1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Main pass of renamer
-}
module GHC.Rename.Module (
rnSrcDecls, addTcgDUs, findSplice, rnWarningTxt
) where
import GHC.Prelude hiding ( head )
import {-# SOURCE #-} GHC.Rename.Expr( rnLExpr )
import {-# SOURCE #-} GHC.Rename.Splice ( rnSpliceDecl, rnTopSpliceDecls )
import GHC.Hs
import GHC.Types.Error
import GHC.Types.FieldLabel
import GHC.Types.Name.Reader
import GHC.Rename.HsType
import GHC.Rename.Bind
import GHC.Rename.Doc
import GHC.Rename.Env
import GHC.Rename.Utils ( mapFvRn, bindLocalNames
, checkDupRdrNamesN, bindLocalNamesFV
, checkShadowedRdrNames, warnUnusedTypePatterns
, newLocalBndrsRn
, noNestedForallsContextsErr
, addNoNestedForallsContextsErr, checkInferredVars, warnForallIdentifier )
import GHC.Rename.Unbound ( mkUnboundName, notInScopeErr, WhereLooking(WL_Global) )
import GHC.Rename.Names
import GHC.Tc.Errors.Types
import GHC.Tc.Errors.Ppr (pprScopeError)
import GHC.Tc.Gen.Annotation ( annCtxt )
import GHC.Tc.Utils.Monad
import GHC.Types.ForeignCall ( CCallTarget(..) )
import GHC.Unit
import GHC.Unit.Module.Warnings
import GHC.Builtin.Names( applicativeClassName, pureAName, thenAName
, monadClassName, returnMName, thenMName
, semigroupClassName, sappendName
, monoidClassName, mappendName
)
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Env
import GHC.Types.Avail
import GHC.Utils.Outputable
import GHC.Data.Bag
import GHC.Types.Basic ( pprRuleName, TypeOrKind(..) )
import GHC.Data.FastString
import GHC.Types.SrcLoc as SrcLoc
import GHC.Driver.Session
import GHC.Utils.Misc ( lengthExceeds, partitionWith )
import GHC.Utils.Panic
import GHC.Driver.Env ( HscEnv(..), hsc_home_unit)
import GHC.Data.List.SetOps ( findDupsEq, removeDups, equivClasses )
import GHC.Data.Graph.Directed ( SCC, flattenSCC, flattenSCCs, Node(..)
, stronglyConnCompFromEdgedVerticesUniq )
import GHC.Types.Unique.Set
import GHC.Data.OrdList
import qualified GHC.LanguageExtensions as LangExt
import GHC.Core.DataCon ( isSrcStrict )
import Control.Monad
import Control.Arrow ( first )
import Data.Foldable ( toList )
import Data.List ( mapAccumL )
import qualified Data.List.NonEmpty as NE
import Data.List.NonEmpty ( NonEmpty(..), head )
import Data.Maybe ( isNothing, fromMaybe, mapMaybe )
import qualified Data.Set as Set ( difference, fromList, toList, null )
import Data.Function ( on )
{- | @rnSourceDecl@ "renames" declarations.
It simultaneously performs dependency analysis and precedence parsing.
It also does the following error checks:
* Checks that tyvars are used properly. This includes checking
for undefined tyvars, and tyvars in contexts that are ambiguous.
(Some of this checking has now been moved to module @TcMonoType@,
since we don't have functional dependency information at this point.)
* Checks that all variable occurrences are defined.
* Checks the @(..)@ etc constraints in the export list.
Brings the binders of the group into scope in the appropriate places;
does NOT assume that anything is in scope already
-}
rnSrcDecls :: HsGroup GhcPs -> RnM (TcGblEnv, HsGroup GhcRn)
-- Rename a top-level HsGroup; used for normal source files *and* hs-boot files
rnSrcDecls group@(HsGroup { hs_valds = val_decls,
hs_splcds = splice_decls,
hs_tyclds = tycl_decls,
hs_derivds = deriv_decls,
hs_fixds = fix_decls,
hs_warnds = warn_decls,
hs_annds = ann_decls,
hs_fords = foreign_decls,
hs_defds = default_decls,
hs_ruleds = rule_decls,
hs_docs = docs })
= do {
-- (A) Process the top-level fixity declarations, creating a mapping from
-- FastStrings to FixItems. Also checks for duplicates.
