1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Renaming of expressions
Basically dependency analysis.
Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes. In
general, all of these functions return a renamed thing, and a set of
free variables.
-}
module GHC.Rename.Expr (
rnLExpr, rnExpr, rnStmts,
AnnoBody
) where
import GHC.Prelude
import GHC.Rename.Bind ( rnLocalBindsAndThen, rnLocalValBindsLHS, rnLocalValBindsRHS
, rnMatchGroup, rnGRHS, makeMiniFixityEnv)
import GHC.Hs
import GHC.Tc.Errors.Types
import GHC.Tc.Utils.Env ( isBrackStage )
import GHC.Tc.Utils.Monad
import GHC.Unit.Module ( getModule, isInteractiveModule )
import GHC.Rename.Env
import GHC.Rename.Fixity
import GHC.Rename.Utils ( bindLocalNamesFV, checkDupNames
, bindLocalNames
, mapMaybeFvRn, mapFvRn
, warnUnusedLocalBinds, typeAppErr
, checkUnusedRecordWildcard
, wrapGenSpan, genHsIntegralLit, genHsTyLit
, genHsVar, genLHsVar, genHsApp, genHsApps
, genAppType )
import GHC.Rename.Unbound ( reportUnboundName )
import GHC.Rename.Splice ( rnTypedBracket, rnUntypedBracket, rnSpliceExpr, checkThLocalName )
import GHC.Rename.HsType
import GHC.Rename.Pat
import GHC.Driver.Session
import GHC.Builtin.Names
import GHC.Types.FieldLabel
import GHC.Types.Fixity
import GHC.Types.Hint (suggestExtension)
import GHC.Types.Id.Make
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Types.Unique.Set
import GHC.Types.SourceText
import GHC.Utils.Misc
import GHC.Data.List.SetOps ( removeDups )
import GHC.Utils.Error
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Outputable as Outputable
import GHC.Types.SrcLoc
import Control.Monad
import GHC.Builtin.Types ( nilDataConName )
import qualified GHC.LanguageExtensions as LangExt
import Data.List (unzip4, minimumBy)
import Data.List.NonEmpty ( NonEmpty(..) )
import Data.Maybe (isJust, isNothing)
import Control.Arrow (first)
import Data.Ord
import Data.Array
import qualified Data.List.NonEmpty as NE
{- Note [Handling overloaded and rebindable constructs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For overloaded constructs (overloaded literals, lists, strings), and
rebindable constructs (e.g. if-then-else), our general plan is this,
using overloaded labels #foo as an example:
* In the RENAMER: transform
HsOverLabel "foo"
==> XExpr (HsExpansion (HsOverLabel #foo)
(fromLabel `HsAppType` "foo"))
We write this more compactly in concrete-syntax form like this
#foo ==> fromLabel @"foo"
Recall that in (HsExpansion orig expanded), 'orig' is the original term
the user wrote, and 'expanded' is the expanded or desugared version
to be typechecked.
* In the TYPECHECKER: typecheck the expansion, in this case
fromLabel @"foo"
The typechecker (and desugarer) will never see HsOverLabel
In effect, the renamer does a bit of desugaring. Recall GHC.Hs.Expr
Note [Rebindable syntax and HsExpansion], which describes the use of HsExpansion.
RebindableSyntax:
If RebindableSyntax is off we use the built-in 'fromLabel', defined in
GHC.Builtin.Names.fromLabelClassOpName
If RebindableSyntax if ON, we look up "fromLabel" in the environment
to get whichever one is in scope.
This is accomplished by lookupSyntaxName, and it applies to all the
constructs below.
See also Note [Handling overloaded and rebindable patterns] in GHC.Rename.Pat
for the story with patterns.
Here are the expressions that we transform in this way. Some are uniform,
but several have a little bit of special treatment:
* HsIf (if-the-else)
if b then e1 else e2 ==> ifThenElse b e1 e2
We do this /only/ if rebindable syntax is on, because the coverage
checker looks for HsIf (see GHC.HsToCore.Coverage.addTickHsExpr)
That means the typechecker and desugarer need to understand HsIf
for the non-rebindable-syntax case.
* OverLabel (overloaded labels, #lbl)
#lbl ==> fromLabel @"lbl"
As ever, we use lookupSyntaxName to look up 'fromLabel'
See Note [Overloaded labels]
* ExplicitList (explicit lists [a,b,c])
When (and only when) OverloadedLists is on
[e1,e2] ==> fromListN 2 [e1,e2]
NB: the type checker and desugarer still see ExplicitList,
but to them it always means the built-in lists.
* SectionL and SectionR (left and right sections)
(`op` e) ==> rightSection op e
(e `op`) ==> leftSection (op e)
where `leftSection` and `rightSection` are representation-polymorphic
wired-in Ids. See Note [Left and right sections]
* It's a bit painful to transform `OpApp e1 op e2` to a `HsExpansion`
form, because the renamer does precedence rearrangement after name
resolution. So the renamer leaves an OpApp as an OpApp.
The typechecker turns `OpApp` into a use of `HsExpansion`
on the fly, in GHC.Tc.Gen.Head.splitHsApps. RebindableSyntax
does not affect this.
Note [Overloaded labels]
~~~~~~~~~~~~~~~~~~~~~~~~
For overloaded labels, note that we /only/ apply `fromLabel` to the
Symbol argument, so the resulting expression has type
fromLabel @"foo" :: forall a. IsLabel "foo" a => a
Now ordinary Visible Type Application can be used to instantiate the 'a':
the user may have written (#foo @Int).
Notice that this all works fine in a kind-polymorphic setting (#19154).
Suppose we have
fromLabel :: forall {k1} {k2} (a:k1). blah
Then we want to instantiate those inferred quantifiers k1,k2, before
type-applying to "foo", so we get
fromLabel @Symbol @blah @"foo" ...
And those inferred kind quantifiers will indeed be instantiated when we
typecheck the renamed-syntax call (fromLabel @"foo").
-}
{-
************************************************************************
* *
\subsubsection{Expressions}
* *
************************************************************************
-}
rnExprs :: [LHsExpr GhcPs] -> RnM ([LHsExpr GhcRn], FreeVars)
rnExprs ls = rnExprs' ls emptyUniqSet
where
rnExprs' [] acc = return ([], acc)
rnExprs' (expr:exprs) acc =
do { (expr', fvExpr) <- rnLExpr expr
-- Now we do a "seq" on the free vars because typically it's small
-- or empty, especially in very long lists of constants
; let acc' = acc `plusFV` fvExpr
; (exprs', fvExprs) <- acc' `seq` rnExprs' exprs acc'
; return (expr':exprs', fvExprs) }
-- Variables. We look up the variable and return the resulting name.
rnLExpr :: LHsExpr GhcPs -> RnM (LHsExpr GhcRn, FreeVars)
rnLExpr = wrapLocFstMA rnExpr
rnExpr :: HsExpr GhcPs -> RnM (HsExpr GhcRn, FreeVars)
finishHsVar :: LocatedA Name -> RnM (HsExpr GhcRn, FreeVars)
-- Separated from rnExpr because it's also used
-- when renaming infix expressions
finishHsVar (L l name)
= do { this_mod <- getModule
; when (nameIsLocalOrFrom this_mod name) $
checkThLocalName name
; return (HsVar noExtField (L (la2na l) name), unitFV name) }
rnUnboundVar :: RdrName -> RnM (HsExpr GhcRn, FreeVars)
rnUnboundVar v = do
deferOutofScopeVariables <- goptM Opt_DeferOutOfScopeVariables
unless (isUnqual v || deferOutofScopeVariables) (reportUnboundName v >> return ())
return (HsUnboundVar noExtField (rdrNameOcc v), emptyFVs)
rnExpr (HsVar _ (L l v))
= do { dflags <- getDynFlags
; mb_name <- lookupExprOccRn v
; case mb_name of {
Nothing -> rnUnboundVar v ;
Just (NormalGreName name)
| name == nilDataConName -- Treat [] as an ExplicitList, so that
-- OverloadedLists works correctly
-- Note [Empty lists] in GHC.Hs.Expr
, xopt LangExt.OverloadedLists dflags
-> rnExpr (ExplicitList noAnn [])
| otherwise
-> finishHsVar (L (na2la l) name) ;
Just (FieldGreName fl)
-> do { let sel_name = flSelector fl
; this_mod <- getModule
; when (nameIsLocalOrFrom this_mod sel_name) $
checkThLocalName sel_name
; return ( HsRecSel noExtField (FieldOcc sel_name (L l v) ), unitFV sel_name)
}
}
}
rnExpr (HsIPVar x v)
= return (HsIPVar x v, emptyFVs)
rnExpr (HsUnboundVar _ v)
= return (HsUnboundVar noExtField v, emptyFVs)
-- HsOverLabel: see Note [Handling overloaded and rebindable constructs]
rnExpr (HsOverLabel _ v)
= do { (from_label, fvs) <- lookupSyntaxName fromLabelClassOpName
; return ( mkExpandedExpr (HsOverLabel noAnn v) $
HsAppType noExtField (genLHsVar from_label) hs_ty_arg
, fvs ) }
where
hs_ty_arg = mkEmptyWildCardBndrs $ wrapGenSpan $
HsTyLit noExtField (HsStrTy NoSourceText v)
rnExpr (HsLit x lit@(HsString src s))
= do { opt_OverloadedStrings <- xoptM LangExt.OverloadedStrings
; if opt_OverloadedStrings then
rnExpr (HsOverLit x (mkHsIsString src s))
else do {
; rnLit lit
; return (HsLit x (convertLit lit), emptyFVs) } }
rnExpr (HsLit x lit)
= do { rnLit lit
; return (HsLit x(convertLit lit), emptyFVs) }
rnExpr (HsOverLit x lit)
= do { ((lit', mb_neg), fvs) <- rnOverLit lit -- See Note [Negative zero]
; case mb_neg of
Nothing -> return (HsOverLit x lit', fvs)
Just neg ->
return (HsApp noComments (noLocA neg) (noLocA (HsOverLit x lit'))
, fvs ) }
rnExpr (HsApp x fun arg)
= do { (fun',fvFun) <- rnLExpr fun
; (arg',fvArg) <- rnLExpr arg
; return (HsApp x fun' arg', fvFun `plusFV` fvArg) }
rnExpr (HsAppType _ fun arg)
= do { type_app <- xoptM LangExt.TypeApplications
; unless type_app $ addErr $ typeAppErr "type" $ hswc_body arg
; (fun',fvFun) <- rnLExpr fun
; (arg',fvArg) <- rnHsWcType HsTypeCtx arg
; return (HsAppType NoExtField fun' arg', fvFun `plusFV` fvArg) }
rnExpr (OpApp _ e1 op e2)
= do { (e1', fv_e1) <- rnLExpr e1
; (e2', fv_e2) <- rnLExpr e2
; (op', fv_op) <- rnLExpr op
-- Deal with fixity
-- When renaming code synthesised from "deriving" declarations
-- we used to avoid fixity stuff, but we can't easily tell any
-- more, so I've removed the test. Adding HsPars in GHC.Tc.Deriv.Generate
-- should prevent bad things happening.
; fixity <- case op' of
L _ (HsVar _ (L _ n)) -> lookupFixityRn n
L _ (HsRecSel _ f) -> lookupFieldFixityRn f
_ -> return (Fixity NoSourceText minPrecedence InfixL)
-- c.f. lookupFixity for unbound
; lexical_negation <- xoptM LangExt.LexicalNegation
; let negation_handling | lexical_negation = KeepNegationIntact
| otherwise = ReassociateNegation
; final_e <- mkOpAppRn negation_handling e1' op' fixity e2'
; return (final_e, fv_e1 `plusFV` fv_op `plusFV` fv_e2) }
rnExpr (NegApp _ e _)
= do { (e', fv_e) <- rnLExpr e
; (neg_name, fv_neg) <- lookupSyntax negateName
; final_e <- mkNegAppRn e' neg_name
; return (final_e, fv_e `plusFV` fv_neg) }
------------------------------------------
-- Record dot syntax
rnExpr (HsGetField _ e f)
= do { (getField, fv_getField) <- lookupSyntaxName getFieldName
; (e, fv_e) <- rnLExpr e
; let f' = rnDotFieldOcc f
; return ( mkExpandedExpr
(HsGetField noExtField e f')
(mkGetField getField e (fmap (unLoc . dfoLabel) f'))
, fv_e `plusFV` fv_getField ) }
rnExpr (HsProjection _ fs)
= do { (getField, fv_getField) <- lookupSyntaxName getFieldName
; circ <- lookupOccRn compose_RDR
; let fs' = fmap rnDotFieldOcc fs
; return ( mkExpandedExpr
(HsProjection noExtField fs')
(mkProjection getField circ (fmap (fmap (unLoc . dfoLabel)) fs'))
, unitFV circ `plusFV` fv_getField) }
------------------------------------------
-- Template Haskell extensions
rnExpr e@(HsTypedBracket _ br_body) = rnTypedBracket e br_body
rnExpr e@(HsUntypedBracket _ br_body) = rnUntypedBracket e br_body
rnExpr (HsSpliceE _ splice) = rnSpliceExpr splice
---------------------------------------------
-- Sections
-- See Note [Parsing sections] in GHC.Parser
rnExpr (HsPar x lpar (L loc (section@(SectionL {}))) rpar)
= do { (section', fvs) <- rnSection section
; return (HsPar x lpar (L loc section') rpar, fvs) }
rnExpr (HsPar x lpar (L loc (section@(SectionR {}))) rpar)
= do { (section', fvs) <- rnSection section
; return (HsPar x lpar (L loc section') rpar, fvs) }
rnExpr (HsPar x lpar e rpar)
= do { (e', fvs_e) <- rnLExpr e
; return (HsPar x lpar e' rpar, fvs_e) }
rnExpr expr@(SectionL {})
= do { addErr (sectionErr expr); rnSection expr }
rnExpr expr@(SectionR {})
= do { addErr (sectionErr expr); rnSection expr }
---------------------------------------------
rnExpr (HsPragE x prag expr)
= do { (expr', fvs_expr) <- rnLExpr expr
; return (HsPragE x (rn_prag prag) expr', fvs_expr) }
where
rn_prag :: HsPragE GhcPs -> HsPragE GhcRn
rn_prag (HsPragSCC x1 src ann) = HsPragSCC x1 src ann
rnExpr (HsLam x matches)
= do { (matches', fvMatch) <- rnMatchGroup LambdaExpr rnLExpr matches
; return (HsLam x matches', fvMatch) }
rnExpr (HsLamCase x lc_variant matches)
= do { (matches', fvs_ms) <- rnMatchGroup (LamCaseAlt lc_variant) rnLExpr matches
; return (HsLamCase x lc_variant matches', fvs_ms) }
rnExpr (HsCase _ expr matches)
= do { (new_expr, e_fvs) <- rnLExpr expr
; (new_matches, ms_fvs) <- rnMatchGroup CaseAlt rnLExpr matches
; return (HsCase noExtField new_expr new_matches, e_fvs `plusFV` ms_fvs) }
rnExpr (HsLet _ tkLet binds tkIn expr)
= rnLocalBindsAndThen binds $ \binds' _ -> do
{ (expr',fvExpr) <- rnLExpr expr
; return (HsLet noExtField tkLet binds' tkIn expr', fvExpr) }
rnExpr (HsDo _ do_or_lc (L l stmts))
= do { ((stmts1, _), fvs1) <-
rnStmtsWithFreeVars (HsDoStmt do_or_lc) rnExpr stmts
(\ _ -> return ((), emptyFVs))
; (pp_stmts, fvs2) <- postProcessStmtsForApplicativeDo do_or_lc stmts1
; return ( HsDo noExtField do_or_lc (L l pp_stmts), fvs1 `plusFV` fvs2 ) }
-- ExplicitList: see Note [Handling overloaded and rebindable constructs]
rnExpr (ExplicitList _ exps)
= do { (exps', fvs) <- rnExprs exps
; opt_OverloadedLists <- xoptM LangExt.OverloadedLists
; if not opt_OverloadedLists
then return (ExplicitList noExtField exps', fvs)
else
do { (from_list_n_name, fvs') <- lookupSyntaxName fromListNName
; let rn_list = ExplicitList noExtField exps'
lit_n = mkIntegralLit (length exps)
hs_lit = genHsIntegralLit lit_n
exp_list = genHsApps from_list_n_name [hs_lit, wrapGenSpan rn_list]
; return ( mkExpandedExpr rn_list exp_list
, fvs `plusFV` fvs') } }
rnExpr (ExplicitTuple _ tup_args boxity)
= do { checkTupleSection tup_args
; (tup_args', fvs) <- mapAndUnzipM rnTupArg tup_args
; return (ExplicitTuple noExtField tup_args' boxity, plusFVs fvs) }
where
rnTupArg (Present x e) = do { (e',fvs) <- rnLExpr e
; return (Present x e', fvs) }
rnTupArg (Missing _) = return (Missing noExtField, emptyFVs)
rnExpr (ExplicitSum _ alt arity expr)
= do { (expr', fvs) <- rnLExpr expr
; return (ExplicitSum noExtField alt arity expr', fvs) }
rnExpr (RecordCon { rcon_con = con_id
, rcon_flds = rec_binds@(HsRecFields { rec_dotdot = dd }) })
= do { con_lname@(L _ con_name) <- lookupLocatedOccRnConstr con_id
; (flds, fvs) <- rnHsRecFields (HsRecFieldCon con_name) mk_hs_var rec_binds
; (flds', fvss) <- mapAndUnzipM rn_field flds
; let rec_binds' = HsRecFields { rec_flds = flds', rec_dotdot = dd }
; return (RecordCon { rcon_ext = noExtField
, rcon_con = con_lname, rcon_flds = rec_binds' }
, fvs `plusFV` plusFVs fvss `addOneFV` con_name) }
where
mk_hs_var l n = HsVar noExtField (L (noAnnSrcSpan l) n)
rn_field (L l fld) = do { (arg', fvs) <- rnLExpr (hfbRHS fld)
; return (L l (fld { hfbRHS = arg' }), fvs) }
rnExpr (RecordUpd { rupd_expr = expr, rupd_flds = rbinds })
= case rbinds of
Left flds -> -- 'OverloadedRecordUpdate' is not in effect. Regular record update.
