPV l bs c anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsLet (EpAnn (spanAsAnchor l) anns cs) bs c)
type InfixOp (HsExpr GhcPs) = HsExpr GhcPs
superInfixOp m = m
mkHsOpAppPV l e1 op e2 = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) $ OpApp (EpAnn (spanAsAnchor l) [] cs) e1 (reLocL op) e2
mkHsCasePV l e (L lm m) anns = do
cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (noAnnSrcSpan l) (HsCase (EpAnn (spanAsAnchor l) anns cs) e mg)
mkHsLamCasePV l (L lm m) anns = do
cs <- getCommentsFor l
let mg = mkMatchGroup FromSource (L lm m)
return $ L (noAnnSrcSpan l) (HsLamCase (EpAnn (spanAsAnchor l) anns cs) mg)
type FunArg (HsExpr GhcPs) = HsExpr GhcPs
superFunArg m = m
mkHsAppPV l e1 e2 = do
cs <- getCommentsFor (locA l)
checkExpBlockArguments e1
checkExpBlockArguments e2
return $ L l (HsApp (comment (realSrcSpan $ locA l) cs) e1 e2)
mkHsAppTypePV l e la t = do
checkExpBlockArguments e
return $ L l (HsAppType la e (mkHsWildCardBndrs t))
mkHsIfPV l c semi1 a semi2 b anns = do
checkDoAndIfThenElse PsErrSemiColonsInCondExpr c semi1 a semi2 b
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (mkHsIf c a b (EpAnn (spanAsAnchor l) anns cs))
mkHsDoPV l mod stmts anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsDo (EpAnn (spanAsAnchor l) anns cs) (DoExpr mod) stmts)
mkHsParPV l e ann = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (HsPar (EpAnn (spanAsAnchor l) ann cs) e)
mkHsVarPV v@(L l _) = return $ L (na2la l) (HsVar noExtField v)
mkHsLitPV (L l a) = do
cs <- getCommentsFor l
return $ L l (HsLit (comment (realSrcSpan l) cs) a)
mkHsOverLitPV (L l a) = do
cs <- getCommentsFor l
return $ L l (HsOverLit (comment (realSrcSpan l) cs) a)
mkHsWildCardPV l = return $ L l (hsHoleExpr noAnn)
mkHsTySigPV l a sig anns = do
cs <- getCommentsFor (locA l)
return $ L l (ExprWithTySig (EpAnn (spanAsAnchor $ locA l) anns cs) a (hsTypeToHsSigWcType sig))
mkHsExplicitListPV l xs anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (ExplicitList (EpAnn (spanAsAnchor l) anns cs) xs)
mkHsSplicePV sp@(L l _) = do
cs <- getCommentsFor l
return $ mapLoc (HsSpliceE (EpAnn (spanAsAnchor l) NoEpAnns cs)) sp
mkHsRecordPV opts l lrec a (fbinds, ddLoc) anns = do
cs <- getCommentsFor l
r <- mkRecConstrOrUpdate opts a lrec (fbinds, ddLoc) (EpAnn (spanAsAnchor l) anns cs)
checkRecordSyntax (L (noAnnSrcSpan l) r)
mkHsNegAppPV l a anns = do
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (NegApp (EpAnn (spanAsAnchor l) anns cs) a noSyntaxExpr)
mkHsSectionR_PV l op e = do
cs <- getCommentsFor l
return $ L l (SectionR (comment (realSrcSpan l) cs) op e)
mkHsViewPatPV l a b _ = addError (PsError (PsErrViewPatInExpr a b) [] l)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsAsPatPV l v e _ = addError (PsError (PsErrTypeAppWithoutSpace (unLoc v) e) [] l)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsLazyPatPV l e _ = addError (PsError (PsErrLazyPatWithoutSpace e) [] l)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkHsBangPatPV l e _ = addError (PsError (PsErrBangPatWithoutSpace e) [] l)
>> return (L (noAnnSrcSpan l) (hsHoleExpr noAnn))
mkSumOrTuplePV = mkSumOrTupleExpr
rejectPragmaPV (L _ (OpApp _ _ _ e)) =
-- assuming left-associative parsing of operators
rejectPragmaPV e
rejectPragmaPV (L l (HsPragE _ prag _)) = addError $ PsError (PsErrUnallowedPragma prag) [] (locA l)
rejectPragmaPV _ = return ()
hsHoleExpr :: EpAnn EpAnnUnboundVar -> HsExpr GhcPs
hsHoleExpr anns = HsUnboundVar anns (mkVarOcc "_")
type instance Anno (GRHS GhcPs (LocatedA (PatBuilder GhcPs))) = SrcSpan
type instance Anno [LocatedA (Match GhcPs (LocatedA (PatBuilder GhcPs)))] = SrcSpanAnnL
type instance Anno (Match GhcPs (LocatedA (PatBuilder GhcPs))) = SrcSpanAnnA
type instance Anno (StmtLR GhcPs GhcPs (LocatedA (PatBuilder GhcPs))) = SrcSpanAnnA
instance DisambECP (PatBuilder GhcPs) where
type Body (PatBuilder GhcPs) = PatBuilder
ecpFromCmd' (L l c) = addFatalError $ PsError (PsErrArrowCmdInPat c) [] (locA l)
ecpFromExp' (L l e) = addFatalError $ PsError (PsErrArrowExprInPat e) [] (locA l)
mkHsLamPV l _ = addFatalError $ PsError PsErrLambdaInPat [] l
mkHsLetPV l _ _ _ = addFatalError $ PsError PsErrLetInPat [] l
mkHsProjUpdatePV l _ _ _ _ = addFatalError $ PsError PsErrOverloadedRecordDotInvalid [] l
type InfixOp (PatBuilder GhcPs) = RdrName
superInfixOp m = m
mkHsOpAppPV l p1 op p2 = do
cs <- getCommentsFor l
let anns = EpAnn (spanAsAnchor l) [] cs
return $ L (noAnnSrcSpan l) $ PatBuilderOpApp p1 op p2 anns
mkHsCasePV l _ _ _ = addFatalError $ PsError PsErrCaseInPat [] l
mkHsLamCasePV l _ _ = addFatalError $ PsError PsErrLambdaCaseInPat [] l
type FunArg (PatBuilder GhcPs) = PatBuilder GhcPs
superFunArg m = m
mkHsAppPV l p1 p2 = return $ L l (PatBuilderApp p1 p2)
mkHsAppTypePV l p la t = return $ L l (PatBuilderAppType p la (mkHsPatSigType t))
mkHsIfPV l _ _ _ _ _ _ = addFatalError $ PsError PsErrIfTheElseInPat [] l
mkHsDoPV l _ _ _ = addFatalError $ PsError PsErrDoNotationInPat [] l
mkHsParPV l p an = return $ L (noAnnSrcSpan l) (PatBuilderPar p an)
mkHsVarPV v@(getLoc -> l) = return $ L (na2la l) (PatBuilderVar v)
mkHsLitPV lit@(L l a) = do