-- See Note [Top-level fixity signatures in an HsGroup] in GHC.Hs.Decls
local_fix_env <- makeMiniFixityEnv $ hsGroupTopLevelFixitySigs group ;
-- (B) Bring top level binders (and their fixities) into scope,
-- *except* for the value bindings, which get done in step (D)
-- with collectHsIdBinders. However *do* include
--
-- * Class ops, data constructors, and record fields,
-- because they do not have value declarations.
--
-- * For hs-boot files, include the value signatures
-- Again, they have no value declarations
--
(tc_envs, tc_bndrs) <- getLocalNonValBinders local_fix_env group ;
restoreEnvs tc_envs $ do {
failIfErrsM ; -- No point in continuing if (say) we have duplicate declarations
-- (D1) Bring pattern synonyms into scope.
-- Need to do this before (D2) because rnTopBindsLHS
-- looks up those pattern synonyms (#9889)
dup_fields_ok <- xopt_DuplicateRecordFields <$> getDynFlags ;
has_sel <- xopt_FieldSelectors <$> getDynFlags ;
extendPatSynEnv dup_fields_ok has_sel val_decls local_fix_env $ \pat_syn_bndrs -> do {
-- (D2) Rename the left-hand sides of the value bindings.
-- This depends on everything from (B) being in scope.
-- It uses the fixity env from (A) to bind fixities for view patterns.
-- We need to throw an error on such value bindings when in a boot file.
is_boot <- tcIsHsBootOrSig ;
new_lhs <- if is_boot
then rnTopBindsLHSBoot local_fix_env val_decls
else rnTopBindsLHS local_fix_env val_decls ;
-- Bind the LHSes (and their fixities) in the global rdr environment
let { id_bndrs = collectHsIdBinders CollNoDictBinders new_lhs } ;
-- Excludes pattern-synonym binders
-- They are already in scope
traceRn "rnSrcDecls" (ppr id_bndrs) ;
tc_envs <- extendGlobalRdrEnvRn (map avail id_bndrs) local_fix_env ;
restoreEnvs tc_envs $ do {
-- Now everything is in scope, as the remaining renaming assumes.
-- (E) Rename type and class decls
-- (note that value LHSes need to be in scope for default methods)
--
-- You might think that we could build proper def/use information
-- for type and class declarations, but they can be involved
-- in mutual recursion across modules, and we only do the SCC
-- analysis for them in the type checker.
-- So we content ourselves with gathering uses only; that
-- means we'll only report a declaration as unused if it isn't
-- mentioned at all. Ah well.
traceRn "Start rnTyClDecls" (ppr tycl_decls) ;
(rn_tycl_decls, src_fvs1) <- rnTyClDecls tycl_decls ;
-- (F) Rename Value declarations right-hand sides
traceRn "Start rnmono" empty ;
let { val_bndr_set = mkNameSet id_bndrs `unionNameSet` mkNameSet pat_syn_bndrs } ;
(rn_val_decls, bind_dus) <- if is_boot
-- For an hs-boot, use tc_bndrs (which collects how we're renamed
-- signatures), since val_bndr_set is empty (there are no x = ...