do { ; (e, fv_e) <- rnLExpr expr
; (rs, fv_rs) <- rnHsRecUpdFields flds
; return ( RecordUpd noExtField e (Left rs), fv_e `plusFV` fv_rs )
}
Right flds -> -- 'OverloadedRecordUpdate' is in effect. Record dot update desugaring.
do { ; unlessXOptM LangExt.RebindableSyntax $
addErr $ TcRnUnknownMessage $ mkPlainError noHints $
text "RebindableSyntax is required if OverloadedRecordUpdate is enabled."
; let punnedFields = [fld | (L _ fld) <- flds, hfbPun fld]
; punsEnabled <-xoptM LangExt.NamedFieldPuns
; unless (null punnedFields || punsEnabled) $
addErr $ TcRnUnknownMessage $ mkPlainError noHints $
text "For this to work enable NamedFieldPuns."
; (getField, fv_getField) <- lookupSyntaxName getFieldName
; (setField, fv_setField) <- lookupSyntaxName setFieldName
; (e, fv_e) <- rnLExpr expr
; (us, fv_us) <- rnHsUpdProjs flds
; return ( mkExpandedExpr
(RecordUpd noExtField e (Right us))
(mkRecordDotUpd getField setField e us)
, plusFVs [fv_getField, fv_setField, fv_e, fv_us] )
}
rnExpr (ExprWithTySig _ expr pty)
= do { (pty', fvTy) <- rnHsSigWcType ExprWithTySigCtx pty
; (expr', fvExpr) <- bindSigTyVarsFV (hsWcScopedTvs pty') $
rnLExpr expr
; return (ExprWithTySig noExtField expr' pty', fvExpr `plusFV` fvTy) }
-- HsIf: see Note [Handling overloaded and rebindable constructs]
-- Because of the coverage checker it is most convenient /not/ to
-- expand HsIf; unless we are in rebindable syntax.
rnExpr (HsIf _ p b1 b2)
= do { (p', fvP) <- rnLExpr p
; (b1', fvB1) <- rnLExpr b1
; (b2', fvB2) <- rnLExpr b2
; let fvs_if = plusFVs [fvP, fvB1, fvB2]
rn_if = HsIf noExtField p' b1' b2'
-- Deal with rebindable syntax
-- See Note [Handling overloaded and rebindable constructs]
; mb_ite <- lookupIfThenElse
; case mb_ite of
Nothing -- Non rebindable-syntax case
-> return (rn_if, fvs_if)
Just ite_name -- Rebindable-syntax case
-> do { let ds_if = genHsApps ite_name [p', b1', b2']
fvs = plusFVs [fvs_if, unitFV ite_name]
; return (mkExpandedExpr rn_if ds_if, fvs) } }
rnExpr (HsMultiIf _ alts)
= do { (alts', fvs) <- mapFvRn (rnGRHS IfAlt rnLExpr) alts
; return (HsMultiIf noExtField alts', fvs) }
rnExpr (ArithSeq _ _ seq)
= do { opt_OverloadedLists <- xoptM LangExt.OverloadedLists
; (new_seq, fvs) <- rnArithSeq seq
; if opt_OverloadedLists
then do {
; (from_list_name, fvs') <- lookupSyntax fromListName
; return (ArithSeq noExtField (Just from_list_name) new_seq
, fvs `plusFV` fvs') }
else
return (ArithSeq noExtField Nothing new_seq, fvs) }
{-
************************************************************************
* *
Static values
* *
************************************************************************
For the static form we check that it is not used in splices.
We also collect the free variables of the term which come from
this module. See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable.
-}
rnExpr e@(HsStatic _ expr) = do
-- Normally, you wouldn't be able to construct a static expression without
-- first enabling -XStaticPointers in the first place, since that extension
-- is what makes the parser treat `static` as a keyword. But this is not a
-- sufficient safeguard, as one can construct static expressions by another
-- mechanism: Template Haskell (see #14204). To ensure that GHC is
-- absolutely prepared to cope with static forms, we check for
-- -XStaticPointers here as well.
unlessXOptM LangExt.StaticPointers $
addErr $ TcRnUnknownMessage $ mkPlainError noHints $
hang (text "Illegal static expression:" <+> ppr e)
2 (text "Use StaticPointers to enable this extension")
(expr',fvExpr) <- rnLExpr expr
stage <- getStage
case stage of
Splice _ -> addErr $ TcRnUnknownMessage $ mkPlainError noHints $ sep
[ text "static forms cannot be used in splices:"
, nest 2 $ ppr e
]
_ -> return ()
mod <- getModule
let fvExpr' = filterNameSet (nameIsLocalOrFrom mod) fvExpr
return (HsStatic fvExpr' expr', fvExpr)
{-
************************************************************************
* *
Arrow notation
* *
********************************************************************* -}
rnExpr (HsProc x pat body)
= newArrowScope $
rnPat (ArrowMatchCtxt ProcExpr) pat $ \ pat' -> do
{ (body',fvBody) <- rnCmdTop body
; return (HsProc x pat' body', fvBody) }
rnExpr other = pprPanic "rnExpr: unexpected expression" (ppr other)
-- HsWrap
{-
************************************************************************
* *
Operator sections
* *
********************************************************************* -}
rnSection :: HsExpr GhcPs -> RnM (HsExpr GhcRn, FreeVars)
-- See Note [Parsing sections] in GHC.Parser
-- Also see Note [Handling overloaded and rebindable constructs]
rnSection section@(SectionR x op expr)
-- See Note [Left and right sections]
= do { (op', fvs_op) <- rnLExpr op
; (expr', fvs_expr) <- rnLExpr expr
; checkSectionPrec InfixR section op' expr'
; let rn_section = SectionR x op' expr'
ds_section = genHsApps rightSectionName [op',expr']
; return ( mkExpandedExpr rn_section ds_section
, fvs_op `plusFV` fvs_expr) }
rnSection section@(SectionL x expr op)
-- See Note [Left and right sections]
= do { (expr', fvs_expr) <- rnLExpr expr
; (op', fvs_op) <- rnLExpr op
; checkSectionPrec InfixL section op' expr'
; postfix_ops <- xoptM LangExt.PostfixOperators
-- Note [Left and right sections]
; let rn_section = SectionL x expr' op'
ds_section
| postfix_ops = HsApp noAnn op' expr'
| otherwise = genHsApps leftSectionName
[wrapGenSpan $ HsApp noAnn op' expr']
; return ( mkExpandedExpr rn_section ds_section
, fvs_op `plusFV` fvs_expr) }
rnSection other = pprPanic "rnSection" (ppr other)
{- Note [Left and right sections]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dealing with left sections (x *) and right sections (* x) is
surprisingly fiddly. We expand like this
(`op` e) ==> rightSection op e
(e `op`) ==> leftSection (op e)
Using an auxiliary function in this way avoids the awkwardness of
generating a lambda, esp if `e` is a redex, so we *don't* want
to generate `(\x -> op x e)`. See Historical
Note [Desugaring operator sections]
Here are their definitions:
leftSection :: forall r1 r2 n (a::TYPE r1) (b::TYPE r2).
(a %n-> b) -> a %n-> b
leftSection f x = f x
rightSection :: forall r1 r2 r3 n1 n2 (a::TYPE r1) (b::TYPE r2) (c::TYPE r3).
(a %n1 -> b %n2-> c) -> b %n2-> a %n1-> c
rightSection f y x = f x y
Note the wrinkles:
* We do /not/ use lookupSyntaxName, which would make left and right
section fall under RebindableSyntax. Reason: it would be a user-
facing change, and there are some tricky design choices (#19354).
Plus, infix operator applications would be trickier to make
rebindable, so it'd be inconsistent to do so for sections.
TL;DR: we still use the renamer-expansion mechanism for operator
sections, but only to eliminate special-purpose code paths in the
renamer and desugarer.
* leftSection and rightSection must be representation-polymorphic, to allow
(+# 4#) and (4# +#) to work. See
Note [Wired-in Ids for rebindable syntax] in GHC.Types.Id.Make.
* leftSection and rightSection must be multiplicity-polymorphic.
(Test linear/should_compile/OldList showed this up.)
* Because they are representation-polymorphic, we have to define them
as wired-in Ids, with compulsory inlining. See
GHC.Types.Id.Make.leftSectionId, rightSectionId.
* leftSection is just ($) really; but unlike ($) it is
representation-polymorphic in the result type, so we can write
`(x +#)`, say.
* The type of leftSection must have an arrow in its first argument,
because (x `ord`) should be rejected, because ord does not take two
arguments
* It's important that we define leftSection in an eta-expanded way,
(i.e. not leftSection f = f), so that
(True `undefined`) `seq` ()
= (leftSection (undefined True) `seq` ())
evaluates to () and not undefined
* If PostfixOperators is ON, then we expand a left section like this:
(e `op`) ==> op e
with no auxiliary function at all. Simple!
Historical Note [Desugaring operator sections]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This Note explains some historical trickiness in desugaring left and
right sections. That trickiness has completely disappeared now that
we desugar to calls to 'leftSection` and `rightSection`, but I'm
leaving it here to remind us how nice the new story is.
Desugaring left sections with -XPostfixOperators is straightforward: convert
(expr `op`) to (op expr).
Without -XPostfixOperators it's a bit more tricky. At first it looks as if we
can convert
(expr `op`)
naively to
\x -> op expr x
But no! expr might be a redex, and we can lose laziness badly this
way. Consider
map (expr `op`) xs
for example. If expr were a redex then eta-expanding naively would
result in multiple evaluations where the user might only have expected one.
So we convert instead to
let y = expr in \x -> op y x
Also, note that we must do this for both right and (perhaps surprisingly) left
sections. Why are left sections necessary? Consider the program (found in #18151),
seq (True `undefined`) ()
according to the Haskell Report this should reduce to () (as it specifies
desugaring via eta expansion). However, if we fail to eta expand we will rather
bottom. Consequently, we must eta expand even in the case of a left section.
If `expr` is actually just a variable, say, then the simplifier
will inline `y`, eliminating the redundant `let`.
Note that this works even in the case that `expr` is unlifted. In this case
bindNonRec will automatically do the right thing, giving us:
case expr of y -> (\x -> op y x)
See #18151.
-}
{-
************************************************************************
* *
Field Labels
* *
************************************************************************
-}
rnDotFieldOcc :: LocatedAn NoEpAnns (DotFieldOcc GhcPs) -> LocatedAn NoEpAnns (DotFieldOcc GhcRn)
rnDotFieldOcc (L l (DotFieldOcc x label)) = L l (DotFieldOcc x label)
rnFieldLabelStrings :: FieldLabelStrings GhcPs -> FieldLabelStrings GhcRn
rnFieldLabelStrings (FieldLabelStrings fls) = FieldLabelStrings (map rnDotFieldOcc fls)
{-
************************************************************************
* *
Arrow commands
* *
************************************************************************
-}
rnCmdArgs :: [LHsCmdTop GhcPs] -> RnM ([LHsCmdTop GhcRn], FreeVars)
rnCmdArgs [] = return ([], emptyFVs)
rnCmdArgs (arg:args)
= do { (arg',fvArg) <- rnCmdTop arg
; (args',fvArgs) <- rnCmdArgs args
; return (arg':args', fvArg `plusFV` fvArgs) }
rnCmdTop :: LHsCmdTop GhcPs -> RnM (LHsCmdTop GhcRn, FreeVars)
rnCmdTop = wrapLocFstMA rnCmdTop'
where
rnCmdTop' :: HsCmdTop GhcPs -> RnM (HsCmdTop GhcRn, FreeVars)
rnCmdTop' (HsCmdTop _ cmd)
= do { (cmd', fvCmd) <- rnLCmd cmd
; let cmd_names = [arrAName, composeAName, firstAName] ++
nameSetElemsStable (methodNamesCmd (unLoc cmd'))
-- Generate the rebindable syntax for the monad
; (cmd_names', cmd_fvs) <- lookupSyntaxNames cmd_names
; return (HsCmdTop (cmd_names `zip` cmd_names') cmd',
fvCmd `plusFV` cmd_fvs) }
rnLCmd :: LHsCmd GhcPs -> RnM (LHsCmd GhcRn, FreeVars)
rnLCmd = wrapLocFstMA rnCmd
rnCmd :: HsCmd GhcPs -> RnM (HsCmd GhcRn, FreeVars)
rnCmd (HsCmdArrApp _ arrow arg ho rtl)
= do { (arrow',fvArrow) <- select_arrow_scope (rnLExpr arrow)
; (arg',fvArg) <- rnLExpr arg
; return (HsCmdArrApp noExtField arrow' arg' ho rtl,
fvArrow `plusFV` fvArg) }
where
select_arrow_scope tc = case ho of
HsHigherOrderApp -> tc
HsFirstOrderApp -> escapeArrowScope tc
-- See Note [Escaping the arrow scope] in GHC.Tc.Types
-- Before renaming 'arrow', use the environment of the enclosing
-- proc for the (-<) case.