checkUnboxedStringLitPat lit
return $ L l (PatBuilderPat (LitPat noExtField a))
mkHsOverLitPV (L l a) = return $ L l (PatBuilderOverLit a)
mkHsWildCardPV l = return $ L l (PatBuilderPat (WildPat noExtField))
mkHsTySigPV l b sig anns = do
p <- checkLPat b
cs <- getCommentsFor (locA l)
return $ L l (PatBuilderPat (SigPat (EpAnn (spanAsAnchor $ locA l) anns cs) p (mkHsPatSigType sig)))
mkHsExplicitListPV l xs anns = do
ps <- traverse checkLPat xs
cs <- getCommentsFor l
return (L (noAnnSrcSpan l) (PatBuilderPat (ListPat (EpAnn (spanAsAnchor l) anns cs) ps)))
mkHsSplicePV (L l sp) = return $ L l (PatBuilderPat (SplicePat noExtField sp))
mkHsRecordPV _ l _ a (fbinds, ddLoc) anns = do
let (fs, ps) = partitionEithers fbinds
if not (null ps)
then addFatalError $ PsError PsErrOverloadedRecordDotInvalid [] l
else do
cs <- getCommentsFor l
r <- mkPatRec a (mk_rec_fields fs ddLoc) (EpAnn (spanAsAnchor l) anns cs)
checkRecordSyntax (L (noAnnSrcSpan l) r)
mkHsNegAppPV l (L lp p) anns = do
lit <- case p of
PatBuilderOverLit pos_lit -> return (L (locA lp) pos_lit)
_ -> patFail l (text "-" <> ppr p)
cs <- getCommentsFor l
let an = EpAnn (spanAsAnchor l) anns cs
return $ L (noAnnSrcSpan l) (PatBuilderPat (mkNPat lit (Just noSyntaxExpr) an))
mkHsSectionR_PV l op p = patFail l (pprInfixOcc (unLoc op) <> ppr p)
mkHsViewPatPV l a b anns = do
p <- checkLPat b
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (PatBuilderPat (ViewPat (EpAnn (spanAsAnchor l) anns cs) a p))
mkHsAsPatPV l v e a = do
p <- checkLPat e
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (PatBuilderPat (AsPat (EpAnn (spanAsAnchor l) a cs) v p))
mkHsLazyPatPV l e a = do
p <- checkLPat e
cs <- getCommentsFor l
return $ L (noAnnSrcSpan l) (PatBuilderPat (LazyPat (EpAnn (spanAsAnchor l) a cs) p))
mkHsBangPatPV l e an = do
p <- checkLPat e
cs <- getCommentsFor l
let pb = BangPat (EpAnn (spanAsAnchor l) an cs) p
hintBangPat l pb
return $ L (noAnnSrcSpan l) (PatBuilderPat pb)
mkSumOrTuplePV = mkSumOrTuplePat
rejectPragmaPV _ = return ()
checkUnboxedStringLitPat :: Located (HsLit GhcPs) -> PV ()
checkUnboxedStringLitPat (L loc lit) =
case lit of
HsStringPrim _ _ -- Trac #13260
-> addFatalError $ PsError (PsErrIllegalUnboxedStringInPat lit) [] loc
_ -> return ()
mkPatRec ::
LocatedA (PatBuilder GhcPs) ->
HsRecFields GhcPs (LocatedA (PatBuilder GhcPs)) ->
EpAnn [AddEpAnn] ->
PV (PatBuilder GhcPs)
mkPatRec (unLoc -> PatBuilderVar c) (HsRecFields fs dd) anns
| isRdrDataCon (unLoc c)
= do fs <- mapM checkPatField fs
return $ PatBuilderPat $ ConPat
{ pat_con_ext = anns
, pat_con = c
, pat_args = RecCon (HsRecFields fs dd)
}
mkPatRec p _ _ =
addFatalError $ PsError (PsErrInvalidRecordCon (unLoc p)) [] (getLocA p)
-- | Disambiguate constructs that may appear when we do not know
-- ahead of time whether we are parsing a type or a newtype/data constructor.
--
-- See Note [Ambiguous syntactic categories] for the general idea.
--
-- See Note [Parsing data constructors is hard] for the specific issue this
-- particular class is solving.
--
class DisambTD b where
-- | Process the head of a type-level function/constructor application,
-- i.e. the @H@ in @H a b c@.
mkHsAppTyHeadPV :: LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f x@ (function application or prefix data constructor).
mkHsAppTyPV :: LocatedA b -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f \@t@ (visible kind application)
mkHsAppKindTyPV :: LocatedA b -> SrcSpan -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @f \# x@ (infix operator)
mkHsOpTyPV :: LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> PV (LocatedA b)
-- | Disambiguate @{-\# UNPACK \#-} t@ (unpack/nounpack pragma)
mkUnpackednessPV :: Located UnpackednessPragma -> LocatedA b -> PV (LocatedA b)
instance DisambTD (HsType GhcPs) where
mkHsAppTyHeadPV = return
mkHsAppTyPV t1 t2 = return (mkHsAppTy t1 t2)
mkHsAppKindTyPV t l_at ki = return (mkHsAppKindTy l_at t ki)
mkHsOpTyPV t1 op t2 = return (mkLHsOpTy t1 op t2)
mkUnpackednessPV = addUnpackednessP
dataConBuilderCon :: DataConBuilder -> LocatedN RdrName
dataConBuilderCon (PrefixDataConBuilder _ dc) = dc
dataConBuilderCon (InfixDataConBuilder _ dc _) = dc
dataConBuilderDetails :: DataConBuilder -> HsConDeclH98Details GhcPs
-- Detect when the record syntax is used:
-- data T = MkT { ... }
dataConBuilderDetails (PrefixDataConBuilder flds _)
| [L l_t (HsRecTy an fields)] <- toList flds
= RecCon (L (SrcSpanAnn an (locA l_t)) fields)
-- Normal prefix constructor, e.g. data T = MkT A B C
dataConBuilderDetails (PrefixDataConBuilder flds _)
= PrefixCon noTypeArgs (map hsLinear (toList flds))
-- Infix constructor, e.g. data T = Int :! Bool
dataConBuilderDetails (InfixDataConBuilder lhs _ rhs)
= InfixCon (hsLinear lhs) (hsLinear rhs)
instance DisambTD DataConBuilder where
mkHsAppTyHeadPV = tyToDataConBuilder
mkHsAppTyPV (L l (PrefixDataConBuilder flds fn)) t =
return $
L (noAnnSrcSpan $ combineSrcSpans (locA l) (getLocA t))
(PrefixDataConBuilder (flds `snocOL` t) fn)
mkHsAppTyPV (L _ InfixDataConBuilder{}) _ =
-- This case is impossible because of the way
-- the grammar in Parser.y is written (see infixtype/ftype).