-- bindings in an hs-boot.)
then rnTopBindsBoot tc_bndrs new_lhs
else rnValBindsRHS (TopSigCtxt val_bndr_set) new_lhs ;
traceRn "finish rnmono" (ppr rn_val_decls) ;
-- (G) Rename Fixity and deprecations
-- Rename fixity declarations and error if we try to
-- fix something from another module (duplicates were checked in (A))
let { all_bndrs = tc_bndrs `unionNameSet` val_bndr_set } ;
rn_fix_decls <- mapM (mapM (rnSrcFixityDecl (TopSigCtxt all_bndrs)))
fix_decls ;
-- Rename deprec decls;
-- check for duplicates and ensure that deprecated things are defined locally
-- at the moment, we don't keep these around past renaming
rn_warns <- rnSrcWarnDecls all_bndrs warn_decls ;
-- (H) Rename Everything else
(rn_rule_decls, src_fvs2) <- setXOptM LangExt.ScopedTypeVariables $
rnList rnHsRuleDecls rule_decls ;
-- Inside RULES, scoped type variables are on
(rn_foreign_decls, src_fvs3) <- rnList rnHsForeignDecl foreign_decls ;
(rn_ann_decls, src_fvs4) <- rnList rnAnnDecl ann_decls ;
(rn_default_decls, src_fvs5) <- rnList rnDefaultDecl default_decls ;
(rn_deriv_decls, src_fvs6) <- rnList rnSrcDerivDecl deriv_decls ;
(rn_splice_decls, src_fvs7) <- rnList rnSpliceDecl splice_decls ;
rn_docs <- traverse rnLDocDecl docs ;
last_tcg_env <- getGblEnv ;
-- (I) Compute the results and return
let {rn_group = HsGroup { hs_ext = noExtField,
hs_valds = rn_val_decls,
hs_splcds = rn_splice_decls,
hs_tyclds = rn_tycl_decls,
hs_derivds = rn_deriv_decls,
hs_fixds = rn_fix_decls,
hs_warnds = [], -- warns are returned in the tcg_env
-- (see below) not in the HsGroup
hs_fords = rn_foreign_decls,
hs_annds = rn_ann_decls,
hs_defds = rn_default_decls,
hs_ruleds = rn_rule_decls,
hs_docs = rn_docs } ;
tcf_bndrs = hsTyClForeignBinders rn_tycl_decls rn_foreign_decls ;
other_def = (Just (mkNameSet tcf_bndrs), emptyNameSet) ;
other_fvs = plusFVs [src_fvs1, src_fvs2, src_fvs3, src_fvs4,
src_fvs5, src_fvs6, src_fvs7] ;
-- It is tiresome to gather the binders from type and class decls
src_dus = unitOL other_def `plusDU` bind_dus `plusDU` usesOnly other_fvs ;
-- Instance decls may have occurrences of things bound in bind_dus
-- so we must put other_fvs last
final_tcg_env = let tcg_env' = (last_tcg_env `addTcgDUs` src_dus)
in -- we return the deprecs in the env, not in the HsGroup above
tcg_env' { tcg_warns = tcg_warns tcg_env' `plusWarns` rn_warns };
} ;
traceRn "finish rnSrc" (ppr rn_group) ;
traceRn "finish Dus" (ppr src_dus ) ;
return (final_tcg_env, rn_group)
}}}}
addTcgDUs :: TcGblEnv -> DefUses -> TcGblEnv
-- This function could be defined lower down in the module hierarchy,
-- but there doesn't seem anywhere very logical to put it.
addTcgDUs tcg_env dus = tcg_env { tcg_dus = tcg_dus tcg_env `plusDU` dus }
rnList :: (a -> RnM (b, FreeVars)) -> [LocatedA a] -> RnM ([LocatedA b], FreeVars)
rnList f xs = mapFvRn (wrapLocFstMA f) xs
{-
*********************************************************
* *
Source-code deprecations declarations
* *
*********************************************************
Check that the deprecated names are defined, are defined locally, and
that there are no duplicate deprecations.
It's only imported deprecations, dealt with in RnIfaces, that we
gather them together.