-- Local bindings, inside the enclosing proc, are not in scope
-- inside 'arrow'. In the higher-order case (-<<), they are.
-- infix form
rnCmd (HsCmdArrForm _ op _ (Just _) [arg1, arg2])
= do { (op',fv_op) <- escapeArrowScope (rnLExpr op)
; let L _ (HsVar _ (L _ op_name)) = op'
; (arg1',fv_arg1) <- rnCmdTop arg1
; (arg2',fv_arg2) <- rnCmdTop arg2
-- Deal with fixity
; fixity <- lookupFixityRn op_name
; final_e <- mkOpFormRn arg1' op' fixity arg2'
; return (final_e, fv_arg1 `plusFV` fv_op `plusFV` fv_arg2) }
rnCmd (HsCmdArrForm _ op f fixity cmds)
= do { (op',fvOp) <- escapeArrowScope (rnLExpr op)
; (cmds',fvCmds) <- rnCmdArgs cmds
; return ( HsCmdArrForm noExtField op' f fixity cmds'
, fvOp `plusFV` fvCmds) }
rnCmd (HsCmdApp x fun arg)
= do { (fun',fvFun) <- rnLCmd fun
; (arg',fvArg) <- rnLExpr arg
; return (HsCmdApp x fun' arg', fvFun `plusFV` fvArg) }
rnCmd (HsCmdLam _ matches)
= do { (matches', fvMatch) <- rnMatchGroup (ArrowMatchCtxt KappaExpr) rnLCmd matches
; return (HsCmdLam noExtField matches', fvMatch) }
rnCmd (HsCmdPar x lpar e rpar)
= do { (e', fvs_e) <- rnLCmd e
; return (HsCmdPar x lpar e' rpar, fvs_e) }
rnCmd (HsCmdCase _ expr matches)
= do { (new_expr, e_fvs) <- rnLExpr expr
; (new_matches, ms_fvs) <- rnMatchGroup (ArrowMatchCtxt ArrowCaseAlt) rnLCmd matches
; return (HsCmdCase noExtField new_expr new_matches
, e_fvs `plusFV` ms_fvs) }
rnCmd (HsCmdLamCase x lc_variant matches)
= do { (new_matches, ms_fvs) <-
rnMatchGroup (ArrowMatchCtxt $ ArrowLamCaseAlt lc_variant) rnLCmd matches
; return (HsCmdLamCase x lc_variant new_matches, ms_fvs) }
rnCmd (HsCmdIf _ _ p b1 b2)
= do { (p', fvP) <- rnLExpr p
; (b1', fvB1) <- rnLCmd b1
; (b2', fvB2) <- rnLCmd b2
; mb_ite <- lookupIfThenElse
; let (ite, fvITE) = case mb_ite of
Just ite_name -> (mkRnSyntaxExpr ite_name, unitFV ite_name)
Nothing -> (NoSyntaxExprRn, emptyFVs)
; return (HsCmdIf noExtField ite p' b1' b2', plusFVs [fvITE, fvP, fvB1, fvB2])}
rnCmd (HsCmdLet _ tkLet binds tkIn cmd)
= rnLocalBindsAndThen binds $ \ binds' _ -> do
{ (cmd',fvExpr) <- rnLCmd cmd
; return (HsCmdLet noExtField tkLet binds' tkIn cmd', fvExpr) }
rnCmd (HsCmdDo _ (L l stmts))
= do { ((stmts', _), fvs) <-
rnStmts ArrowExpr rnCmd stmts (\ _ -> return ((), emptyFVs))
; return ( HsCmdDo noExtField (L l stmts'), fvs ) }
---------------------------------------------------
type CmdNeeds = FreeVars -- Only inhabitants are
-- appAName, choiceAName, loopAName
-- find what methods the Cmd needs (loop, choice, apply)
methodNamesLCmd :: LHsCmd GhcRn -> CmdNeeds
methodNamesLCmd = methodNamesCmd . unLoc
methodNamesCmd :: HsCmd GhcRn -> CmdNeeds
methodNamesCmd (HsCmdArrApp _ _arrow _arg HsFirstOrderApp _rtl)
= emptyFVs
methodNamesCmd (HsCmdArrApp _ _arrow _arg HsHigherOrderApp _rtl)
= unitFV appAName
methodNamesCmd (HsCmdArrForm {}) = emptyFVs
methodNamesCmd (HsCmdPar _ _ c _) = methodNamesLCmd c
methodNamesCmd (HsCmdIf _ _ _ c1 c2)
= methodNamesLCmd c1 `plusFV` methodNamesLCmd c2 `addOneFV` choiceAName
methodNamesCmd (HsCmdLet _ _ _ _ c) = methodNamesLCmd c
methodNamesCmd (HsCmdDo _ (L _ stmts)) = methodNamesStmts stmts
methodNamesCmd (HsCmdApp _ c _) = methodNamesLCmd c
methodNamesCmd (HsCmdLam _ match) = methodNamesMatch match
methodNamesCmd (HsCmdCase _ _ matches)
= methodNamesMatch matches `addOneFV` choiceAName
methodNamesCmd (HsCmdLamCase _ _ matches)
= methodNamesMatch matches `addOneFV` choiceAName
--methodNamesCmd _ = emptyFVs
-- Other forms can't occur in commands, but it's not convenient
-- to error here so we just do what's convenient.
-- The type checker will complain later
---------------------------------------------------
methodNamesMatch :: MatchGroup GhcRn (LHsCmd GhcRn) -> FreeVars
methodNamesMatch (MG { mg_alts = L _ ms })
= plusFVs (map do_one ms)
where
do_one (L _ (Match { m_grhss = grhss })) = methodNamesGRHSs grhss
-------------------------------------------------
-- gaw 2004
methodNamesGRHSs :: GRHSs GhcRn (LHsCmd GhcRn) -> FreeVars
methodNamesGRHSs (GRHSs _ grhss _) = plusFVs (map methodNamesGRHS grhss)
-------------------------------------------------
methodNamesGRHS :: LocatedAn NoEpAnns (GRHS GhcRn (LHsCmd GhcRn)) -> CmdNeeds
methodNamesGRHS (L _ (GRHS _ _ rhs)) = methodNamesLCmd rhs
---------------------------------------------------
methodNamesStmts :: [LStmtLR GhcRn GhcRn (LHsCmd GhcRn)] -> FreeVars
methodNamesStmts stmts = plusFVs (map methodNamesLStmt stmts)
---------------------------------------------------
methodNamesLStmt :: LStmtLR GhcRn GhcRn (LHsCmd GhcRn) -> FreeVars
methodNamesLStmt = methodNamesStmt . unLoc
methodNamesStmt :: StmtLR GhcRn GhcRn (LHsCmd GhcRn) -> FreeVars
methodNamesStmt (LastStmt _ cmd _ _) = methodNamesLCmd cmd
methodNamesStmt (BodyStmt _ cmd _ _) = methodNamesLCmd cmd
methodNamesStmt (BindStmt _ _ cmd) = methodNamesLCmd cmd
methodNamesStmt (RecStmt { recS_stmts = L _ stmts }) =
methodNamesStmts stmts `addOneFV` loopAName
methodNamesStmt (LetStmt {}) = emptyFVs
methodNamesStmt (ParStmt {}) = emptyFVs
methodNamesStmt (TransStmt {}) = emptyFVs
methodNamesStmt ApplicativeStmt{} = emptyFVs
-- ParStmt and TransStmt can't occur in commands, but it's not
-- convenient to error here so we just do what's convenient
{-
************************************************************************
* *
Arithmetic sequences
* *
************************************************************************
-}
rnArithSeq :: ArithSeqInfo GhcPs -> RnM (ArithSeqInfo GhcRn, FreeVars)
rnArithSeq (From expr)
= do { (expr', fvExpr) <- rnLExpr expr
; return (From expr', fvExpr) }
rnArithSeq (FromThen expr1 expr2)
= do { (expr1', fvExpr1) <- rnLExpr expr1
; (expr2', fvExpr2) <- rnLExpr expr2
; return (FromThen expr1' expr2', fvExpr1 `plusFV` fvExpr2) }
rnArithSeq (FromTo expr1 expr2)
= do { (expr1', fvExpr1) <- rnLExpr expr1
; (expr2', fvExpr2) <- rnLExpr expr2
; return (FromTo expr1' expr2', fvExpr1 `plusFV` fvExpr2) }
rnArithSeq (FromThenTo expr1 expr2 expr3)
= do { (expr1', fvExpr1) <- rnLExpr expr1
; (expr2', fvExpr2) <- rnLExpr expr2
; (expr3', fvExpr3) <- rnLExpr expr3
; return (FromThenTo expr1' expr2' expr3',
plusFVs [fvExpr1, fvExpr2, fvExpr3]) }
{-
************************************************************************
* *
\subsubsection{@Stmt@s: in @do@ expressions}
* *
************************************************************************
-}
{-
Note [Deterministic ApplicativeDo and RecursiveDo desugaring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Both ApplicativeDo and RecursiveDo need to create tuples not
present in the source text.
For ApplicativeDo we create:
(a,b,c) <- (\c b a -> (a,b,c)) <$>
For RecursiveDo we create:
mfix (\ ~(a,b,c) -> do ...; return (a',b',c'))
The order of the components in those tuples needs to be stable
across recompilations, otherwise they can get optimized differently
and we end up with incompatible binaries.
To get a stable order we use nameSetElemsStable.
See Note [Deterministic UniqFM] to learn more about nondeterminism.
-}
type AnnoBody body
= ( Outputable (body GhcPs)
, Anno (StmtLR GhcPs GhcPs (LocatedA (body GhcPs))) ~ SrcSpanAnnA
, Anno (StmtLR GhcRn GhcPs (LocatedA (body GhcPs))) ~ SrcSpanAnnA
, Anno (StmtLR GhcRn GhcRn (LocatedA (body GhcRn))) ~ SrcSpanAnnA
)
-- | Rename some Stmts
rnStmts :: AnnoBody body
=> HsStmtContext GhcRn
-> (body GhcPs -> RnM (body GhcRn, FreeVars))
-- ^ How to rename the body of each statement (e.g. rnLExpr)
-> [LStmt GhcPs (LocatedA (body GhcPs))]
-- ^ Statements
-> ([Name] -> RnM (thing, FreeVars))
-- ^ if these statements scope over something, this renames it
-- and returns the result.
-> RnM (([LStmt GhcRn (LocatedA (body GhcRn))], thing), FreeVars)
rnStmts ctxt rnBody stmts thing_inside
= do { ((stmts', thing), fvs) <- rnStmtsWithFreeVars ctxt rnBody stmts thing_inside
; return ((map fst stmts', thing), fvs) }
-- | maybe rearrange statements according to the ApplicativeDo transformation
postProcessStmtsForApplicativeDo
:: HsDoFlavour
-> [(ExprLStmt GhcRn, FreeVars)]
-> RnM ([ExprLStmt GhcRn], FreeVars)
postProcessStmtsForApplicativeDo ctxt stmts
= do {
-- rearrange the statements using ApplicativeStmt if
-- -XApplicativeDo is on. Also strip out the FreeVars attached
-- to each Stmt body.
ado_is_on <- xoptM LangExt.ApplicativeDo
; let is_do_expr | DoExpr{} <- ctxt = True
| otherwise = False
-- don't apply the transformation inside TH brackets, because
-- GHC.HsToCore.Quote does not handle ApplicativeDo.
; in_th_bracket <- isBrackStage <$> getStage
; if ado_is_on && is_do_expr && not in_th_bracket
then do { traceRn "ppsfa" (ppr stmts)
; rearrangeForApplicativeDo ctxt stmts }
else noPostProcessStmts (HsDoStmt ctxt) stmts }
-- | strip the FreeVars annotations from statements
noPostProcessStmts
:: HsStmtContext GhcRn
-> [(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)]
-> RnM ([LStmt GhcRn (LocatedA (body GhcRn))], FreeVars)
noPostProcessStmts _ stmts = return (map fst stmts, emptyNameSet)
rnStmtsWithFreeVars :: AnnoBody body
=> HsStmtContext GhcRn
-> ((body GhcPs) -> RnM ((body GhcRn), FreeVars))
-> [LStmt GhcPs (LocatedA (body GhcPs))]
-> ([Name] -> RnM (thing, FreeVars))
-> RnM ( ([(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)], thing)
, FreeVars)
-- Each Stmt body is annotated with its FreeVars, so that
-- we can rearrange statements for ApplicativeDo.
--
-- Variables bound by the Stmts, and mentioned in thing_inside,
-- do not appear in the result FreeVars
rnStmtsWithFreeVars ctxt _ [] thing_inside
= do { checkEmptyStmts ctxt
; (thing, fvs) <- thing_inside []
; return (([], thing), fvs) }
rnStmtsWithFreeVars mDoExpr@(HsDoStmt MDoExpr{}) rnBody stmts thing_inside -- Deal with mdo
= -- Behave like do { rec { ...all but last... }; last }
do { ((stmts1, (stmts2, thing)), fvs)
<- rnStmt mDoExpr rnBody (noLocA $ mkRecStmt noAnn (noLocA all_but_last)) $ \ _ ->
do { last_stmt' <- checkLastStmt mDoExpr last_stmt
; rnStmt mDoExpr rnBody last_stmt' thing_inside }
; return (((stmts1 ++ stmts2), thing), fvs) }
where
Just (all_but_last, last_stmt) = snocView stmts
rnStmtsWithFreeVars ctxt rnBody (lstmt@(L loc _) : lstmts) thing_inside
| null lstmts
= setSrcSpanA loc $
do { lstmt' <- checkLastStmt ctxt lstmt
; rnStmt ctxt rnBody lstmt' thing_inside }
| otherwise
= do { ((stmts1, (stmts2, thing)), fvs)
<- setSrcSpanA loc $
do { checkStmt ctxt lstmt
; rnStmt ctxt rnBody lstmt $ \ bndrs1 ->
rnStmtsWithFreeVars ctxt rnBody lstmts $ \ bndrs2 ->
thing_inside (bndrs1 ++ bndrs2) }
; return (((stmts1 ++ stmts2), thing), fvs) }
----------------------
{-
Note [Failing pattern matches in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many things desugar to HsStmts including monadic things like `do` and `mdo`
statements, pattern guards, and list comprehensions (see 'HsStmtContext' for an
exhaustive list). How we deal with pattern match failure is context-dependent.