panic "mkHsAppTyPV: InfixDataConBuilder"
mkHsAppKindTyPV lhs l_at ki =
addFatalError $ PsError (PsErrUnexpectedKindAppInDataCon (unLoc lhs) (unLoc ki)) [] l_at
mkHsOpTyPV lhs tc rhs = do
check_no_ops (unLoc rhs) -- check the RHS because parsing type operators is right-associative
data_con <- eitherToP $ tyConToDataCon tc
return $ L l (InfixDataConBuilder lhs data_con rhs)
where
l = combineLocsA lhs rhs
check_no_ops (HsBangTy _ _ t) = check_no_ops (unLoc t)
check_no_ops (HsOpTy{}) =
addError $ PsError (PsErrInvalidInfixDataCon (unLoc lhs) (unLoc tc) (unLoc rhs)) [] (locA l)
check_no_ops _ = return ()
mkUnpackednessPV unpk constr_stuff
| L _ (InfixDataConBuilder lhs data_con rhs) <- constr_stuff
= -- When the user writes data T = {-# UNPACK #-} Int :+ Bool
-- we apply {-# UNPACK #-} to the LHS
do lhs' <- addUnpackednessP unpk lhs
let l = combineLocsA (reLocA unpk) constr_stuff
return $ L l (InfixDataConBuilder lhs' data_con rhs)
| otherwise =
do addError $ PsError PsErrUnpackDataCon [] (getLoc unpk)
return constr_stuff
tyToDataConBuilder :: LHsType GhcPs -> PV (LocatedA DataConBuilder)
tyToDataConBuilder (L l (HsTyVar _ NotPromoted v)) = do
data_con <- eitherToP $ tyConToDataCon v
return $ L l (PrefixDataConBuilder nilOL data_con)
tyToDataConBuilder (L l (HsTupleTy _ HsBoxedOrConstraintTuple ts)) = do
let data_con = L (l2l l) (getRdrName (tupleDataCon Boxed (length ts)))
return $ L l (PrefixDataConBuilder (toOL ts) data_con)
tyToDataConBuilder t =
addFatalError $ PsError (PsErrInvalidDataCon (unLoc t)) [] (getLocA t)
{- Note [Ambiguous syntactic categories]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are places in the grammar where we do not know whether we are parsing an
expression or a pattern without unlimited lookahead (which we do not have in
'happy'):
View patterns:
f (Con a b ) = ... -- 'Con a b' is a pattern
f (Con a b -> x) = ... -- 'Con a b' is an expression
do-notation:
do { Con a b <- x } -- 'Con a b' is a pattern
do { Con a b } -- 'Con a b' is an expression
Guards:
x | True <- p && q = ... -- 'True' is a pattern
x | True = ... -- 'True' is an expression
Top-level value/function declarations (FunBind/PatBind):
f ! a -- TH splice
f ! a = ... -- function declaration
Until we encounter the = sign, we don't know if it's a top-level
TemplateHaskell splice where ! is used, or if it's a function declaration
where ! is bound.
There are also places in the grammar where we do not know whether we are
parsing an expression or a command:
proc x -> do { (stuff) -< x } -- 'stuff' is an expression
proc x -> do { (stuff) } -- 'stuff' is a command
Until we encounter arrow syntax (-<) we don't know whether to parse 'stuff'
as an expression or a command.
In fact, do-notation is subject to both ambiguities:
proc x -> do { (stuff) -< x } -- 'stuff' is an expression
proc x -> do { (stuff) <- f -< x } -- 'stuff' is a pattern
proc x -> do { (stuff) } -- 'stuff' is a command
There are many possible solutions to this problem. For an overview of the ones
we decided against, see Note [Resolving parsing ambiguities: non-taken alternatives]
The solution that keeps basic definitions (such as HsExpr) clean, keeps the
concerns local to the parser, and does not require duplication of hsSyn types,
or an extra pass over the entire AST, is to parse into an overloaded
parser-validator (a so-called tagless final encoding):
class DisambECP b where ...
instance DisambECP (HsCmd GhcPs) where ...
instance DisambECP (HsExp GhcPs) where ...
instance DisambECP (PatBuilder GhcPs) where ...
The 'DisambECP' class contains functions to build and validate 'b'. For example,
to add parentheses we have:
mkHsParPV :: DisambECP b => SrcSpan -> Located b -> PV (Located b)
'mkHsParPV' will wrap the inner value in HsCmdPar for commands, HsPar for
expressions, and 'PatBuilderPar' for patterns (later transformed into ParPat,
see Note [PatBuilder]).
Consider the 'alts' production used to parse case-of alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
We abstract over LHsExpr GhcPs, and it becomes:
alts :: { forall b. DisambECP b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located b)])) }
: alts1 { $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Compared to the initial definition, the added bits are:
forall b. DisambECP b => PV ( ... ) -- in the type signature
$1 >>= \ $1 -> return $ -- in one reduction rule
$2 >>= \ $2 -> return $ -- in another reduction rule
The overhead is constant relative to the size of the rest of the reduction
rule, so this approach scales well to large parser productions.
Note that we write ($1 >>= \ $1 -> ...), so the second $1 is in a binding
position and shadows the previous $1. We can do this because internally
'happy' desugars $n to happy_var_n, and the rationale behind this idiom
is to be able to write (sLL $1 $>) later on. The alternative would be to
write this as ($1 >>= \ fresh_name -> ...), but then we couldn't refer
to the last fresh name as $>.
Finally, we instantiate the polymorphic type to a concrete one, and run the
parser-validator, for example:
stmt :: { forall b. DisambECP b => PV (LStmt GhcPs (Located b)) }
e_stmt :: { LStmt GhcPs (LHsExpr GhcPs) }
: stmt {% runPV $1 }
In e_stmt, three things happen:
1. we instantiate: b ~ HsExpr GhcPs
2. we embed the PV computation into P by using runPV
3. we run validation by using a monadic production, {% ... }
At this point the ambiguity is resolved.
-}
{- Note [Resolving parsing ambiguities: non-taken alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternative I, extra constructors in GHC.Hs.Expr
------------------------------------------------
We could add extra constructors to HsExpr to represent command-specific and
pattern-specific syntactic constructs. Under this scheme, we parse patterns
and commands as expressions and rejig later. This is what GHC used to do, and
it polluted 'HsExpr' with irrelevant constructors:
* for commands: 'HsArrForm', 'HsArrApp'
* for patterns: 'EWildPat', 'EAsPat', 'EViewPat', 'ELazyPat'
(As of now, we still do that for patterns, but we plan to fix it).
There are several issues with this:
* The implementation details of parsing are leaking into hsSyn definitions.
* Code that uses HsExpr has to panic on these impossible-after-parsing cases.
* HsExpr is arbitrarily selected as the extension basis. Why not extend
HsCmd or HsPat with extra constructors instead?
Alternative II, extra constructors in GHC.Hs.Expr for GhcPs
-----------------------------------------------------------
We could address some of the problems with Alternative I by using Trees That
Grow and extending HsExpr only in the GhcPs pass. However, GhcPs corresponds to
the output of parsing, not to its intermediate results, so we wouldn't want
them there either.
Alternative III, extra constructors in GHC.Hs.Expr for GhcPrePs
---------------------------------------------------------------
We could introduce a new pass, GhcPrePs, to keep GhcPs pristine.
Unfortunately, creating a new pass would significantly bloat conversion code
and slow down the compiler by adding another linear-time pass over the entire
AST. For example, in order to build HsExpr GhcPrePs, we would need to build
HsLocalBinds GhcPrePs (as part of HsLet), and we never want HsLocalBinds
GhcPrePs.