-}
-- checks that the deprecations are defined locally, and that there are no duplicates
rnSrcWarnDecls :: NameSet -> [LWarnDecls GhcPs] -> RnM (Warnings GhcRn)
rnSrcWarnDecls _ []
= return NoWarnings
rnSrcWarnDecls bndr_set decls'
= do { -- check for duplicates
; mapM_ (\ dups -> let ((L loc rdr) :| (lrdr':_)) = dups
in addErrAt (locA loc) (TcRnDuplicateWarningDecls lrdr' rdr))
warn_rdr_dups
; pairs_s <- mapM (addLocMA rn_deprec) decls
; return (WarnSome ((concat pairs_s))) }
where
decls = concatMap (wd_warnings . unLoc) decls'
sig_ctxt = TopSigCtxt bndr_set
rn_deprec (Warning _ rdr_names txt)
-- ensures that the names are defined locally
= do { names <- concatMapM (lookupLocalTcNames sig_ctxt what . unLoc)
rdr_names
; txt' <- rnWarningTxt txt
; return [(rdrNameOcc rdr, txt') | (rdr, _) <- names] }
what = text "deprecation"
warn_rdr_dups = findDupRdrNames
$ concatMap (\(L _ (Warning _ ns _)) -> ns) decls
rnWarningTxt :: WarningTxt GhcPs -> RnM (WarningTxt GhcRn)
rnWarningTxt (WarningTxt st wst) = do
wst' <- traverse (traverse rnHsDoc) wst
pure (WarningTxt st wst')
rnWarningTxt (DeprecatedTxt st wst) = do
wst' <- traverse (traverse rnHsDoc) wst
pure (DeprecatedTxt st wst')
findDupRdrNames :: [LocatedN RdrName] -> [NonEmpty (LocatedN RdrName)]
findDupRdrNames = findDupsEq (\ x -> \ y -> rdrNameOcc (unLoc x) == rdrNameOcc (unLoc y))
-- look for duplicates among the OccNames;
-- we check that the names are defined above
-- invt: the lists returned by findDupsEq always have at least two elements
{-
*********************************************************
* *
\subsection{Annotation declarations}
* *
*********************************************************
-}
rnAnnDecl :: AnnDecl GhcPs -> RnM (AnnDecl GhcRn, FreeVars)
rnAnnDecl ann@(HsAnnotation (_, s) provenance expr)
= addErrCtxt (annCtxt ann) $
do { (provenance', provenance_fvs) <- rnAnnProvenance provenance
; (expr', expr_fvs) <- setStage (Splice Untyped) $
rnLExpr expr
; return (HsAnnotation (noAnn, s) provenance' expr',
provenance_fvs `plusFV` expr_fvs) }
rnAnnProvenance :: AnnProvenance GhcPs
-> RnM (AnnProvenance GhcRn, FreeVars)
rnAnnProvenance provenance = do
provenance' <- case provenance of
ValueAnnProvenance n -> ValueAnnProvenance
<$> lookupLocatedTopBndrRnN n
TypeAnnProvenance n -> TypeAnnProvenance
<$> lookupLocatedTopConstructorRnN n
ModuleAnnProvenance -> return ModuleAnnProvenance
return (provenance', maybe emptyFVs unitFV (annProvenanceName_maybe provenance'))
{-
*********************************************************
* *
\subsection{Default declarations}
* *
*********************************************************
-}
rnDefaultDecl :: DefaultDecl GhcPs -> RnM (DefaultDecl GhcRn, FreeVars)
rnDefaultDecl (DefaultDecl _ tys)
= do { (tys', fvs) <- rnLHsTypes doc_str tys
; return (DefaultDecl noExtField tys', fvs) }
where
doc_str = DefaultDeclCtx
{-
*********************************************************
* *
\subsection{Foreign declarations}
* *
*********************************************************
-}
rnHsForeignDecl :: ForeignDecl GhcPs -> RnM (ForeignDecl GhcRn, FreeVars)
rnHsForeignDecl (ForeignImport { fd_name = name, fd_sig_ty = ty, fd_fi = spec })