* In the case of list comprehensions and pattern guards we don't need any
'fail' function; the desugarer ignores the fail function of 'BindStmt'
entirely. So, for list comprehensions, the fail function is set to 'Nothing'
for clarity.
* In the case of monadic contexts (e.g. monad comprehensions, do, and mdo
expressions) we want pattern match failure to be desugared to the
'fail' function (from MonadFail type class).
At one point we failed to make this distinction, leading to #11216.
-}
rnStmt :: AnnoBody body
=> HsStmtContext GhcRn
-> (body GhcPs -> RnM (body GhcRn, FreeVars))
-- ^ How to rename the body of the statement
-> LStmt GhcPs (LocatedA (body GhcPs))
-- ^ The statement
-> ([Name] -> RnM (thing, FreeVars))
-- ^ Rename the stuff that this statement scopes over
-> RnM ( ([(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)], thing)
, FreeVars)
-- Variables bound by the Stmt, and mentioned in thing_inside,
-- do not appear in the result FreeVars
rnStmt ctxt rnBody (L loc (LastStmt _ (L lb body) noret _)) thing_inside
= do { (body', fv_expr) <- rnBody body
; (ret_op, fvs1) <- if isMonadCompContext ctxt
then lookupStmtName ctxt returnMName
else return (noSyntaxExpr, emptyFVs)
-- The 'return' in a LastStmt is used only
-- for MonadComp; and we don't want to report
-- "non in scope: return" in other cases
-- #15607
; (thing, fvs3) <- thing_inside []
; return (([(L loc (LastStmt noExtField (L lb body') noret ret_op), fv_expr)]
, thing), fv_expr `plusFV` fvs1 `plusFV` fvs3) }
rnStmt ctxt rnBody (L loc (BodyStmt _ (L lb body) _ _)) thing_inside
= do { (body', fv_expr) <- rnBody body
; (then_op, fvs1) <- lookupQualifiedDoStmtName ctxt thenMName
; (guard_op, fvs2) <- if isComprehensionContext ctxt
then lookupStmtName ctxt guardMName
else return (noSyntaxExpr, emptyFVs)
-- Only list/monad comprehensions use 'guard'
-- Also for sub-stmts of same eg [ e | x<-xs, gd | blah ]
-- Here "gd" is a guard
; (thing, fvs3) <- thing_inside []
; return ( ([(L loc (BodyStmt noExtField (L lb body') then_op guard_op), fv_expr)]
, thing), fv_expr `plusFV` fvs1 `plusFV` fvs2 `plusFV` fvs3) }
rnStmt ctxt rnBody (L loc (BindStmt _ pat (L lb body))) thing_inside
= do { (body', fv_expr) <- rnBody body
-- The binders do not scope over the expression
; (bind_op, fvs1) <- lookupQualifiedDoStmtName ctxt bindMName
; (fail_op, fvs2) <- monadFailOp pat ctxt
; rnPat (StmtCtxt ctxt) pat $ \ pat' -> do
{ (thing, fvs3) <- thing_inside (collectPatBinders CollNoDictBinders pat')
; let xbsrn = XBindStmtRn { xbsrn_bindOp = bind_op, xbsrn_failOp = fail_op }
; return (( [( L loc (BindStmt xbsrn pat' (L lb body')), fv_expr )]
, thing),
fv_expr `plusFV` fvs1 `plusFV` fvs2 `plusFV` fvs3) }}
-- fv_expr shouldn't really be filtered by the rnPatsAndThen
-- but it does not matter because the names are unique
rnStmt _ _ (L loc (LetStmt _ binds)) thing_inside
= rnLocalBindsAndThen binds $ \binds' bind_fvs -> do
{ (thing, fvs) <- thing_inside (collectLocalBinders CollNoDictBinders binds')
; return ( ([(L loc (LetStmt noAnn binds'), bind_fvs)], thing)
, fvs) }
rnStmt ctxt rnBody (L loc (RecStmt { recS_stmts = L _ rec_stmts })) thing_inside
= do { (return_op, fvs1) <- lookupQualifiedDoStmtName ctxt returnMName
; (mfix_op, fvs2) <- lookupQualifiedDoStmtName ctxt mfixName
; (bind_op, fvs3) <- lookupQualifiedDoStmtName ctxt bindMName
; let empty_rec_stmt = emptyRecStmtName { recS_ret_fn = return_op
, recS_mfix_fn = mfix_op
, recS_bind_fn = bind_op }
-- Step1: Bring all the binders of the mdo into scope
-- (Remember that this also removes the binders from the
-- finally-returned free-vars.)
-- And rename each individual stmt, making a
-- singleton segment. At this stage the FwdRefs field
-- isn't finished: it's empty for all except a BindStmt
-- for which it's the fwd refs within the bind itself
-- (This set may not be empty, because we're in a recursive
-- context.)
; rnRecStmtsAndThen ctxt rnBody rec_stmts $ \ segs -> do
{ let bndrs = nameSetElemsStable $
foldr (unionNameSet . (\(ds,_,_,_) -> ds))
emptyNameSet
segs
-- See Note [Deterministic ApplicativeDo and RecursiveDo desugaring]
; (thing, fvs_later) <- thing_inside bndrs
-- In interactive mode, assume that all variables are used later
; is_interactive <- isInteractiveModule . tcg_mod <$> getGblEnv
; let
final_fvs_later = if is_interactive then Nothing else Just fvs_later
(rec_stmts', fvs) = segmentRecStmts (locA loc) ctxt empty_rec_stmt segs final_fvs_later
-- We aren't going to try to group RecStmts with
-- ApplicativeDo, so attaching empty FVs is fine.
; return ( ((zip rec_stmts' (repeat emptyNameSet)), thing)
, fvs `plusFV` fvs1 `plusFV` fvs2 `plusFV` fvs3) } }
rnStmt ctxt _ (L loc (ParStmt _ segs _ _)) thing_inside
= do { (mzip_op, fvs1) <- lookupStmtNamePoly ctxt mzipName
; (bind_op, fvs2) <- lookupStmtName ctxt bindMName
; (return_op, fvs3) <- lookupStmtName ctxt returnMName
; ((segs', thing), fvs4) <- rnParallelStmts (ParStmtCtxt ctxt) return_op segs thing_inside
; return (([(L loc (ParStmt noExtField segs' mzip_op bind_op), fvs4)], thing)
, fvs1 `plusFV` fvs2 `plusFV` fvs3 `plusFV` fvs4) }
rnStmt ctxt _ (L loc (TransStmt { trS_stmts = stmts, trS_by = by, trS_form = form
, trS_using = using })) thing_inside
= do { -- Rename the 'using' expression in the context before the transform is begun
(using', fvs1) <- rnLExpr using
-- Rename the stmts and the 'by' expression
-- Keep track of the variables mentioned in the 'by' expression
; ((stmts', (by', used_bndrs, thing)), fvs2)
<- rnStmts (TransStmtCtxt ctxt) rnExpr stmts $ \ bndrs ->
do { (by', fvs_by) <- mapMaybeFvRn rnLExpr by
; (thing, fvs_thing) <- thing_inside bndrs
; let fvs = fvs_by `plusFV` fvs_thing
used_bndrs = filter (`elemNameSet` fvs) bndrs
-- The paper (Fig 5) has a bug here; we must treat any free variable
-- of the "thing inside", **or of the by-expression**, as used
; return ((by', used_bndrs, thing), fvs) }
-- Lookup `return`, `(>>=)` and `liftM` for monad comprehensions
; (return_op, fvs3) <- lookupStmtName ctxt returnMName
; (bind_op, fvs4) <- lookupStmtName ctxt bindMName
; (fmap_op, fvs5) <- case form of
ThenForm -> return (noExpr, emptyFVs)
_ -> lookupStmtNamePoly ctxt fmapName
; let all_fvs = fvs1 `plusFV` fvs2 `plusFV` fvs3
`plusFV` fvs4 `plusFV` fvs5
bndr_map = used_bndrs `zip` used_bndrs
-- See Note [TransStmt binder map] in GHC.Hs.Expr
; traceRn "rnStmt: implicitly rebound these used binders:" (ppr bndr_map)
; return (([(L loc (TransStmt { trS_ext = noExtField
, trS_stmts = stmts', trS_bndrs = bndr_map
, trS_by = by', trS_using = using', trS_form = form
, trS_ret = return_op, trS_bind = bind_op
, trS_fmap = fmap_op }), fvs2)], thing), all_fvs) }
rnStmt _ _ (L _ ApplicativeStmt{}) _ =
panic "rnStmt: ApplicativeStmt"
rnParallelStmts :: forall thing. HsStmtContext GhcRn
-> SyntaxExpr GhcRn
-> [ParStmtBlock GhcPs GhcPs]
-> ([Name] -> RnM (thing, FreeVars))
-> RnM (([ParStmtBlock GhcRn GhcRn], thing), FreeVars)
-- Note [Renaming parallel Stmts]
rnParallelStmts ctxt return_op segs thing_inside
= do { orig_lcl_env <- getLocalRdrEnv
; rn_segs orig_lcl_env [] segs }
where
rn_segs :: LocalRdrEnv
-> [Name] -> [ParStmtBlock GhcPs GhcPs]
-> RnM (([ParStmtBlock GhcRn GhcRn], thing), FreeVars)
rn_segs _ bndrs_so_far []
= do { let (bndrs', dups) = removeDups cmpByOcc bndrs_so_far
; mapM_ dupErr dups
; (thing, fvs) <- bindLocalNames bndrs' (thing_inside bndrs')
; return (([], thing), fvs) }
rn_segs env bndrs_so_far (ParStmtBlock x stmts _ _ : segs)
= do { ((stmts', (used_bndrs, segs', thing)), fvs)
<- rnStmts ctxt rnExpr stmts $ \ bndrs ->
setLocalRdrEnv env $ do
{ ((segs', thing), fvs) <- rn_segs env (bndrs ++ bndrs_so_far) segs
; let used_bndrs = filter (`elemNameSet` fvs) bndrs
; return ((used_bndrs, segs', thing), fvs) }
; let seg' = ParStmtBlock x stmts' used_bndrs return_op
; return ((seg':segs', thing), fvs) }
cmpByOcc n1 n2 = nameOccName n1 `compare` nameOccName n2
dupErr vs = addErr $ TcRnUnknownMessage $ mkPlainError noHints $
(text "Duplicate binding in parallel list comprehension for:"
<+> quotes (ppr (NE.head vs)))
lookupQualifiedDoStmtName :: HsStmtContext GhcRn -> Name -> RnM (SyntaxExpr GhcRn, FreeVars)
-- Like lookupStmtName, but respects QualifiedDo
lookupQualifiedDoStmtName ctxt n
= case qualifiedDoModuleName_maybe ctxt of
Nothing -> lookupStmtName ctxt n
Just modName ->
first (mkSyntaxExpr . nl_HsVar) <$> lookupNameWithQualifier n modName
lookupStmtName :: HsStmtContext GhcRn -> Name -> RnM (SyntaxExpr GhcRn, FreeVars)
-- Like lookupSyntax, but respects contexts
lookupStmtName ctxt n
| rebindableContext ctxt
= lookupSyntax n
| otherwise
= return (mkRnSyntaxExpr n, emptyFVs)
lookupStmtNamePoly :: HsStmtContext GhcRn -> Name -> RnM (HsExpr GhcRn, FreeVars)
lookupStmtNamePoly ctxt name
| rebindableContext ctxt
= do { rebindable_on <- xoptM LangExt.RebindableSyntax
; if rebindable_on
then do { fm <- lookupOccRn (nameRdrName name)
; return (HsVar noExtField (noLocA fm), unitFV fm) }
else not_rebindable }
| otherwise
= not_rebindable
where
not_rebindable = return (HsVar noExtField (noLocA name), emptyFVs)
-- | Is this a context where we respect RebindableSyntax?
-- but ListComp are never rebindable
-- Neither is ArrowExpr, which has its own desugarer in GHC.HsToCore.Arrows
rebindableContext :: HsStmtContext GhcRn -> Bool
rebindableContext ctxt = case ctxt of
HsDoStmt flavour -> rebindableDoStmtContext flavour
ArrowExpr -> False
PatGuard {} -> False
ParStmtCtxt c -> rebindableContext c -- Look inside to
TransStmtCtxt c -> rebindableContext c -- the parent context
rebindableDoStmtContext :: HsDoFlavour -> Bool
rebindableDoStmtContext flavour = case flavour of
ListComp -> False
DoExpr m -> isNothing m
MDoExpr m -> isNothing m
MonadComp -> True
GhciStmtCtxt -> True -- I suppose?
{-
Note [Renaming parallel Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Renaming parallel statements is painful. Given, say
[ a+c | a <- as, bs <- bss
| c <- bs, a <- ds ]
Note that
(a) In order to report "Defined but not used" about 'bs', we must
rename each group of Stmts with a thing_inside whose FreeVars
include at least {a,c}
(b) We want to report that 'a' is illegally bound in both branches
(c) The 'bs' in the second group must obviously not be captured by
the binding in the first group
To satisfy (a) we nest the segements.
To satisfy (b) we check for duplicates just before thing_inside.
To satisfy (c) we reset the LocalRdrEnv each time.