Alternative IV, sum type and bottom-up data flow
------------------------------------------------
Expressions and commands are disjoint. There are no user inputs that could be
interpreted as either an expression or a command depending on outer context:
5 -- definitely an expression
x -< y -- definitely a command
Even though we have both 'HsLam' and 'HsCmdLam', we can look at
the body to disambiguate:
\p -> 5 -- definitely an expression
\p -> x -< y -- definitely a command
This means we could use a bottom-up flow of information to determine
whether we are parsing an expression or a command, using a sum type
for intermediate results:
Either (LHsExpr GhcPs) (LHsCmd GhcPs)
There are two problems with this:
* We cannot handle the ambiguity between expressions and
patterns, which are not disjoint.
* Bottom-up flow of information leads to poor error messages. Consider
if ... then 5 else (x -< y)
Do we report that '5' is not a valid command or that (x -< y) is not a
valid expression? It depends on whether we want the entire node to be
'HsIf' or 'HsCmdIf', and this information flows top-down, from the
surrounding parsing context (are we in 'proc'?)
Alternative V, backtracking with parser combinators
---------------------------------------------------
One might think we could sidestep the issue entirely by using a backtracking
parser and doing something along the lines of (try pExpr <|> pPat).
Turns out, this wouldn't work very well, as there can be patterns inside
expressions (e.g. via 'case', 'let', 'do') and expressions inside patterns
(e.g. view patterns). To handle this, we would need to backtrack while
backtracking, and unbound levels of backtracking lead to very fragile
performance.
Alternative VI, an intermediate data type
-----------------------------------------
There are common syntactic elements of expressions, commands, and patterns
(e.g. all of them must have balanced parentheses), and we can capture this
common structure in an intermediate data type, Frame:
data Frame
= FrameVar RdrName
-- ^ Identifier: Just, map, BS.length
| FrameTuple [LTupArgFrame] Boxity
-- ^ Tuple (section): (a,b) (a,b,c) (a,,) (,a,)
| FrameTySig LFrame (LHsSigWcType GhcPs)
-- ^ Type signature: x :: ty
| FramePar (SrcSpan, SrcSpan) LFrame
-- ^ Parentheses
| FrameIf LFrame LFrame LFrame
-- ^ If-expression: if p then x else y
| FrameCase LFrame [LFrameMatch]
-- ^ Case-expression: case x of { p1 -> e1; p2 -> e2 }
| FrameDo (HsStmtContext GhcRn) [LFrameStmt]
-- ^ Do-expression: do { s1; a <- s2; s3 }
...
| FrameExpr (HsExpr GhcPs) -- unambiguously an expression
| FramePat (HsPat GhcPs) -- unambiguously a pattern
| FrameCommand (HsCmd GhcPs) -- unambiguously a command
To determine which constructors 'Frame' needs to have, we take the union of
intersections between HsExpr, HsCmd, and HsPat.
The intersection between HsPat and HsExpr:
HsPat = VarPat | TuplePat | SigPat | ParPat | ...
HsExpr = HsVar | ExplicitTuple | ExprWithTySig | HsPar | ...
-------------------------------------------------------------------
Frame = FrameVar | FrameTuple | FrameTySig | FramePar | ...
The intersection between HsCmd and HsExpr:
HsCmd = HsCmdIf | HsCmdCase | HsCmdDo | HsCmdPar
HsExpr = HsIf | HsCase | HsDo | HsPar
------------------------------------------------
Frame = FrameIf | FrameCase | FrameDo | FramePar
The intersection between HsCmd and HsPat:
HsPat = ParPat | ...
HsCmd = HsCmdPar | ...
-----------------------
Frame = FramePar | ...
Take the union of each intersection and this yields the final 'Frame' data
type. The problem with this approach is that we end up duplicating a good
portion of hsSyn:
Frame for HsExpr, HsPat, HsCmd
TupArgFrame for HsTupArg
FrameMatch for Match
FrameStmt for StmtLR
FrameGRHS for GRHS
FrameGRHSs for GRHSs
...
Alternative VII, a product type
-------------------------------
We could avoid the intermediate representation of Alternative VI by parsing
into a product of interpretations directly:
type ExpCmdPat = ( PV (LHsExpr GhcPs)
, PV (LHsCmd GhcPs)
, PV (LHsPat GhcPs) )
This means that in positions where we do not know whether to produce
expression, a pattern, or a command, we instead produce a parser-validator for
each possible option.
Then, as soon as we have parsed far enough to resolve the ambiguity, we pick
the appropriate component of the product, discarding the rest:
checkExpOf3 (e, _, _) = e -- interpret as an expression
checkCmdOf3 (_, c, _) = c -- interpret as a command
checkPatOf3 (_, _, p) = p -- interpret as a pattern
We can easily define ambiguities between arbitrary subsets of interpretations.
For example, when we know ahead of type that only an expression or a command is
possible, but not a pattern, we can use a smaller type:
type ExpCmd = (PV (LHsExpr GhcPs), PV (LHsCmd GhcPs))
checkExpOf2 (e, _) = e -- interpret as an expression
checkCmdOf2 (_, c) = c -- interpret as a command
However, there is a slight problem with this approach, namely code duplication
in parser productions. Consider the 'alts' production used to parse case-of
alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Under the new scheme, we have to completely duplicate its type signature and
each reduction rule:
alts :: { ( PV (Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)])) -- as an expression
, PV (Located ([AddEpAnn],[LMatch GhcPs (LHsCmd GhcPs)])) -- as a command
) }
: alts1
{ ( checkExpOf2 $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
, checkCmdOf2 $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1)
) }
| ';' alts
{ ( checkExpOf2 $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
, checkCmdOf2 $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2)
) }
And the same goes for other productions: 'altslist', 'alts1', 'alt', 'alt_rhs',
'ralt', 'gdpats', 'gdpat', 'exp', ... and so on. That is a lot of code!
Alternative VIII, a function from a GADT
----------------------------------------
We could avoid code duplication of the Alternative VII by representing the product
as a function from a GADT:
data ExpCmdG b where
ExpG :: ExpCmdG HsExpr
CmdG :: ExpCmdG HsCmd
type ExpCmd = forall b. ExpCmdG b -> PV (Located (b GhcPs))
checkExp :: ExpCmd -> PV (LHsExpr GhcPs)
checkCmd :: ExpCmd -> PV (LHsCmd GhcPs)
checkExp f = f ExpG -- interpret as an expression
checkCmd f = f CmdG -- interpret as a command
Consider the 'alts' production used to parse case-of alternatives:
alts :: { Located ([AddEpAnn],[LMatch GhcPs (LHsExpr GhcPs)]) }
: alts1 { sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
We abstract over LHsExpr, and it becomes:
alts :: { forall b. ExpCmdG b -> PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
: alts1
{ \tag -> $1 tag >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts
{ \tag -> $2 tag >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
Note that 'ExpCmdG' is a singleton type, the value is completely
determined by the type:
when (b~HsExpr), tag = ExpG
when (b~HsCmd), tag = CmdG
This is a clear indication that we can use a class to pass this value behind
the scenes:
class ExpCmdI b where expCmdG :: ExpCmdG b
instance ExpCmdI HsExpr where expCmdG = ExpG
instance ExpCmdI HsCmd where expCmdG = CmdG
And now the 'alts' production is simplified, as we no longer need to
thread 'tag' explicitly:
alts :: { forall b. ExpCmdI b => PV (Located ([AddEpAnn],[LMatch GhcPs (Located (b GhcPs))])) }
: alts1 { $1 >>= \ $1 ->
return $ sL1 $1 (fst $ unLoc $1,snd $ unLoc $1) }
| ';' alts { $2 >>= \ $2 ->
return $ sLL $1 $> ((mj AnnSemi $1:(fst $ unLoc $2)),snd $ unLoc $2) }
This encoding works well enough, but introduces an extra GADT unlike the
tagless final encoding, and there's no need for this complexity.