= do { topEnv :: HscEnv <- getTopEnv
; warnForallIdentifier name
; name' <- lookupLocatedTopBndrRnN name
; (ty', fvs) <- rnHsSigType (ForeignDeclCtx name) TypeLevel ty
-- Mark any PackageTarget style imports as coming from the current package
; let home_unit = hsc_home_unit topEnv
spec' = patchForeignImport (homeUnitAsUnit home_unit) spec
; return (ForeignImport { fd_i_ext = noExtField
, fd_name = name', fd_sig_ty = ty'
, fd_fi = spec' }, fvs) }
rnHsForeignDecl (ForeignExport { fd_name = name, fd_sig_ty = ty, fd_fe = spec })
= do { name' <- lookupLocatedOccRn name
; (ty', fvs) <- rnHsSigType (ForeignDeclCtx name) TypeLevel ty
; return (ForeignExport { fd_e_ext = noExtField
, fd_name = name', fd_sig_ty = ty'
, fd_fe = (\(CExport x c) -> CExport x c) spec }
, fvs `addOneFV` unLoc name') }
-- NB: a foreign export is an *occurrence site* for name, so
-- we add it to the free-variable list. It might, for example,
-- be imported from another module
-- | For Windows DLLs we need to know what packages imported symbols are from
-- to generate correct calls. Imported symbols are tagged with the current
-- package, so if they get inlined across a package boundary we'll still
-- know where they're from.
--
patchForeignImport :: Unit -> (ForeignImport GhcPs) -> (ForeignImport GhcRn)
patchForeignImport unit (CImport ext cconv safety fs spec)
= CImport ext cconv safety fs (patchCImportSpec unit spec)
patchCImportSpec :: Unit -> CImportSpec -> CImportSpec
patchCImportSpec unit spec
= case spec of
CFunction callTarget -> CFunction $ patchCCallTarget unit callTarget
_ -> spec
patchCCallTarget :: Unit -> CCallTarget -> CCallTarget
patchCCallTarget unit callTarget =
case callTarget of
StaticTarget src label Nothing isFun
-> StaticTarget src label (Just unit) isFun
_ -> callTarget
{-
*********************************************************
* *
\subsection{Instance declarations}
* *
*********************************************************
-}
rnSrcInstDecl :: InstDecl GhcPs -> RnM (InstDecl GhcRn, FreeVars)
rnSrcInstDecl (TyFamInstD { tfid_inst = tfi })
= do { (tfi', fvs) <- rnTyFamInstDecl (NonAssocTyFamEqn NotClosedTyFam) tfi
; return (TyFamInstD { tfid_ext = noExtField, tfid_inst = tfi' }, fvs) }
rnSrcInstDecl (DataFamInstD { dfid_inst = dfi })
= do { (dfi', fvs) <- rnDataFamInstDecl (NonAssocTyFamEqn NotClosedTyFam) dfi
; return (DataFamInstD { dfid_ext = noExtField, dfid_inst = dfi' }, fvs) }
rnSrcInstDecl (ClsInstD { cid_inst = cid })
= do { traceRn "rnSrcIstDecl {" (ppr cid)
; (cid', fvs) <- rnClsInstDecl cid
; traceRn "rnSrcIstDecl end }" empty
; return (ClsInstD { cid_d_ext = noExtField, cid_inst = cid' }, fvs) }
-- | Warn about non-canonical typeclass instance declarations
--
-- A "non-canonical" instance definition can occur for instances of a
-- class which redundantly defines an operation its superclass
-- provides as well (c.f. `return`/`pure`). In such cases, a canonical
-- instance is one where the subclass inherits its method
-- implementation from its superclass instance (usually the subclass
-- has a default method implementation to that effect). Consequently,
-- a non-canonical instance occurs when this is not the case.