************************************************************************
* *
\subsubsection{mdo expressions}
* *
************************************************************************
-}
type FwdRefs = NameSet
type Segment stmts = (Defs,
Uses, -- May include defs
FwdRefs, -- A subset of uses that are
-- (a) used before they are bound in this segment, or
-- (b) used here, and bound in subsequent segments
stmts) -- Either Stmt or [Stmt]
-- wrapper that does both the left- and right-hand sides
rnRecStmtsAndThen :: AnnoBody body =>
HsStmtContext GhcRn
-> (body GhcPs -> RnM (body GhcRn, FreeVars))
-> [LStmt GhcPs (LocatedA (body GhcPs))]
-- assumes that the FreeVars returned includes
-- the FreeVars of the Segments
-> ([Segment (LStmt GhcRn (LocatedA (body GhcRn)))]
-> RnM (a, FreeVars))
-> RnM (a, FreeVars)
rnRecStmtsAndThen ctxt rnBody s cont
= do { -- (A) Make the mini fixity env for all of the stmts
fix_env <- makeMiniFixityEnv (collectRecStmtsFixities s)
-- (B) Do the LHSes
; new_lhs_and_fv <- rn_rec_stmts_lhs fix_env s
-- ...bring them and their fixities into scope
; let bound_names = collectLStmtsBinders CollNoDictBinders (map fst new_lhs_and_fv)
-- Fake uses of variables introduced implicitly (warning suppression, see #4404)
rec_uses = lStmtsImplicits (map fst new_lhs_and_fv)
implicit_uses = mkNameSet $ concatMap snd $ rec_uses
; bindLocalNamesFV bound_names $
addLocalFixities fix_env bound_names $ do
-- (C) do the right-hand-sides and thing-inside
{ segs <- rn_rec_stmts ctxt rnBody bound_names new_lhs_and_fv
; (res, fvs) <- cont segs
; mapM_ (\(loc, ns) -> checkUnusedRecordWildcard loc fvs (Just ns))
rec_uses
; warnUnusedLocalBinds bound_names (fvs `unionNameSet` implicit_uses)
; return (res, fvs) }}
-- get all the fixity decls in any Let stmt
collectRecStmtsFixities :: [LStmtLR GhcPs GhcPs body] -> [LFixitySig GhcPs]
collectRecStmtsFixities l =
foldr (\ s -> \acc -> case s of
(L _ (LetStmt _ (HsValBinds _ (ValBinds _ _ sigs)))) ->
foldr (\ sig -> \ acc -> case sig of
(L loc (FixSig _ s)) -> (L loc s) : acc
_ -> acc) acc sigs
_ -> acc) [] l
-- left-hand sides
rn_rec_stmt_lhs :: AnnoBody body => MiniFixityEnv
-> LStmt GhcPs (LocatedA (body GhcPs))
-- rename LHS, and return its FVs
-- Warning: we will only need the FreeVars below in the case of a BindStmt,
-- so we don't bother to compute it accurately in the other cases
-> RnM [(LStmtLR GhcRn GhcPs (LocatedA (body GhcPs)), FreeVars)]
rn_rec_stmt_lhs _ (L loc (BodyStmt _ body a b))
= return [(L loc (BodyStmt noExtField body a b), emptyFVs)]
rn_rec_stmt_lhs _ (L loc (LastStmt _ body noret a))
= return [(L loc (LastStmt noExtField body noret a), emptyFVs)]
rn_rec_stmt_lhs fix_env (L loc (BindStmt _ pat body))
= do
-- should the ctxt be MDo instead?
(pat', fv_pat) <- rnBindPat (localRecNameMaker fix_env) pat
return [(L loc (BindStmt noAnn pat' body), fv_pat)]
rn_rec_stmt_lhs _ (L _ (LetStmt _ binds@(HsIPBinds {})))
= failWith (badIpBinds (text "an mdo expression") binds)
rn_rec_stmt_lhs fix_env (L loc (LetStmt _ (HsValBinds x binds)))
= do (_bound_names, binds') <- rnLocalValBindsLHS fix_env binds
return [(L loc (LetStmt noAnn (HsValBinds x binds')),
-- Warning: this is bogus; see function invariant
emptyFVs
)]
-- XXX Do we need to do something with the return and mfix names?
rn_rec_stmt_lhs fix_env (L _ (RecStmt { recS_stmts = L _ stmts })) -- Flatten Rec inside Rec
= rn_rec_stmts_lhs fix_env stmts
rn_rec_stmt_lhs _ stmt@(L _ (ParStmt {})) -- Syntactically illegal in mdo
= pprPanic "rn_rec_stmt" (ppr stmt)
rn_rec_stmt_lhs _ stmt@(L _ (TransStmt {})) -- Syntactically illegal in mdo
= pprPanic "rn_rec_stmt" (ppr stmt)
rn_rec_stmt_lhs _ stmt@(L _ (ApplicativeStmt {})) -- Shouldn't appear yet
= pprPanic "rn_rec_stmt" (ppr stmt)
rn_rec_stmt_lhs _ (L _ (LetStmt _ (EmptyLocalBinds _)))
= panic "rn_rec_stmt LetStmt EmptyLocalBinds"
rn_rec_stmts_lhs :: AnnoBody body => MiniFixityEnv
-> [LStmt GhcPs (LocatedA (body GhcPs))]
-> RnM [(LStmtLR GhcRn GhcPs (LocatedA (body GhcPs)), FreeVars)]
rn_rec_stmts_lhs fix_env stmts
= do { ls <- concatMapM (rn_rec_stmt_lhs fix_env) stmts
; let boundNames = collectLStmtsBinders CollNoDictBinders (map fst ls)
-- First do error checking: we need to check for dups here because we
-- don't bind all of the variables from the Stmt at once
-- with bindLocatedLocals.
; checkDupNames boundNames
; return ls }
-- right-hand-sides
rn_rec_stmt :: AnnoBody body =>
HsStmtContext GhcRn
-> (body GhcPs -> RnM (body GhcRn, FreeVars))
-> [Name]
-> (LStmtLR GhcRn GhcPs (LocatedA (body GhcPs)), FreeVars)
-> RnM [Segment (LStmt GhcRn (LocatedA (body GhcRn)))]
-- Rename a Stmt that is inside a RecStmt (or mdo)
-- Assumes all binders are already in scope
-- Turns each stmt into a singleton Stmt
rn_rec_stmt ctxt rnBody _ (L loc (LastStmt _ (L lb body) noret _), _)
= do { (body', fv_expr) <- rnBody body
; (ret_op, fvs1) <- lookupQualifiedDo ctxt returnMName
; return [(emptyNameSet, fv_expr `plusFV` fvs1, emptyNameSet,
L loc (LastStmt noExtField (L lb body') noret ret_op))] }
rn_rec_stmt ctxt rnBody _ (L loc (BodyStmt _ (L lb body) _ _), _)
= do { (body', fvs) <- rnBody body
; (then_op, fvs1) <- lookupQualifiedDo ctxt thenMName
; return [(emptyNameSet, fvs `plusFV` fvs1, emptyNameSet,
L loc (BodyStmt noExtField (L lb body') then_op noSyntaxExpr))] }
rn_rec_stmt ctxt rnBody _ (L loc (BindStmt _ pat' (L lb body)), fv_pat)
= do { (body', fv_expr) <- rnBody body
; (bind_op, fvs1) <- lookupQualifiedDo ctxt bindMName
; (fail_op, fvs2) <- getMonadFailOp ctxt
; let bndrs = mkNameSet (collectPatBinders CollNoDictBinders pat')
fvs = fv_expr `plusFV` fv_pat `plusFV` fvs1 `plusFV` fvs2
; let xbsrn = XBindStmtRn { xbsrn_bindOp = bind_op, xbsrn_failOp = fail_op }
; return [(bndrs, fvs, bndrs `intersectNameSet` fvs,
L loc (BindStmt xbsrn pat' (L lb body')))] }
rn_rec_stmt _ _ _ (L _ (LetStmt _ binds@(HsIPBinds {})), _)
= failWith (badIpBinds (text "an mdo expression") binds)
rn_rec_stmt _ _ all_bndrs (L loc (LetStmt _ (HsValBinds x binds')), _)
= do { (binds', du_binds) <- rnLocalValBindsRHS (mkNameSet all_bndrs) binds'
-- fixities and unused are handled above in rnRecStmtsAndThen
; let fvs = allUses du_binds
; return [(duDefs du_binds, fvs, emptyNameSet,
L loc (LetStmt noAnn (HsValBinds x binds')))] }
-- no RecStmt case because they get flattened above when doing the LHSes
rn_rec_stmt _ _ _ stmt@(L _ (RecStmt {}), _)
= pprPanic "rn_rec_stmt: RecStmt" (ppr stmt)
rn_rec_stmt _ _ _ stmt@(L _ (ParStmt {}), _) -- Syntactically illegal in mdo
= pprPanic "rn_rec_stmt: ParStmt" (ppr stmt)
rn_rec_stmt _ _ _ stmt@(L _ (TransStmt {}), _) -- Syntactically illegal in mdo
= pprPanic "rn_rec_stmt: TransStmt" (ppr stmt)
rn_rec_stmt _ _ _ (L _ (LetStmt _ (EmptyLocalBinds _)), _)
= panic "rn_rec_stmt: LetStmt EmptyLocalBinds"
rn_rec_stmt _ _ _ stmt@(L _ (ApplicativeStmt {}), _)
= pprPanic "rn_rec_stmt: ApplicativeStmt" (ppr stmt)
rn_rec_stmts :: AnnoBody body =>
HsStmtContext GhcRn
-> (body GhcPs -> RnM (body GhcRn, FreeVars))
-> [Name]
-> [(LStmtLR GhcRn GhcPs (LocatedA (body GhcPs)), FreeVars)]
-> RnM [Segment (LStmt GhcRn (LocatedA (body GhcRn)))]
rn_rec_stmts ctxt rnBody bndrs stmts
= do { segs_s <- mapM (rn_rec_stmt ctxt rnBody bndrs) stmts
; return (concat segs_s) }
---------------------------------------------
segmentRecStmts :: AnnoBody body
=> SrcSpan -> HsStmtContext GhcRn
-> Stmt GhcRn (LocatedA (body GhcRn))
-> [Segment (LStmt GhcRn (LocatedA (body GhcRn)))]
-> Maybe FreeVars -- Nothing when in interactive mode, everything can be used later
-- Note [What is "used later" in a rec stmt]
-> ([LStmt GhcRn (LocatedA (body GhcRn))], FreeVars)
segmentRecStmts loc ctxt empty_rec_stmt segs mfvs_later
| null segs
= ([], final_fv_uses)
| HsDoStmt (MDoExpr _) <- ctxt
= segsToStmts empty_rec_stmt grouped_segs later_ids
-- Step 4: Turn the segments into Stmts
-- Use RecStmt when and only when there are fwd refs
-- Also gather up the uses from the end towards the
-- start, so we can tell the RecStmt which things are
-- used 'after' the RecStmt
| otherwise
= ([ L (noAnnSrcSpan loc) $
empty_rec_stmt { recS_stmts = noLocA ss
, recS_later_ids = nameSetElemsStable later_ids
, recS_rec_ids = nameSetElemsStable
(defs `intersectNameSet` uses) }]
-- See Note [Deterministic ApplicativeDo and RecursiveDo desugaring]
, uses `plusFV` final_fv_uses)
where
final_fv_uses = case mfvs_later of
Nothing -> defs
Just later -> uses `plusFV` later
later_ids = case mfvs_later of
Nothing -> defs
Just fvs_later -> defs `intersectNameSet` fvs_later
(defs_s, uses_s, _, ss) = unzip4 segs
defs = plusFVs defs_s
uses = plusFVs uses_s
-- Step 2: Fill in the fwd refs.
-- The segments are all singletons, but their fwd-ref
-- field mentions all the things used by the segment
-- that are bound after their use
segs_w_fwd_refs = addFwdRefs segs
-- Step 3: Group together the segments to make bigger segments
-- Invariant: in the result, no segment uses a variable
-- bound in a later segment
grouped_segs = glomSegments ctxt segs_w_fwd_refs
----------------------------
addFwdRefs :: [Segment a] -> [Segment a]
-- So far the segments only have forward refs *within* the Stmt
-- (which happens for bind: x <- ...x...)
-- This function adds the cross-seg fwd ref info
addFwdRefs segs
= fst (foldr mk_seg ([], emptyNameSet) segs)
where
mk_seg (defs, uses, fwds, stmts) (segs, later_defs)
= (new_seg : segs, all_defs)
where
new_seg = (defs, uses, new_fwds, stmts)
all_defs = later_defs `unionNameSet` defs
new_fwds = fwds `unionNameSet` (uses `intersectNameSet` later_defs)
-- Add the downstream fwd refs here
{-
Note [Segmenting mdo]
~~~~~~~~~~~~~~~~~~~~~
NB. June 7 2012: We only glom segments that appear in an explicit mdo;
and leave those found in "do rec"'s intact. See
https://gitlab.haskell.org/ghc/ghc/issues/4148 for the discussion
leading to this design choice. Hence the test in segmentRecStmts.
Note [Glomming segments]
~~~~~~~~~~~~~~~~~~~~~~~~
Glomming the singleton segments of an mdo into minimal recursive groups.
At first I thought this was just strongly connected components, but
there's an important constraint: the order of the stmts must not change.
Consider
mdo { x <- ...y...
p <- z
y <- ...x...
q <- x
z <- y
r <- x }
Here, the first stmt mention 'y', which is bound in the third.
But that means that the innocent second stmt (p <- z) gets caught
up in the recursion. And that in turn means that the binding for
'z' has to be included... and so on.
Start at the tail { r <- x }
Now add the next one { z <- y ; r <- x }
Now add one more { q <- x ; z <- y ; r <- x }
Now one more... but this time we have to group a bunch into rec
{ rec { y <- ...x... ; q <- x ; z <- y } ; r <- x }
Now one more, which we can add on without a rec
{ p <- z ;
rec { y <- ...x... ; q <- x ; z <- y } ;
r <- x }
Finally we add the last one; since it mentions y we have to
glom it together with the first two groups
{ rec { x <- ...y...; p <- z ; y <- ...x... ;
q <- x ; z <- y } ;
r <- x }
Note [What is "used later" in a rec stmt]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We desugar a recursive Stmt to somethign like
(a,_,c) <- mfix (\(a,b,_) -> do { ... ; return (a,b,c) })
...stuff after the rec...
The knot-tied tuple must contain
* All the variables that are used before they are bound in the `rec` block
* All the variables that are used after the entire `rec` block
In the case of GHCi, however, we don't know what variables will be used
after the `rec` (#20206). For example, we might have
ghci> rec { x <- e1; y <- e2 }
ghci> print x
ghci> print y
So we have to assume that *all* the variables bound in the `rec` are used
afterwards. We use `Nothing` in the argument to segmentRecStmts to signal
that all the variables are used.
-}
glomSegments :: HsStmtContext GhcRn
-> [Segment (LStmt GhcRn body)]
-> [Segment [LStmt GhcRn body]]
-- Each segment has a non-empty list of Stmts
-- See Note [Glomming segments]
glomSegments _ [] = []
glomSegments ctxt ((defs,uses,fwds,stmt) : segs)
-- Actually stmts will always be a singleton
= (seg_defs, seg_uses, seg_fwds, seg_stmts) : others
where
segs' = glomSegments ctxt segs
(extras, others) = grab uses segs'
(ds, us, fs, ss) = unzip4 extras
seg_defs = plusFVs ds `plusFV` defs
seg_uses = plusFVs us `plusFV` uses
seg_fwds = plusFVs fs `plusFV` fwds
seg_stmts = stmt : concat ss
grab :: NameSet -- The client
-> [Segment a]
-> ([Segment a], -- Needed by the 'client'
[Segment a]) -- Not needed by the client
-- The result is simply a split of the input
grab uses dus
= (reverse yeses, reverse noes)
where
(noes, yeses) = span not_needed (reverse dus)
not_needed (defs,_,_,_) = disjointNameSet defs uses
----------------------------------------------------
segsToStmts :: Stmt GhcRn (LocatedA (body GhcRn))
-- A RecStmt with the SyntaxOps filled in
-> [Segment [LStmt GhcRn (LocatedA (body GhcRn))]]
-- Each Segment has a non-empty list of Stmts
-> FreeVars -- Free vars used 'later'
-> ([LStmt GhcRn (LocatedA (body GhcRn))], FreeVars)
segsToStmts _ [] fvs_later = ([], fvs_later)
segsToStmts empty_rec_stmt ((defs, uses, fwds, ss) : segs) fvs_later
= assert (not (null ss))
(new_stmt : later_stmts, later_uses `plusFV` uses)
where
(later_stmts, later_uses) = segsToStmts empty_rec_stmt segs fvs_later
new_stmt | non_rec = head ss
| otherwise = L (getLoc (head ss)) rec_stmt
rec_stmt = empty_rec_stmt { recS_stmts = noLocA ss
, recS_later_ids = nameSetElemsStable used_later
, recS_rec_ids = nameSetElemsStable fwds }
-- See Note [Deterministic ApplicativeDo and RecursiveDo desugaring]
non_rec = isSingleton ss && isEmptyNameSet fwds
used_later = defs `intersectNameSet` later_uses
-- The ones needed after the RecStmt
{-
************************************************************************
* *
ApplicativeDo
* *
************************************************************************
Note [ApplicativeDo]
~~~~~~~~~~~~~~~~~~~~
= Example =
For a sequence of statements
do
x <- A
y <- B x
z <- C
return (f x y z)
We want to transform this to
(\(x,y) z -> f x y z) <$> (do x <- A; y <- B x; return (x,y)) <*> C
It would be easy to notice that "y <- B x" and "z <- C" are
independent and do something like this:
do
x <- A
(y,z) <- (,) <$> B x <*> C
return (f x y z)
But this isn't enough! A and C were also independent, and this
transformation loses the ability to do A and C in parallel.