-}
{- Note [PatBuilder]
~~~~~~~~~~~~~~~~~~~~
Unlike HsExpr or HsCmd, the Pat type cannot accommodate all intermediate forms,
so we introduce the notion of a PatBuilder.
Consider a pattern like this:
Con a b c
We parse arguments to "Con" one at a time in the fexp aexp parser production,
building the result with mkHsAppPV, so the intermediate forms are:
1. Con
2. Con a
3. Con a b
4. Con a b c
In 'HsExpr', we have 'HsApp', so the intermediate forms are represented like
this (pseudocode):
1. "Con"
2. HsApp "Con" "a"
3. HsApp (HsApp "Con" "a") "b"
3. HsApp (HsApp (HsApp "Con" "a") "b") "c"
Similarly, in 'HsCmd' we have 'HsCmdApp'. In 'Pat', however, what we have
instead is 'ConPatIn', which is very awkward to modify and thus unsuitable for
the intermediate forms.
We also need an intermediate representation to postpone disambiguation between
FunBind and PatBind. Consider:
a `Con` b = ...
a `fun` b = ...
How do we know that (a `Con` b) is a PatBind but (a `fun` b) is a FunBind? We
learn this by inspecting an intermediate representation in 'isFunLhs' and
seeing that 'Con' is a data constructor but 'f' is not. We need an intermediate
representation capable of representing both a FunBind and a PatBind, so Pat is
insufficient.
PatBuilder is an extension of Pat that is capable of representing intermediate
parsing results for patterns and function bindings:
data PatBuilder p
= PatBuilderPat (Pat p)
| PatBuilderApp (LocatedA (PatBuilder p)) (LocatedA (PatBuilder p))
| PatBuilderOpApp (LocatedA (PatBuilder p)) (LocatedA RdrName) (LocatedA (PatBuilder p))
...
It can represent any pattern via 'PatBuilderPat', but it also has a variety of
other constructors which were added by following a simple principle: we never
pattern match on the pattern stored inside 'PatBuilderPat'.
-}
---------------------------------------------------------------------------
-- Miscellaneous utilities
-- | Check if a fixity is valid. We support bypassing the usual bound checks
-- for some special operators.
checkPrecP
:: Located (SourceText,Int) -- ^ precedence
-> Located (OrdList (LocatedN RdrName)) -- ^ operators
-> P ()
checkPrecP (L l (_,i)) (L _ ol)
| 0 <= i, i <= maxPrecedence = pure ()
| all specialOp ol = pure ()
| otherwise = addFatalError $ PsError (PsErrPrecedenceOutOfRange i) [] l
where
-- If you change this, consider updating Note [Fixity of (->)] in GHC/Types.hs
specialOp op = unLoc op `elem` [ eqTyCon_RDR
, getRdrName unrestrictedFunTyCon ]
mkRecConstrOrUpdate
:: Bool
-> LHsExpr GhcPs
-> SrcSpan
-> ([Fbind (HsExpr GhcPs)], Maybe SrcSpan)
-> EpAnn [AddEpAnn]
-> PV (HsExpr GhcPs)
mkRecConstrOrUpdate _ (L _ (HsVar _ (L l c))) _lrec (fbinds,dd) anns
| isRdrDataCon c
= do
let (fs, ps) = partitionEithers fbinds
if not (null ps)
then addFatalError $ PsError PsErrOverloadedRecordDotInvalid [] (getLocA (head ps))
else return (mkRdrRecordCon (L l c) (mk_rec_fields fs dd) anns)
mkRecConstrOrUpdate overloaded_update exp _ (fs,dd) anns
| Just dd_loc <- dd = addFatalError $ PsError PsErrDotsInRecordUpdate [] dd_loc
| otherwise = mkRdrRecordUpd overloaded_update exp fs anns
mkRdrRecordUpd :: Bool -> LHsExpr GhcPs -> [Fbind (HsExpr GhcPs)] -> EpAnn [AddEpAnn] -> PV (HsExpr GhcPs)
mkRdrRecordUpd overloaded_on exp@(L loc _) fbinds anns = do
-- We do not need to know if OverloadedRecordDot is in effect. We do
-- however need to know if OverloadedRecordUpdate (passed in
-- overloaded_on) is in effect because it affects the Left/Right nature
-- of the RecordUpd value we calculate.
let (fs, ps) = partitionEithers fbinds
fs' = map (fmap mk_rec_upd_field) fs
case overloaded_on of
False | not $ null ps ->
-- A '.' was found in an update and OverloadedRecordUpdate isn't on.
addFatalError $ PsError PsErrOverloadedRecordUpdateNotEnabled [] (locA loc)
False ->
-- This is just a regular record update.
return RecordUpd {
rupd_ext = anns
, rupd_expr = exp
, rupd_flds = Left fs' }
True -> do
let qualifiedFields =
[ L l lbl | L _ (HsRecField _ (L l lbl) _ _) <- fs'
, isQual . rdrNameAmbiguousFieldOcc $ lbl
]
if not $ null qualifiedFields
then
addFatalError $ PsError PsErrOverloadedRecordUpdateNoQualifiedFields [] (getLoc (head qualifiedFields))
else -- This is a RecordDotSyntax update.
return RecordUpd {
rupd_ext = anns
, rupd_expr = exp
, rupd_flds = Right (toProjUpdates fbinds) }
where
toProjUpdates :: [Fbind (HsExpr GhcPs)] -> [LHsRecUpdProj GhcPs]
toProjUpdates = map (\case { Right p -> p; Left f -> recFieldToProjUpdate f })
-- Convert a top-level field update like {foo=2} or {bar} (punned)
-- to a projection update.
recFieldToProjUpdate :: LHsRecField GhcPs (LHsExpr GhcPs) -> LHsRecUpdProj GhcPs
recFieldToProjUpdate (L l (HsRecField anns (L _ (FieldOcc _ (L loc rdr))) arg pun)) =
-- The idea here is to convert the label to a singleton [FastString].
let f = occNameFS . rdrNameOcc $ rdr
fl = HsFieldLabel noAnn (L lf f) -- AZ: what about the ann?
lf = locA loc
in mkRdrProjUpdate l (L lf [L lf fl]) (punnedVar f) pun anns
where
-- If punning, compute HsVar "f" otherwise just arg. This
-- has the effect that sentinel HsVar "pun-rhs" is replaced
-- by HsVar "f" here, before the update is written to a
-- setField expressions.
punnedVar :: FastString -> LHsExpr GhcPs
punnedVar f = if not pun then arg else noLocA . HsVar noExtField . noLocA . mkRdrUnqual . mkVarOccFS $ f
mkRdrRecordCon
:: LocatedN RdrName -> HsRecordBinds GhcPs -> EpAnn [AddEpAnn] -> HsExpr GhcPs
mkRdrRecordCon con flds anns
= RecordCon { rcon_ext = anns, rcon_con = con, rcon_flds = flds }
mk_rec_fields :: [LocatedA (HsRecField (GhcPass p) arg)] -> Maybe SrcSpan -> HsRecFields (GhcPass p) arg
mk_rec_fields fs Nothing = HsRecFields { rec_flds = fs, rec_dotdot = Nothing }
mk_rec_fields fs (Just s) = HsRecFields { rec_flds = fs
, rec_dotdot = Just (L s (length fs)) }
mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
mk_rec_upd_field (HsRecField noAnn (L loc (FieldOcc _ rdr)) arg pun)
= HsRecField noAnn (L loc (Unambiguous noExtField rdr)) arg pun
mkInlinePragma :: SourceText -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
-> InlinePragma
-- The (Maybe Activation) is because the user can omit
-- the activation spec (and usually does)
mkInlinePragma src (inl, match_info) mb_act
= InlinePragma { inl_src = src -- Note [Pragma source text] in GHC.Types.SourceText
, inl_inline = inl
, inl_sat = Nothing
, inl_act = act
, inl_rule = match_info }
where
act = case mb_act of
Just act -> act
Nothing -> -- No phase specified
case inl of
NoInline -> NeverActive
_other -> AlwaysActive
-----------------------------------------------------------------------------
-- utilities for foreign declarations
-- construct a foreign import declaration
--
mkImport :: Located CCallConv
-> Located Safety
-> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
-> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkImport cconv safety (L loc (StringLiteral esrc entity _), v, ty) =
case unLoc cconv of
CCallConv -> mkCImport
CApiConv -> mkCImport
StdCallConv -> mkCImport
PrimCallConv -> mkOtherImport
JavaScriptCallConv -> mkOtherImport
where
-- Parse a C-like entity string of the following form:
-- "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"
-- If 'cid' is missing, the function name 'v' is used instead as symbol
-- name (cf section 8.5.1 in Haskell 2010 report).
mkCImport = do
let e = unpackFS entity
case parseCImport cconv safety (mkExtName (unLoc v)) e (L loc esrc) of
Nothing -> addFatalError $ PsError PsErrMalformedEntityString [] loc
Just importSpec -> returnSpec importSpec
-- currently, all the other import conventions only support a symbol name in
-- the entity string. If it is missing, we use the function name instead.
mkOtherImport = returnSpec importSpec
where
entity' = if nullFS entity
then mkExtName (unLoc v)
else entity
funcTarget = CFunction (StaticTarget esrc entity' Nothing True)
importSpec = CImport cconv safety Nothing funcTarget (L loc esrc)
returnSpec spec = return $ \ann -> ForD noExtField $ ForeignImport
{ fd_i_ext = ann
, fd_name = v
, fd_sig_ty = ty
, fd_fi = spec
}
-- the string "foo" is ambiguous: either a header or a C identifier. The
-- C identifier case comes first in the alternatives below, so we pick
-- that one.
parseCImport :: Located CCallConv -> Located Safety -> FastString -> String
-> Located SourceText
-> Maybe ForeignImport
parseCImport cconv safety nm str sourceText =
listToMaybe $ map fst $ filter (null.snd) $
readP_to_S parse str
where
parse = do
skipSpaces
r <- choice [
string "dynamic" >> return (mk Nothing (CFunction DynamicTarget)),
string "wrapper" >> return (mk Nothing CWrapper),
do optional (token "static" >> skipSpaces)
((mk Nothing <$> cimp nm) +++
(do h <- munch1 hdr_char
skipSpaces
mk (Just (Header (SourceText h) (mkFastString h)))
<$> cimp nm))
]
skipSpaces
return r
token str = do _ <- string str
toks <- look
case toks of
c : _
| id_char c -> pfail
_ -> return ()
mk h n = CImport cconv safety h n sourceText
hdr_char c = not (isSpace c)
-- header files are filenames, which can contain
-- pretty much any char (depending on the platform),
-- so just accept any non-space character
id_first_char c = isAlpha c || c == '_'
id_char c = isAlphaNum c || c == '_'
cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid)
+++ (do isFun <- case unLoc cconv of
CApiConv ->
option True
(do token "value"
skipSpaces
return False)
_ -> return True
cid' <- cid
return (CFunction (StaticTarget NoSourceText cid'
Nothing isFun)))
where
cid = return nm +++
(do c <- satisfy id_first_char
cs <- many (satisfy id_char)
return (mkFastString (c:cs)))
-- construct a foreign export declaration
--
mkExport :: Located CCallConv
-> (Located StringLiteral, LocatedN RdrName, LHsSigType GhcPs)
-> P (EpAnn [AddEpAnn] -> HsDecl GhcPs)
mkExport (L lc cconv) (L le (StringLiteral esrc entity _), v, ty)
= return $ \ann -> ForD noExtField $
ForeignExport { fd_e_ext = ann, fd_name = v, fd_sig_ty = ty
, fd_fe = CExport (L lc (CExportStatic esrc entity' cconv))
(L le esrc) }
where
entity' | nullFS entity = mkExtName (unLoc v)
| otherwise = entity
-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm))
--------------------------------------------------------------------------------
-- Help with module system imports/exports
data ImpExpSubSpec = ImpExpAbs
| ImpExpAll
| ImpExpList [LocatedA ImpExpQcSpec]
| ImpExpAllWith [LocatedA ImpExpQcSpec]
data ImpExpQcSpec = ImpExpQcName (LocatedN RdrName)
| ImpExpQcType EpaLocation (LocatedN RdrName)
| ImpExpQcWildcard
mkModuleImpExp :: [AddEpAnn] -> LocatedA ImpExpQcSpec -> ImpExpSubSpec -> P (IE GhcPs)
mkModuleImpExp anns (L l specname) subs = do
cs <- getCommentsFor (locA l) -- AZ: IEVar can discard comments
let ann = EpAnn (spanAsAnchor $ locA l) anns cs
case subs of
ImpExpAbs
| isVarNameSpace (rdrNameSpace name)
-> return $ IEVar noExtField (L l (ieNameFromSpec specname))
| otherwise -> IEThingAbs ann . L l <$> nameT
ImpExpAll -> IEThingAll ann . L l <$> nameT
ImpExpList xs ->
(\newName -> IEThingWith ann (L l newName)
NoIEWildcard (wrapped xs)) <$> nameT
ImpExpAllWith xs ->
do allowed <- getBit PatternSynonymsBit
if allowed
then
let withs = map unLoc xs
pos = maybe NoIEWildcard IEWildcard
(findIndex isImpExpQcWildcard withs)
ies :: [LocatedA (IEWrappedName RdrName)]
ies = wrapped $ filter (not . isImpExpQcWildcard . unLoc) xs
in (\newName
-> IEThingWith ann (L l newName) pos ies)
<$> nameT
else addFatalError $ PsError PsErrIllegalPatSynExport [] (locA l)
where
name = ieNameVal specname
nameT =