The algorithm works by first splitting the sequence of statements into
independent "segments", and a separate "tail" (the final statement). In
our example above, the segements would be
[ x <- A
, y <- B x ]
[ z <- C ]
and the tail is:
return (f x y z)
Then we take these segments and make an Applicative expression from them:
(\(x,y) z -> return (f x y z))
<$> do { x <- A; y <- B x; return (x,y) }
<*> C
Finally, we recursively apply the transformation to each segment, to
discover any nested parallelism.
= Syntax & spec =
expr ::= ... | do {stmt_1; ..; stmt_n} expr | ...
stmt ::= pat <- expr
| (arg_1 | ... | arg_n) -- applicative composition, n>=1
| ... -- other kinds of statement (e.g. let)
arg ::= pat <- expr
| {stmt_1; ..; stmt_n} {var_1..var_n}
(note that in the actual implementation,the expr in a do statement is
represented by a LastStmt as the final stmt, this is just a
representational issue and may change later.)
== Transformation to introduce applicative stmts ==
ado {} tail = tail
ado {pat <- expr} {return expr'} = (mkArg(pat <- expr)); return expr'
ado {one} tail = one : tail
ado stmts tail
| n == 1 = ado before (ado after tail)
where (before,after) = split(stmts_1)
| n > 1 = (mkArg(stmts_1) | ... | mkArg(stmts_n)); tail
where
{stmts_1 .. stmts_n} = segments(stmts)
segments(stmts) =
-- divide stmts into segments with no interdependencies
mkArg({pat <- expr}) = (pat <- expr)
mkArg({stmt_1; ...; stmt_n}) =
{stmt_1; ...; stmt_n} {vars(stmt_1) u .. u vars(stmt_n)}
split({stmt_1; ..; stmt_n) =
({stmt_1; ..; stmt_i}, {stmt_i+1; ..; stmt_n})
-- 1 <= i <= n
-- i is a good place to insert a bind
== Desugaring for do ==
dsDo {} expr = expr
dsDo {pat <- rhs; stmts} expr =
rhs >>= \pat -> dsDo stmts expr
dsDo {(arg_1 | ... | arg_n)} (return expr) =
(\argpat (arg_1) .. argpat(arg_n) -> expr)
<$> argexpr(arg_1)
<*> ...
<*> argexpr(arg_n)
dsDo {(arg_1 | ... | arg_n); stmts} expr =
join (\argpat (arg_1) .. argpat(arg_n) -> dsDo stmts expr)
<$> argexpr(arg_1)
<*> ...
<*> argexpr(arg_n)
== Special cases ==
If a do-expression contains only "return E" or "return $ E" plus
zero or more let-statements, we replace the "return" with "pure".
See Section 3.6 of the paper.
= Relevant modules in the rest of the compiler =
ApplicativeDo touches a few phases in the compiler:
* Renamer: The journey begins here in the renamer, where do-blocks are
scheduled as outlined above and transformed into applicative
combinators. However, the code is still represented as a do-block
with special forms of applicative statements. This allows us to
recover the original do-block when e.g. printing type errors, where
we don't want to show any of the applicative combinators since they
don't exist in the source code.
See ApplicativeStmt and ApplicativeArg in HsExpr.
* Typechecker: ApplicativeDo passes through the typechecker much like any
other form of expression. The only crux is that the typechecker has to
be aware of the special ApplicativeDo statements in the do-notation, and
typecheck them appropriately.
Relevant module: GHC.Tc.Gen.Match
* Desugarer: Any do-block which contains applicative statements is desugared
as outlined above, to use the Applicative combinators.
Relevant module: GHC.HsToCore.Expr
-}
-- | The 'Name's of @return@ and @pure@. These may not be 'returnName' and
-- 'pureName' due to @QualifiedDo@ or @RebindableSyntax@.
data MonadNames = MonadNames { return_name, pure_name :: Name }
instance Outputable MonadNames where
ppr (MonadNames {return_name=return_name,pure_name=pure_name}) =
hcat
[text "MonadNames { return_name = "
,ppr return_name
,text ", pure_name = "
,ppr pure_name
,text "}"
]
-- | rearrange a list of statements using ApplicativeDoStmt. See
-- Note [ApplicativeDo].
rearrangeForApplicativeDo
:: HsDoFlavour
-> [(ExprLStmt GhcRn, FreeVars)]
-> RnM ([ExprLStmt GhcRn], FreeVars)
rearrangeForApplicativeDo _ [] = return ([], emptyNameSet)
-- If the do-block contains a single @return@ statement, change it to
-- @pure@ if ApplicativeDo is turned on. See Note [ApplicativeDo].
rearrangeForApplicativeDo ctxt [(one,_)] = do
(return_name, _) <- lookupQualifiedDoName (HsDoStmt ctxt) returnMName
(pure_name, _) <- lookupQualifiedDoName (HsDoStmt ctxt) pureAName
let pure_expr = nl_HsVar pure_name
let monad_names = MonadNames { return_name = return_name
, pure_name = pure_name }
return $ case needJoin monad_names [one] (Just pure_expr) of
(False, one') -> (one', emptyNameSet)
(True, _) -> ([one], emptyNameSet)
rearrangeForApplicativeDo ctxt stmts0 = do
optimal_ado <- goptM Opt_OptimalApplicativeDo
let stmt_tree | optimal_ado = mkStmtTreeOptimal stmts
| otherwise = mkStmtTreeHeuristic stmts
traceRn "rearrangeForADo" (ppr stmt_tree)
(return_name, _) <- lookupQualifiedDoName (HsDoStmt ctxt) returnMName
(pure_name, _) <- lookupQualifiedDoName (HsDoStmt ctxt) pureAName
let monad_names = MonadNames { return_name = return_name
, pure_name = pure_name }
stmtTreeToStmts monad_names ctxt stmt_tree [last] last_fvs
where
(stmts,(last,last_fvs)) = findLast stmts0
findLast [] = error "findLast"
findLast [last] = ([],last)
findLast (x:xs) = (x:rest,last) where (rest,last) = findLast xs
-- | A tree of statements using a mixture of applicative and bind constructs.
data StmtTree a
= StmtTreeOne a
| StmtTreeBind (StmtTree a) (StmtTree a)
| StmtTreeApplicative [StmtTree a]
instance Outputable a => Outputable (StmtTree a) where
ppr (StmtTreeOne x) = parens (text "StmtTreeOne" <+> ppr x)
ppr (StmtTreeBind x y) = parens (hang (text "StmtTreeBind")
2 (sep [ppr x, ppr y]))
ppr (StmtTreeApplicative xs) = parens (hang (text "StmtTreeApplicative")
2 (vcat (map ppr xs)))
flattenStmtTree :: StmtTree a -> [a]
flattenStmtTree t = go t []
where
go (StmtTreeOne a) as = a : as
go (StmtTreeBind l r) as = go l (go r as)
go (StmtTreeApplicative ts) as = foldr go as ts
type ExprStmtTree = StmtTree (ExprLStmt GhcRn, FreeVars)
type Cost = Int
-- | Turn a sequence of statements into an ExprStmtTree using a
-- heuristic algorithm. /O(n^2)/
mkStmtTreeHeuristic :: [(ExprLStmt GhcRn, FreeVars)] -> ExprStmtTree
mkStmtTreeHeuristic [one] = StmtTreeOne one
mkStmtTreeHeuristic stmts =
case segments stmts of
[one] -> split one
segs -> StmtTreeApplicative (map split segs)
where
split [one] = StmtTreeOne one
split stmts =
StmtTreeBind (mkStmtTreeHeuristic before) (mkStmtTreeHeuristic after)
where (before, after) = splitSegment stmts
-- | Turn a sequence of statements into an ExprStmtTree optimally,
-- using dynamic programming. /O(n^3)/
mkStmtTreeOptimal :: [(ExprLStmt GhcRn, FreeVars)] -> ExprStmtTree
mkStmtTreeOptimal stmts =
assert (not (null stmts)) $ -- the empty case is handled by the caller;
-- we don't support empty StmtTrees.
fst (arr ! (0,n))
where
n = length stmts - 1
stmt_arr = listArray (0,n) stmts
-- lazy cache of optimal trees for subsequences of the input
arr :: Array (Int,Int) (ExprStmtTree, Cost)
arr = array ((0,0),(n,n))
[ ((lo,hi), tree lo hi)
| lo <- [0..n]
, hi <- [lo..n] ]
-- compute the optimal tree for the sequence [lo..hi]
tree lo hi
| hi == lo = (StmtTreeOne (stmt_arr ! lo), 1)
| otherwise =
case segments [ stmt_arr ! i | i <- [lo..hi] ] of
[] -> panic "mkStmtTree"
[_one] -> split lo hi
segs -> (StmtTreeApplicative trees, maximum costs)
where
bounds = scanl (\(_,hi) a -> (hi+1, hi + length a)) (0,lo-1) segs
(trees,costs) = unzip (map (uncurry split) (tail bounds))
-- find the best place to split the segment [lo..hi]
split :: Int -> Int -> (ExprStmtTree, Cost)
split lo hi
| hi == lo = (StmtTreeOne (stmt_arr ! lo), 1)
| otherwise = (StmtTreeBind before after, c1+c2)
where
-- As per the paper, for a sequence s1...sn, we want to find
-- the split with the minimum cost, where the cost is the
-- sum of the cost of the left and right subsequences.
--
-- As an optimisation (also in the paper) if the cost of
-- s1..s(n-1) is different from the cost of s2..sn, we know
-- that the optimal solution is the lower of the two. Only
-- in the case that these two have the same cost do we need
-- to do the exhaustive search.
--
((before,c1),(after,c2))
| hi - lo == 1
= ((StmtTreeOne (stmt_arr ! lo), 1),
(StmtTreeOne (stmt_arr ! hi), 1))
| left_cost < right_cost
= ((left,left_cost), (StmtTreeOne (stmt_arr ! hi), 1))
| left_cost > right_cost
= ((StmtTreeOne (stmt_arr ! lo), 1), (right,right_cost))
| otherwise = minimumBy (comparing cost) alternatives
where
(left, left_cost) = arr ! (lo,hi-1)
(right, right_cost) = arr ! (lo+1,hi)
cost ((_,c1),(_,c2)) = c1 + c2
alternatives = [ (arr ! (lo,k), arr ! (k+1,hi))
| k <- [lo .. hi-1] ]
-- | Turn the ExprStmtTree back into a sequence of statements, using
-- ApplicativeStmt where necessary.
stmtTreeToStmts
:: MonadNames
-> HsDoFlavour
-> ExprStmtTree
-> [ExprLStmt GhcRn] -- ^ the "tail"
-> FreeVars -- ^ free variables of the tail
-> RnM ( [ExprLStmt GhcRn] -- ( output statements,
, FreeVars ) -- , things we needed
-- If we have a single bind, and we can do it without a join, transform
-- to an ApplicativeStmt. This corresponds to the rule
-- dsBlock [pat <- rhs] (return expr) = expr <$> rhs
-- In the spec, but we do it here rather than in the desugarer,
-- because we need the typechecker to typecheck the <$> form rather than
-- the bind form, which would give rise to a Monad constraint.
--
-- If we have a single let, and the last statement is @return E@ or @return $ E@,
-- change the @return@ to @pure@.
stmtTreeToStmts monad_names ctxt (StmtTreeOne (L _ (BindStmt xbs pat rhs), _))
tail _tail_fvs
| not (isStrictPattern pat), (False,tail') <- needJoin monad_names tail Nothing
-- See Note [ApplicativeDo and strict patterns]
= mkApplicativeStmt ctxt [ApplicativeArgOne
{ xarg_app_arg_one = xbsrn_failOp xbs
, app_arg_pattern = pat
, arg_expr = rhs
, is_body_stmt = False
}]
False tail'
stmtTreeToStmts monad_names ctxt (StmtTreeOne (L _ (BodyStmt _ rhs _ _),_))
tail _tail_fvs
| (False,tail') <- needJoin monad_names tail Nothing
= mkApplicativeStmt ctxt
[ApplicativeArgOne
{ xarg_app_arg_one = Nothing
, app_arg_pattern = nlWildPatName
, arg_expr = rhs
, is_body_stmt = True
}] False tail'
stmtTreeToStmts monad_names ctxt (StmtTreeOne (let_stmt@(L _ LetStmt{}),_))
tail _tail_fvs = do
(pure_expr, _) <- lookupQualifiedDoExpr (HsDoStmt ctxt) pureAName
return $ case needJoin monad_names tail (Just pure_expr) of
(False, tail') -> (let_stmt : tail', emptyNameSet)
(True, _) -> (let_stmt : tail, emptyNameSet)
stmtTreeToStmts _monad_names _ctxt (StmtTreeOne (s,_)) tail _tail_fvs =
return (s : tail, emptyNameSet)
stmtTreeToStmts monad_names ctxt (StmtTreeBind before after) tail tail_fvs = do
(stmts1, fvs1) <- stmtTreeToStmts monad_names ctxt after tail tail_fvs
let tail1_fvs = unionNameSets (tail_fvs : map snd (flattenStmtTree after))
(stmts2, fvs2) <- stmtTreeToStmts monad_names ctxt before stmts1 tail1_fvs
return (stmts2, fvs1 `plusFV` fvs2)
stmtTreeToStmts monad_names ctxt (StmtTreeApplicative trees) tail tail_fvs = do
pairs <- mapM (stmtTreeArg ctxt tail_fvs) trees
dflags <- getDynFlags
let (stmts', fvss) = unzip pairs
let (need_join, tail') =
-- See Note [ApplicativeDo and refutable patterns]
if any (hasRefutablePattern dflags) stmts'
then (True, tail)
else needJoin monad_names tail Nothing
(stmts, fvs) <- mkApplicativeStmt ctxt stmts' need_join tail'
return (stmts, unionNameSets (fvs:fvss))
where
stmtTreeArg _ctxt _tail_fvs (StmtTreeOne (L _ (BindStmt xbs pat exp), _))
= return (ApplicativeArgOne
{ xarg_app_arg_one = xbsrn_failOp xbs
, app_arg_pattern = pat
, arg_expr = exp
, is_body_stmt = False
}, emptyFVs)
stmtTreeArg _ctxt _tail_fvs (StmtTreeOne (L _ (BodyStmt _ exp _ _), _)) =
return (ApplicativeArgOne
{ xarg_app_arg_one = Nothing
, app_arg_pattern = nlWildPatName
, arg_expr = exp
, is_body_stmt = True
}, emptyFVs)
stmtTreeArg ctxt tail_fvs tree = do
let stmts = flattenStmtTree tree
pvarset = mkNameSet (concatMap (collectStmtBinders CollNoDictBinders . unLoc . fst) stmts)
`intersectNameSet` tail_fvs
pvars = nameSetElemsStable pvarset
-- See Note [Deterministic ApplicativeDo and RecursiveDo desugaring]
pat = mkBigLHsVarPatTup pvars
tup = mkBigLHsVarTup pvars noExtField
(stmts',fvs2) <- stmtTreeToStmts monad_names ctxt tree [] pvarset
(mb_ret, fvs1) <-
if | L _ ApplicativeStmt{} <- last stmts' ->
return (unLoc tup, emptyNameSet)
| otherwise -> do
(ret, _) <- lookupQualifiedDoExpr (HsDoStmt ctxt) returnMName
let expr = HsApp noComments (noLocA ret) tup
return (expr, emptyFVs)
return ( ApplicativeArgMany
{ xarg_app_arg_many = noExtField
, app_stmts = stmts'
, final_expr = mb_ret
, bv_pattern = pat
, stmt_context = ctxt
}
, fvs1 `plusFV` fvs2)
-- | Divide a sequence of statements into segments, where no segment
-- depends on any variables defined by a statement in another segment.