if isVarNameSpace (rdrNameSpace name)
then addFatalError $ PsError (PsErrVarForTyCon name) [] (locA l)
else return $ ieNameFromSpec specname
ieNameVal (ImpExpQcName ln) = unLoc ln
ieNameVal (ImpExpQcType _ ln) = unLoc ln
ieNameVal (ImpExpQcWildcard) = panic "ieNameVal got wildcard"
ieNameFromSpec (ImpExpQcName ln) = IEName ln
ieNameFromSpec (ImpExpQcType r ln) = IEType r ln
ieNameFromSpec (ImpExpQcWildcard) = panic "ieName got wildcard"
wrapped = map (mapLoc ieNameFromSpec)
mkTypeImpExp :: LocatedN RdrName -- TcCls or Var name space
-> P (LocatedN RdrName)
mkTypeImpExp name =
do allowed <- getBit ExplicitNamespacesBit
unless allowed $ addError $ PsError PsErrIllegalExplicitNamespace [] (getLocA name)
return (fmap (`setRdrNameSpace` tcClsName) name)
checkImportSpec :: LocatedL [LIE GhcPs] -> P (LocatedL [LIE GhcPs])
checkImportSpec ie@(L _ specs) =
case [l | (L l (IEThingWith _ _ (IEWildcard _) _)) <- specs] of
[] -> return ie
(l:_) -> importSpecError (locA l)
where
importSpecError l =
addFatalError $ PsError PsErrIllegalImportBundleForm [] l
-- In the correct order
mkImpExpSubSpec :: [LocatedA ImpExpQcSpec] -> P ([AddEpAnn], ImpExpSubSpec)
mkImpExpSubSpec [] = return ([], ImpExpList [])
mkImpExpSubSpec [L la ImpExpQcWildcard] =
return ([AddEpAnn AnnDotdot (EpaSpan $ la2r la)], ImpExpAll)
mkImpExpSubSpec xs =
if (any (isImpExpQcWildcard . unLoc) xs)
then return $ ([], ImpExpAllWith xs)
else return $ ([], ImpExpList xs)
isImpExpQcWildcard :: ImpExpQcSpec -> Bool
isImpExpQcWildcard ImpExpQcWildcard = True
isImpExpQcWildcard _ = False
-----------------------------------------------------------------------------
-- Warnings and failures
warnPrepositiveQualifiedModule :: SrcSpan -> P ()
warnPrepositiveQualifiedModule span =
addWarning Opt_WarnPrepositiveQualifiedModule (PsWarnImportPreQualified span)
failOpNotEnabledImportQualifiedPost :: SrcSpan -> P ()
failOpNotEnabledImportQualifiedPost loc = addError $ PsError PsErrImportPostQualified [] loc
failOpImportQualifiedTwice :: SrcSpan -> P ()
failOpImportQualifiedTwice loc = addError $ PsError PsErrImportQualifiedTwice [] loc
warnStarIsType :: SrcSpan -> P ()
warnStarIsType span = addWarning Opt_WarnStarIsType (PsWarnStarIsType span)
failOpFewArgs :: MonadP m => LocatedN RdrName -> m a
failOpFewArgs (L loc op) =
do { star_is_type <- getBit StarIsTypeBit
; addFatalError $ PsError (PsErrOpFewArgs (StarIsType star_is_type) op) [] (locA loc) }
-----------------------------------------------------------------------------
-- Misc utils
data PV_Context =
PV_Context
{ pv_options :: ParserOpts
, pv_hints :: [PsHint] -- See Note [Parser-Validator Hint]
}
data PV_Accum =
PV_Accum
{ pv_warnings :: Bag PsWarning
, pv_errors :: Bag PsError
, pv_header_comments :: Maybe [LEpaComment]
, pv_comment_q :: [LEpaComment]
}
data PV_Result a = PV_Ok PV_Accum a | PV_Failed PV_Accum
-- During parsing, we make use of several monadic effects: reporting parse errors,
-- accumulating warnings, adding API annotations, and checking for extensions. These
-- effects are captured by the 'MonadP' type class.
--
-- Sometimes we need to postpone some of these effects to a later stage due to
-- ambiguities described in Note [Ambiguous syntactic categories].
-- We could use two layers of the P monad, one for each stage:
--
-- abParser :: forall x. DisambAB x => P (P x)
--
-- The outer layer of P consumes the input and builds the inner layer, which
-- validates the input. But this type is not particularly helpful, as it obscures
-- the fact that the inner layer of P never consumes any input.
--
-- For clarity, we introduce the notion of a parser-validator: a parser that does
-- not consume any input, but may fail or use other effects. Thus we have:
--
-- abParser :: forall x. DisambAB x => P (PV x)
--
newtype PV a = PV { unPV :: PV_Context -> PV_Accum -> PV_Result a }
instance Functor PV where
fmap = liftM
instance Applicative PV where
pure a = a `seq` PV (\_ acc -> PV_Ok acc a)
(<*>) = ap
instance Monad PV where
m >>= f = PV $ \ctx acc ->
case unPV m ctx acc of
PV_Ok acc' a -> unPV (f a) ctx acc'
PV_Failed acc' -> PV_Failed acc'
runPV :: PV a -> P a
runPV = runPV_hints []
runPV_hints :: [PsHint] -> PV a -> P a
runPV_hints hints m =
P $ \s ->
let
pv_ctx = PV_Context
{ pv_options = options s
, pv_hints = hints }
pv_acc = PV_Accum
{ pv_warnings = warnings s
, pv_errors = errors s
, pv_header_comments = header_comments s
, pv_comment_q = comment_q s }
mkPState acc' =
s { warnings = pv_warnings acc'
, errors = pv_errors acc'
, comment_q = pv_comment_q acc' }
in
case unPV m pv_ctx pv_acc of
PV_Ok acc' a -> POk (mkPState acc') a
PV_Failed acc' -> PFailed (mkPState acc')
add_hint :: PsHint -> PV a -> PV a
add_hint hint m =
let modifyHint ctx = ctx{pv_hints = pv_hints ctx ++ [hint]} in
PV (\ctx acc -> unPV m (modifyHint ctx) acc)
instance MonadP PV where
addError err@(PsError e hints loc) =
PV $ \ctx acc ->
let err' | null (pv_hints ctx) = err
| otherwise = PsError e (hints ++ pv_hints ctx) loc
in PV_Ok acc{pv_errors = err' `consBag` pv_errors acc} ()
addWarning option w =
PV $ \ctx acc ->
if warnopt option (pv_options ctx)
then PV_Ok acc{pv_warnings= w `consBag` pv_warnings acc} ()
else PV_Ok acc ()
addFatalError err =
addError err >> PV (const PV_Failed)
getBit ext =
PV $ \ctx acc ->
let b = ext `xtest` pExtsBitmap (pv_options ctx) in
PV_Ok acc $! b
allocateCommentsP ss = PV $ \_ s ->
let (comment_q', newAnns) = allocateComments ss (pv_comment_q s) in
PV_Ok s {
pv_comment_q = comment_q'
} (EpaComments newAnns)
allocatePriorCommentsP ss = PV $ \_ s ->
let (header_comments', comment_q', newAnns)
= allocatePriorComments ss (pv_comment_q s) (pv_header_comments s) in
PV_Ok s {
pv_header_comments = header_comments',
pv_comment_q = comment_q'
} (EpaComments newAnns)
allocateFinalCommentsP ss = PV $ \_ s ->
let (header_comments', comment_q', newAnns)
= allocateFinalComments ss (pv_comment_q s) (pv_header_comments s) in
PV_Ok s {
pv_header_comments = header_comments',
pv_comment_q = comment_q'
} (EpaCommentsBalanced (fromMaybe [] header_comments') (reverse newAnns))
{- Note [Parser-Validator Hint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A PV computation is parametrized by a hint for error messages, which can be set
depending on validation context. We use this in checkPattern to fix #984.
Consider this example, where the user has forgotten a 'do':
f _ = do
x <- computation
case () of
_ ->
result <- computation
case () of () -> undefined
GHC parses it as follows:
f _ = do
x <- computation
(case () of
_ ->
result) <- computation
case () of () -> undefined
Note that this fragment is parsed as a pattern:
case () of
_ ->
result
We attempt to detect such cases and add a hint to the error messages:
T984.hs:6:9:
Parse error in pattern: case () of { _ -> result }
Possibly caused by a missing 'do'?
The "Possibly caused by a missing 'do'?" suggestion is the hint that is passed
as the 'pv_hints' field 'PV_Context'. When validating in a context other than
'bindpat' (a pattern to the left of <-), we set the hint to 'empty' and it has
no effect on the error messages.
-}
-- | Hint about bang patterns, assuming @BangPatterns@ is off.
hintBangPat :: SrcSpan -> Pat GhcPs -> PV ()
hintBangPat span e = do
bang_on <- getBit BangPatBit
unless bang_on $
addError $ PsError (PsErrIllegalBangPattern e) [] span
mkSumOrTupleExpr :: SrcSpanAnnA -> Boxity -> SumOrTuple (HsExpr GhcPs)
-> [AddEpAnn]
-> PV (LHsExpr GhcPs)
-- Tuple
mkSumOrTupleExpr l boxity (Tuple es) anns = do
cs <- getCommentsFor (locA l)
return $ L l (ExplicitTuple (EpAnn (spanAsAnchor $ locA l) anns cs) (map toTupArg es) boxity)
where
toTupArg :: Either (EpAnn EpaLocation) (LHsExpr GhcPs) -> HsTupArg GhcPs
toTupArg (Left ann) = missingTupArg ann
toTupArg (Right a) = Present noAnn a
-- Sum
-- mkSumOrTupleExpr l Unboxed (Sum alt arity e) =
-- return $ L l (ExplicitSum noExtField alt arity e)
mkSumOrTupleExpr l Unboxed (Sum alt arity e barsp barsa) anns = do
let an = case anns of
[AddEpAnn AnnOpenPH o, AddEpAnn AnnClosePH c] ->
AnnExplicitSum o barsp barsa c
_ -> panic "mkSumOrTupleExpr"
cs <- getCommentsFor (locA l)
return $ L l (ExplicitSum (EpAnn (spanAsAnchor $ locA l) an cs) alt arity e)
mkSumOrTupleExpr l Boxed a@Sum{} _ =
addFatalError $ PsError (PsErrUnsupportedBoxedSumExpr a) [] (locA l)
mkSumOrTuplePat
:: SrcSpanAnnA -> Boxity -> SumOrTuple (PatBuilder GhcPs) -> [AddEpAnn]
-> PV (LocatedA (PatBuilder GhcPs))
-- Tuple
mkSumOrTuplePat l boxity (Tuple ps) anns = do
ps' <- traverse toTupPat ps
cs <- getCommentsFor (locA l)
return $ L l (PatBuilderPat (TuplePat (EpAnn (spanAsAnchor $ locA l) anns cs) ps' boxity))
where
toTupPat :: Either (EpAnn EpaLocation) (LocatedA (PatBuilder GhcPs)) -> PV (LPat GhcPs)
-- Ignore the element location so that the error message refers to the
-- entire tuple. See #19504 (and the discussion) for details.
toTupPat p = case p of
Left _ -> addFatalError $ PsError PsErrTupleSectionInPat [] (locA l)
Right p' -> checkLPat p'
-- Sum
mkSumOrTuplePat l Unboxed (Sum alt arity p barsb barsa) anns = do
p' <- checkLPat p
cs <- getCommentsFor (locA l)
let an = EpAnn (spanAsAnchor $ locA l) (EpAnnSumPat anns barsb barsa) cs
return $ L l (PatBuilderPat (SumPat an p' alt arity))
mkSumOrTuplePat l Boxed a@Sum{} _ =
addFatalError $ PsError (PsErrUnsupportedBoxedSumPat a) [] (locA l)
mkLHsOpTy :: LHsType GhcPs -> LocatedN RdrName -> LHsType GhcPs -> LHsType GhcPs
mkLHsOpTy x op y =
let loc = getLoc x `combineSrcSpansA` (noAnnSrcSpan $ getLocA op) `combineSrcSpansA` getLoc y
in L loc (mkHsOpTy x op y)
mkMultTy :: IsUnicodeSyntax -> Located Token -> LHsType GhcPs -> HsArrow GhcPs
mkMultTy u tok t@(L _ (HsTyLit _ (HsNumTy (SourceText "1") 1)))
-- See #18888 for the use of (SourceText "1") above
= HsLinearArrow u (Just $ AddEpAnn AnnPercentOne (EpaSpan $ realSrcSpan $ combineLocs tok (reLoc t)))
mkMultTy u tok t = HsExplicitMult u (Just $ AddEpAnn AnnPercent (EpaSpan $ realSrcSpan $ getLoc tok)) t
-----------------------------------------------------------------------------
-- Token symbols
starSym :: Bool -> String
starSym True = "★"
starSym False = "*"
-----------------------------------------
-- Bits and pieces for RecordDotSyntax.
mkRdrGetField :: SrcSpanAnnA -> LHsExpr GhcPs -> Located (HsFieldLabel GhcPs)
-> EpAnnCO -> LHsExpr GhcPs
mkRdrGetField loc arg field anns =
L loc HsGetField {
gf_ext = anns
, gf_expr = arg
, gf_field = field
}
mkRdrProjection :: [Located (HsFieldLabel GhcPs)] -> EpAnn AnnProjection -> HsExpr GhcPs
mkRdrProjection [] _ = panic "mkRdrProjection: The impossible has happened!"
mkRdrProjection flds anns =
HsProjection {
proj_ext = anns
, proj_flds = flds
}
mkRdrProjUpdate :: SrcSpanAnnA -> Located [Located (HsFieldLabel GhcPs)]
-> LHsExpr GhcPs -> Bool -> EpAnn [AddEpAnn]
-> LHsRecProj GhcPs (LHsExpr GhcPs)
mkRdrProjUpdate _ (L _ []) _ _ _ = panic "mkRdrProjUpdate: The impossible has happened!"
mkRdrProjUpdate loc (L l flds) arg isPun anns =
L loc HsRecField {
hsRecFieldAnn = anns
, hsRecFieldLbl = L l (FieldLabelStrings flds)
, hsRecFieldArg = arg
, hsRecPun = isPun
}
|