segments
:: [(ExprLStmt GhcRn, FreeVars)]
-> [[(ExprLStmt GhcRn, FreeVars)]]
segments stmts = map fst $ merge $ reverse $ map reverse $ walk (reverse stmts)
where
allvars = mkNameSet (concatMap (collectStmtBinders CollNoDictBinders . unLoc . fst) stmts)
-- We would rather not have a segment that just has LetStmts in
-- it, so combine those with an adjacent segment where possible.
merge [] = []
merge (seg : segs)
= case rest of
[] -> [(seg,all_lets)]
((s,s_lets):ss) | all_lets || s_lets
-> (seg ++ s, all_lets && s_lets) : ss
_otherwise -> (seg,all_lets) : rest
where
rest = merge segs
all_lets = all (isLetStmt . fst) seg
-- walk splits the statement sequence into segments, traversing
-- the sequence from the back to the front, and keeping track of
-- the set of free variables of the current segment. Whenever
-- this set of free variables is empty, we have a complete segment.
walk :: [(ExprLStmt GhcRn, FreeVars)] -> [[(ExprLStmt GhcRn, FreeVars)]]
walk [] = []
walk ((stmt,fvs) : stmts) = ((stmt,fvs) : seg) : walk rest
where (seg,rest) = chunter fvs' stmts
(_, fvs') = stmtRefs stmt fvs
chunter _ [] = ([], [])
chunter vars ((stmt,fvs) : rest)
| not (isEmptyNameSet vars)
|| isStrictPatternBind stmt
-- See Note [ApplicativeDo and strict patterns]
= ((stmt,fvs) : chunk, rest')
where (chunk,rest') = chunter vars' rest
(pvars, evars) = stmtRefs stmt fvs
vars' = (vars `minusNameSet` pvars) `unionNameSet` evars
chunter _ rest = ([], rest)
stmtRefs stmt fvs
| isLetStmt stmt = (pvars, fvs' `minusNameSet` pvars)
| otherwise = (pvars, fvs')
where fvs' = fvs `intersectNameSet` allvars
pvars = mkNameSet (collectStmtBinders CollNoDictBinders (unLoc stmt))
isStrictPatternBind :: ExprLStmt GhcRn -> Bool
isStrictPatternBind (L _ (BindStmt _ pat _)) = isStrictPattern pat
isStrictPatternBind _ = False
{-
Note [ApplicativeDo and strict patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A strict pattern match is really a dependency. For example,
do
(x,y) <- A
z <- B
return C
The pattern (_,_) must be matched strictly before we do B. If we
allowed this to be transformed into
(\(x,y) -> \z -> C) <$> A <*> B
then it could be lazier than the standard desugaring using >>=. See #13875
for more examples.
Thus, whenever we have a strict pattern match, we treat it as a
dependency between that statement and the following one. The
dependency prevents those two statements from being performed "in
parallel" in an ApplicativeStmt, but doesn't otherwise affect what we
can do with the rest of the statements in the same "do" expression.
-}
isStrictPattern :: forall p. IsPass p => LPat (GhcPass p) -> Bool
isStrictPattern (L loc pat) =
case pat of
WildPat{} -> False
VarPat{} -> False
LazyPat{} -> False
AsPat _ _ p -> isStrictPattern p
ParPat _ _ p _ -> isStrictPattern p
ViewPat _ _ p -> isStrictPattern p
SigPat _ p _ -> isStrictPattern p
BangPat{} -> True
ListPat{} -> True
TuplePat{} -> True
SumPat{} -> True
ConPat{} -> True
LitPat{} -> True
NPat{} -> True
NPlusKPat{} -> True
SplicePat{} -> True
XPat ext -> case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> dataConCantHappen ext
#endif
GhcRn
| HsPatExpanded _ p <- ext
-> isStrictPattern (L loc p)
GhcTc -> case ext of
ExpansionPat _ p -> isStrictPattern (L loc p)
CoPat {} -> panic "isStrictPattern: CoPat"
{-
Note [ApplicativeDo and refutable patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Refutable patterns in do blocks are desugared to use the monadic 'fail' operation.
This means that sometimes an applicative block needs to be wrapped in 'join' simply because
of a refutable pattern, in order for the types to work out.
-}
hasRefutablePattern :: DynFlags -> ApplicativeArg GhcRn -> Bool
hasRefutablePattern dflags (ApplicativeArgOne { app_arg_pattern = pat
, is_body_stmt = False}) =
not (isIrrefutableHsPat dflags pat)
hasRefutablePattern _ _ = False
isLetStmt :: LStmt (GhcPass a) b -> Bool
isLetStmt (L _ LetStmt{}) = True
isLetStmt _ = False
-- | Find a "good" place to insert a bind in an indivisible segment.
-- This is the only place where we use heuristics. The current
-- heuristic is to peel off the first group of independent statements
-- and put the bind after those.
splitSegment
:: [(ExprLStmt GhcRn, FreeVars)]
-> ( [(ExprLStmt GhcRn, FreeVars)]
, [(ExprLStmt GhcRn, FreeVars)] )
splitSegment [one,two] = ([one],[two])
-- there is no choice when there are only two statements; this just saves
-- some work in a common case.
splitSegment stmts
| Just (lets,binds,rest) <- slurpIndependentStmts stmts
= if not (null lets)
then (lets, binds++rest)
else (lets++binds, rest)
| otherwise
= case stmts of
(x:xs) -> ([x],xs)
_other -> (stmts,[])
slurpIndependentStmts
:: [(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)]
-> Maybe ( [(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)] -- LetStmts
, [(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)] -- BindStmts
, [(LStmt GhcRn (LocatedA (body GhcRn)), FreeVars)] )
slurpIndependentStmts stmts = go [] [] emptyNameSet stmts
where
-- If we encounter a BindStmt that doesn't depend on a previous BindStmt
-- in this group, then add it to the group. We have to be careful about
-- strict patterns though; splitSegments expects that if we return Just
-- then we have actually done some splitting. Otherwise it will go into
-- an infinite loop (#14163).
go lets indep bndrs ((L loc (BindStmt xbs pat body), fvs): rest)
| disjointNameSet bndrs fvs && not (isStrictPattern pat)
= go lets ((L loc (BindStmt xbs pat body), fvs) : indep)
bndrs' rest
where bndrs' = bndrs `unionNameSet` mkNameSet (collectPatBinders CollNoDictBinders pat)
-- If we encounter a LetStmt that doesn't depend on a BindStmt in this
-- group, then move it to the beginning, so that it doesn't interfere with
-- grouping more BindStmts.
-- TODO: perhaps we shouldn't do this if there are any strict bindings,
-- because we might be moving evaluation earlier.
go lets indep bndrs ((L loc (LetStmt noExtField binds), fvs) : rest)
| disjointNameSet bndrs fvs
= go ((L loc (LetStmt noExtField binds), fvs) : lets) indep bndrs rest
go _ [] _ _ = Nothing
go _ [_] _ _ = Nothing
go lets indep _ stmts = Just (reverse lets, reverse indep, stmts)
-- | Build an ApplicativeStmt, and strip the "return" from the tail
-- if necessary.
--
-- For example, if we start with
-- do x <- E1; y <- E2; return (f x y)
-- then we get
-- do (E1[x] | E2[y]); f x y
--
-- the LastStmt in this case has the return removed, but we set the
-- flag on the LastStmt to indicate this, so that we can print out the
-- original statement correctly in error messages. It is easier to do
-- it this way rather than try to ignore the return later in both the
-- typechecker and the desugarer (I tried it that way first!).
mkApplicativeStmt
:: HsDoFlavour
-> [ApplicativeArg GhcRn] -- ^ The args
-> Bool -- ^ True <=> need a join
-> [ExprLStmt GhcRn] -- ^ The body statements
-> RnM ([ExprLStmt GhcRn], FreeVars)
mkApplicativeStmt ctxt args need_join body_stmts
= do { (fmap_op, fvs1) <- lookupQualifiedDoStmtName (HsDoStmt ctxt) fmapName
; (ap_op, fvs2) <- lookupQualifiedDoStmtName (HsDoStmt ctxt) apAName
; (mb_join, fvs3) <-
if need_join then
do { (join_op, fvs) <- lookupQualifiedDoStmtName (HsDoStmt ctxt) joinMName
; return (Just join_op, fvs) }
else
return (Nothing, emptyNameSet)
; let applicative_stmt = noLocA $ ApplicativeStmt noExtField
(zip (fmap_op : repeat ap_op) args)
mb_join
; return ( applicative_stmt : body_stmts
, fvs1 `plusFV` fvs2 `plusFV` fvs3) }
-- | Given the statements following an ApplicativeStmt, determine whether
-- we need a @join@ or not, and remove the @return@ if necessary.
--
-- We don't need @join@ if there's a single @LastStmt@ in the form of
-- @return E@, @return $ E@, @pure E@ or @pure $ E@.
needJoin :: MonadNames
-> [ExprLStmt GhcRn]
-- If this is @Just pure@, replace return by pure
-- If this is @Nothing@, strip the return/pure
-> Maybe (HsExpr GhcRn)
-> (Bool, [ExprLStmt GhcRn])
needJoin _monad_names [] _mb_pure = (False, []) -- we're in an ApplicativeArg
needJoin monad_names [L loc (LastStmt _ e _ t)] mb_pure
| Just (arg, noret) <- isReturnApp monad_names e mb_pure =
(False, [L loc (LastStmt noExtField arg noret t)])
needJoin _monad_names stmts _mb_pure = (True, stmts)
-- | @(Just e, Just False)@, if the expression is @return/pure e@,
-- and the third argument is Nothing,
-- @(Just e, Just True)@ if the expression is @return/pure $ e@,
-- and the third argument is Nothing,
-- @(Just (pure e), Nothing)@ if the expression is @return/pure e@,
-- and the third argument is @Just pure_expr@,
-- @(Just (pure $ e), Nothing)@ if the expression is @return/pure $ e@,
-- and the third argument is @Just pure_expr@,
-- otherwise @Nothing@.
isReturnApp :: MonadNames
-> LHsExpr GhcRn
-- If this is @Just pure@, replace return by pure
-- If this is @Nothing@, strip the return/pure
-> Maybe (HsExpr GhcRn)
-> Maybe (LHsExpr GhcRn, Maybe Bool)
isReturnApp monad_names (L _ (HsPar _ _ expr _)) mb_pure =
isReturnApp monad_names expr mb_pure
isReturnApp monad_names (L loc e) mb_pure = case e of
OpApp x l op r
| Just pure_expr <- mb_pure, is_return l, is_dollar op ->
Just (L loc (OpApp x (to_pure l pure_expr) op r), Nothing)
| is_return l, is_dollar op -> Just (r, Just True)
HsApp x f arg
| Just pure_expr <- mb_pure, is_return f ->
Just (L loc (HsApp x (to_pure f pure_expr) arg), Nothing)
| is_return f -> Just (arg, Just False)
_otherwise -> Nothing
where
is_var f (L _ (HsPar _ _ e _)) = is_var f e
is_var f (L _ (HsAppType _ e _)) = is_var f e
is_var f (L _ (HsVar _ (L _ r))) = f r
-- TODO: I don't know how to get this right for rebindable syntax
is_var _ _ = False
is_return = is_var (\n -> n == return_name monad_names
|| n == pure_name monad_names)
to_pure (L loc _) pure_expr = L loc pure_expr
is_dollar = is_var (`hasKey` dollarIdKey)
{-
************************************************************************
* *
\subsubsection{Errors}
* *
************************************************************************
-}
checkEmptyStmts :: HsStmtContext GhcRn -> RnM ()
-- We've seen an empty sequence of Stmts... is that ok?
checkEmptyStmts ctxt
= unless (okEmpty ctxt) (addErr (emptyErr ctxt))
okEmpty :: HsStmtContext a -> Bool
okEmpty (PatGuard {}) = True
okEmpty _ = False
emptyErr :: HsStmtContext GhcRn -> TcRnMessage
emptyErr (ParStmtCtxt {}) = TcRnUnknownMessage $ mkPlainError noHints $
text "Empty statement group in parallel comprehension"
emptyErr (TransStmtCtxt {}) = TcRnUnknownMessage $ mkPlainError noHints $
text "Empty statement group preceding 'group' or 'then'"
emptyErr ctxt@(HsDoStmt _) = TcRnUnknownMessage $ mkPlainError [suggestExtension LangExt.NondecreasingIndentation] $
text "Empty" <+> pprStmtContext ctxt
emptyErr ctxt = TcRnUnknownMessage $ mkPlainError noHints $
text "Empty" <+> pprStmtContext ctxt
----------------------
checkLastStmt :: AnnoBody body => HsStmtContext GhcRn
-> LStmt GhcPs (LocatedA (body GhcPs))
-> RnM (LStmt GhcPs (LocatedA (body GhcPs)))
checkLastStmt ctxt lstmt@(L loc stmt)
= case ctxt of
HsDoStmt ListComp -> check_comp
HsDoStmt MonadComp -> check_comp
HsDoStmt DoExpr{} -> check_do
HsDoStmt MDoExpr{} -> check_do
ArrowExpr -> check_do
_ -> check_other
where
check_do -- Expect BodyStmt, and change it to LastStmt
= case stmt of
BodyStmt _ e _ _ -> return (L loc (mkLastStmt e))
LastStmt {} -> return lstmt -- "Deriving" clauses may generate a
-- LastStmt directly (unlike the parser)
_ -> do { addErr $ TcRnUnknownMessage $ mkPlainError noHints $
(hang last_error 2 (ppr stmt))
; return lstmt }
last_error = (text "The last statement in" <+> pprAStmtContext ctxt
<+> text "must be an expression")
check_comp -- Expect LastStmt; this should be enforced by the parser!
= case stmt of
LastStmt {} -> return lstmt
_ -> pprPanic "checkLastStmt" (ppr lstmt)
check_other -- Behave just as if this wasn't the last stmt
= do { checkStmt ctxt lstmt; return lstmt }
-- Checking when a particular Stmt is ok
checkStmt :: HsStmtContext GhcRn
-> LStmt GhcPs (LocatedA (body GhcPs))
-> RnM ()
checkStmt ctxt (L _ stmt)
= do { dflags <- getDynFlags
; case okStmt dflags ctxt stmt of
IsValid -> return ()
NotValid extra -> addErr $ TcRnUnknownMessage $ mkPlainError noHints (msg $$ extra) }
where
msg = sep [ text "Unexpected" <+> pprStmtCat stmt <+> text "statement"
, text "in" <+> pprAStmtContext ctxt ]
pprStmtCat :: Stmt (GhcPass a) body -> SDoc
pprStmtCat (TransStmt {}) = text "transform"
pprStmtCat (LastStmt {}) = text "return expression"
pprStmtCat (BodyStmt {}) = text "body"
pprStmtCat (BindStmt {}) = text "binding"
pprStmtCat (LetStmt {}) = text "let"
pprStmtCat (RecStmt {}) = text "rec"
pprStmtCat (ParStmt {}) = text "parallel"
pprStmtCat (ApplicativeStmt {}) = panic "pprStmtCat: ApplicativeStmt"
------------
emptyInvalid :: Validity -- Payload is the empty document
emptyInvalid = NotValid Outputable.empty
okStmt, okDoStmt, okCompStmt, okParStmt
:: DynFlags -> HsStmtContext GhcRn
-> Stmt GhcPs (LocatedA (body GhcPs)) -> Validity
-- Return Nothing if OK, (Just extra) if not ok
-- The "extra" is an SDoc that is appended to a generic error message
okStmt dflags ctxt stmt
= case ctxt of
PatGuard {} -> okPatGuardStmt stmt
ParStmtCtxt ctxt -> okParStmt dflags ctxt stmt
HsDoStmt flavour -> okDoFlavourStmt dflags flavour ctxt stmt
ArrowExpr -> okDoStmt dflags ctxt stmt
TransStmtCtxt ctxt -> okStmt dflags ctxt stmt
okDoFlavourStmt
:: DynFlags -> HsDoFlavour -> HsStmtContext GhcRn
-> Stmt GhcPs (LocatedA (body GhcPs)) -> Validity
okDoFlavourStmt dflags flavour ctxt stmt = case flavour of
DoExpr{} -> okDoStmt dflags ctxt stmt
MDoExpr{} -> okDoStmt dflags ctxt stmt
GhciStmtCtxt -> okDoStmt dflags ctxt stmt
ListComp -> okCompStmt dflags ctxt stmt
MonadComp -> okCompStmt dflags ctxt stmt
-------------
okPatGuardStmt :: Stmt GhcPs (LocatedA (body GhcPs)) -> Validity
okPatGuardStmt stmt
= case stmt of
BodyStmt {} -> IsValid
BindStmt {} -> IsValid
LetStmt {} -> IsValid
_ -> emptyInvalid
-------------
okParStmt dflags ctxt stmt
= case stmt of
LetStmt _ (HsIPBinds {}) -> emptyInvalid
_ -> okStmt dflags ctxt stmt
----------------
okDoStmt dflags ctxt stmt
= case stmt of
RecStmt {}
| LangExt.RecursiveDo `xopt` dflags -> IsValid
| ArrowExpr <- ctxt -> IsValid -- Arrows allows 'rec'
| otherwise -> NotValid (text "Use RecursiveDo")
BindStmt {} -> IsValid
LetStmt {} -> IsValid
BodyStmt {} -> IsValid
_ -> emptyInvalid
----------------
okCompStmt dflags _ stmt
= case stmt of
BindStmt {} -> IsValid
LetStmt {} -> IsValid
BodyStmt {} -> IsValid
ParStmt {}
| LangExt.ParallelListComp `xopt` dflags -> IsValid
| otherwise -> NotValid (text "Use ParallelListComp")
TransStmt {}
| LangExt.TransformListComp `xopt` dflags -> IsValid
| otherwise -> NotValid (text "Use TransformListComp")
RecStmt {} -> emptyInvalid
LastStmt {} -> emptyInvalid -- Should not happen (dealt with by checkLastStmt)
ApplicativeStmt {} -> emptyInvalid
---------
checkTupleSection :: [HsTupArg GhcPs] -> RnM ()
checkTupleSection args
= do { tuple_section <- xoptM LangExt.TupleSections
; checkErr (all tupArgPresent args || tuple_section) msg }
where
msg :: TcRnMessage
msg = TcRnUnknownMessage $ mkPlainError noHints $
text "Illegal tuple section: use TupleSections"
---------
sectionErr :: HsExpr GhcPs -> TcRnMessage
sectionErr expr
= TcRnUnknownMessage $ mkPlainError noHints $
hang (text "A section must be enclosed in parentheses")
2 (text "thus:" <+> (parens (ppr expr)))
badIpBinds :: Outputable a => SDoc -> a -> TcRnMessage
badIpBinds what binds
= TcRnUnknownMessage $ mkPlainError noHints $
hang (text "Implicit-parameter bindings illegal in" <+> what)
2 (ppr binds)
---------
monadFailOp :: LPat GhcPs
-> HsStmtContext GhcRn
-> RnM (FailOperator GhcRn, FreeVars)
monadFailOp pat ctxt = do
dflags <- getDynFlags
-- If the pattern is irrefutable (e.g.: wildcard, tuple, ~pat, etc.)
-- we should not need to fail.
if | isIrrefutableHsPat dflags pat -> return (Nothing, emptyFVs)
-- For non-monadic contexts (e.g. guard patterns, list
-- comprehensions, etc.) we should not need to fail, or failure is handled in
-- a different way. See Note [Failing pattern matches in Stmts].
| not (isMonadStmtContext ctxt) -> return (Nothing, emptyFVs)
| otherwise -> getMonadFailOp ctxt
{-
Note [Monad fail : Rebindable syntax, overloaded strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given the code
foo x = do { Just y <- x; return y }
we expect it to desugar as
foo x = x >>= \r -> case r of
Just y -> return y
Nothing -> fail "Pattern match error"
But with RebindableSyntax and OverloadedStrings, we really want
it to desugar thus:
foo x = x >>= \r -> case r of
Just y -> return y
Nothing -> fail (fromString "Patterm match error")
So, in this case, we synthesize the function
\x -> fail (fromString x)
(rather than plain 'fail') for the 'fail' operation. This is done in
'getMonadFailOp'.
Similarly with QualifiedDo and OverloadedStrings, we also want to desugar
using fromString:
foo x = M.do { Just y <- x; return y }
===>
foo x = x M.>>= \r -> case r of
Just y -> return y
Nothing -> M.fail (fromString "Pattern match error")
-}
getMonadFailOp :: HsStmtContext p -> RnM (FailOperator GhcRn, FreeVars) -- Syntax expr fail op
getMonadFailOp ctxt
= do { xOverloadedStrings <- fmap (xopt LangExt.OverloadedStrings) getDynFlags
; xRebindableSyntax <- fmap (xopt LangExt.RebindableSyntax) getDynFlags
; (fail, fvs) <- reallyGetMonadFailOp xRebindableSyntax xOverloadedStrings
; return (Just fail, fvs)
}
where
isQualifiedDo = isJust (qualifiedDoModuleName_maybe ctxt)
reallyGetMonadFailOp rebindableSyntax overloadedStrings
| (isQualifiedDo || rebindableSyntax) && overloadedStrings = do
(failExpr, failFvs) <- lookupQualifiedDoExpr ctxt failMName
(fromStringExpr, fromStringFvs) <- lookupSyntaxExpr fromStringName
let arg_lit = mkVarOcc "arg"
arg_name <- newSysName arg_lit
let arg_syn_expr = nlHsVar arg_name
body :: LHsExpr GhcRn =
nlHsApp (noLocA failExpr)
(nlHsApp (noLocA $ fromStringExpr) arg_syn_expr)
let failAfterFromStringExpr :: HsExpr GhcRn =
unLoc $ mkHsLam [noLocA $ VarPat noExtField $ noLocA arg_name] body
let failAfterFromStringSynExpr :: SyntaxExpr GhcRn =
mkSyntaxExpr failAfterFromStringExpr
return (failAfterFromStringSynExpr, failFvs `plusFV` fromStringFvs)
| otherwise = lookupQualifiedDo ctxt failMName
{- *********************************************************************
* *
Generating code for HsExpanded
See Note [Handling overloaded and rebindable constructs]
* *
********************************************************************* -}
-- | Build a 'HsExpansion' out of an extension constructor,
-- and the two components of the expansion: original and
-- desugared expressions.
mkExpandedExpr
:: HsExpr GhcRn -- ^ source expression
-> HsExpr GhcRn -- ^ expanded expression
-> HsExpr GhcRn -- ^ suitably wrapped 'HsExpansion'
mkExpandedExpr a b = XExpr (HsExpanded a b)
-----------------------------------------
-- Bits and pieces for RecordDotSyntax.
--
-- See Note [Overview of record dot syntax] in GHC.Hs.Expr.
-- mkGetField arg field calcuates a get_field @field arg expression.
-- e.g. z.x = mkGetField z x = get_field @x z
mkGetField :: Name -> LHsExpr GhcRn -> LocatedAn NoEpAnns FieldLabelString -> HsExpr GhcRn
mkGetField get_field arg field = unLoc (head $ mkGet get_field [arg] field)
-- mkSetField a field b calculates a set_field @field expression.
-- e.g mkSetSetField a field b = set_field @"field" a b (read as "set field 'field' on a to b").
mkSetField :: Name -> LHsExpr GhcRn -> LocatedAn NoEpAnns FieldLabelString -> LHsExpr GhcRn -> HsExpr GhcRn
mkSetField set_field a (L _ field) b =
genHsApp (genHsApp (genHsVar set_field `genAppType` genHsTyLit field) a) b
mkGet :: Name -> [LHsExpr GhcRn] -> LocatedAn NoEpAnns FieldLabelString -> [LHsExpr GhcRn]
mkGet get_field l@(r : _) (L _ field) =
wrapGenSpan (genHsApp (genHsVar get_field `genAppType` genHsTyLit field) r) : l
mkGet _ [] _ = panic "mkGet : The impossible has happened!"
mkSet :: Name -> LHsExpr GhcRn -> (LocatedAn NoEpAnns FieldLabelString, LHsExpr GhcRn) -> LHsExpr GhcRn
mkSet set_field acc (field, g) = wrapGenSpan (mkSetField set_field g field acc)
-- mkProjection fields calculates a projection.
-- e.g. .x = mkProjection [x] = getField @"x"
-- .x.y = mkProjection [.x, .y] = (.y) . (.x) = getField @"y" . getField @"x"
mkProjection :: Name -> Name -> NonEmpty (LocatedAn NoEpAnns FieldLabelString) -> HsExpr GhcRn
mkProjection getFieldName circName (field :| fields) = foldl' f (proj field) fields
where
f :: HsExpr GhcRn -> LocatedAn NoEpAnns FieldLabelString -> HsExpr GhcRn
f acc field = genHsApps circName $ map wrapGenSpan [proj field, acc]
proj :: LocatedAn NoEpAnns FieldLabelString -> HsExpr GhcRn
proj (L _ f) = genHsVar getFieldName `genAppType` genHsTyLit f
-- mkProjUpdateSetField calculates functions representing dot notation record updates.
-- e.g. Suppose an update like foo.bar = 1.
-- We calculate the function \a -> setField @"foo" a (setField @"bar" (getField @"foo" a) 1).
mkProjUpdateSetField :: Name -> Name -> LHsRecProj GhcRn (LHsExpr GhcRn) -> (LHsExpr GhcRn -> LHsExpr GhcRn)
mkProjUpdateSetField get_field set_field (L _ (HsFieldBind { hfbLHS = (L _ (FieldLabelStrings flds')), hfbRHS = arg } ))
= let {
; flds = map (fmap (unLoc . dfoLabel)) flds'
; final = last flds -- quux
; fields = init flds -- [foo, bar, baz]
; getters = \a -> foldl' (mkGet get_field) [a] fields -- Ordered from deep to shallow.
-- [getField@"baz"(getField@"bar"(getField@"foo" a), getField@"bar"(getField@"foo" a), getField@"foo" a, a]
; zips = \a -> (final, head (getters a)) : zip (reverse fields) (tail (getters a)) -- Ordered from deep to shallow.
-- [("quux", getField@"baz"(getField@"bar"(getField@"foo" a)), ("baz", getField@"bar"(getField@"foo" a)), ("bar", getField@"foo" a), ("foo", a)]
}
in (\a -> foldl' (mkSet set_field) arg (zips a))
-- setField@"foo" (a) (setField@"bar" (getField @"foo" (a))(setField@"baz" (getField @"bar" (getField @"foo" (a)))(setField@"quux" (getField @"baz" (getField @"bar" (getField @"foo" (a))))(quux))))
mkRecordDotUpd :: Name -> Name -> LHsExpr GhcRn -> [LHsRecUpdProj GhcRn] -> HsExpr GhcRn
mkRecordDotUpd get_field set_field exp updates = foldl' fieldUpdate (unLoc exp) updates
where
fieldUpdate :: HsExpr GhcRn -> LHsRecUpdProj GhcRn -> HsExpr GhcRn
fieldUpdate acc lpu = unLoc $ (mkProjUpdateSetField get_field set_field lpu) (wrapGenSpan acc)
rnHsUpdProjs :: [LHsRecUpdProj GhcPs] -> RnM ([LHsRecUpdProj GhcRn], FreeVars)
rnHsUpdProjs us = do
(u, fvs) <- unzip <$> mapM rnRecUpdProj us
pure (u, plusFVs fvs)
where
rnRecUpdProj :: LHsRecUpdProj GhcPs -> RnM (LHsRecUpdProj GhcRn, FreeVars)
rnRecUpdProj (L l (HsFieldBind _ fs arg pun))
= do { (arg, fv) <- rnLExpr arg
; return $
(L l (HsFieldBind {
hfbAnn = noAnn
, hfbLHS = fmap rnFieldLabelStrings fs
, hfbRHS = arg
, hfbPun = pun}), fv ) }
|