--
-- See also descriptions of 'checkCanonicalMonadInstances' and
-- 'checkCanonicalMonoidInstances'
checkCanonicalInstances :: Name -> LHsSigType GhcRn -> LHsBinds GhcRn -> RnM ()
checkCanonicalInstances cls poly_ty mbinds = do
whenWOptM Opt_WarnNonCanonicalMonadInstances
$ checkCanonicalMonadInstances
"https://gitlab.haskell.org/ghc/ghc/-/wikis/proposal/monad-of-no-return"
whenWOptM Opt_WarnNonCanonicalMonoidInstances
$ checkCanonicalMonoidInstances
"https://gitlab.haskell.org/ghc/ghc/-/wikis/proposal/semigroup-monoid"
where
-- Warn about unsound/non-canonical 'Applicative'/'Monad' instance
-- declarations. Specifically, the following conditions are verified:
--
-- In 'Monad' instances declarations:
--
-- * If 'return' is overridden it must be canonical (i.e. @return = pure@)
-- * If '(>>)' is overridden it must be canonical (i.e. @(>>) = (*>)@)
--
-- In 'Applicative' instance declarations:
--
-- * Warn if 'pure' is defined backwards (i.e. @pure = return@).
-- * Warn if '(*>)' is defined backwards (i.e. @(*>) = (>>)@).
--
checkCanonicalMonadInstances refURL
| cls == applicativeClassName =
forM_ (bagToList mbinds) $ \(L loc mbind) -> setSrcSpanA loc $
case mbind of
FunBind { fun_id = L _ name
, fun_matches = mg }
| name == pureAName, isAliasMG mg == Just returnMName
-> addWarnNonCanonicalMethod1 refURL
Opt_WarnNonCanonicalMonadInstances "pure" "return"
| name == thenAName, isAliasMG mg == Just thenMName
-> addWarnNonCanonicalMethod1 refURL
Opt_WarnNonCanonicalMonadInstances "(*>)" "(>>)"
_ -> return ()
| cls == monadClassName =
forM_ (bagToList mbinds) $ \(L loc mbind) -> setSrcSpanA loc $
case mbind of
FunBind { fun_id = L _ name
, fun_matches = mg }
| name == returnMName, isAliasMG mg /= Just pureAName
-> addWarnNonCanonicalMethod2 refURL
Opt_WarnNonCanonicalMonadInstances "return" "pure"
| name == thenMName, isAliasMG mg /= Just thenAName
-> addWarnNonCanonicalMethod2 refURL
Opt_WarnNonCanonicalMonadInstances "(>>)" "(*>)"
_ -> return ()
| otherwise = return ()
-- Check whether Monoid(mappend) is defined in terms of
-- Semigroup((<>)) (and not the other way round). Specifically,
-- the following conditions are verified:
--
-- In 'Monoid' instances declarations:
--
-- * If 'mappend' is overridden it must be canonical
-- (i.e. @mappend = (<>)@)
--
-- In 'Semigroup' instance declarations:
--
-- * Warn if '(<>)' is defined backwards (i.e. @(<>) = mappend@).
--
checkCanonicalMonoidInstances refURL
| cls == semigroupClassName =
forM_ (bagToList mbinds) $ \(L loc mbind) -> setSrcSpanA loc $
case mbind of
FunBind { fun_id = L _ name
, fun_matches = mg }
| name == sappendName, isAliasMG mg == Just mappendName
-> addWarnNonCanonicalMethod1 refURL
Opt_WarnNonCanonicalMonoidInstances "(<>)" "mappend"
_ -> return ()
| cls == monoidClassName =
forM_ (bagToList mbinds) $ \(L loc mbind) -> setSrcSpanA loc $
case mbind of
FunBind { fun_id = L _ name
, fun_matches = mg }
| name == mappendName, isAliasMG mg /= Just sappendName
-> addWarnNonCanonicalMethod2 refURL
Opt_WarnNonCanonicalMonoidInstances
"mappend" "(<>)"
_ -> return ()
| otherwise = return ()
-- test whether MatchGroup represents a trivial \"lhsName = rhsName\"
-- binding, and return @Just rhsName@ if this is the case
isAliasMG :: MatchGroup GhcRn (LHsExpr GhcRn) -> Maybe Name
isAliasMG MG {mg_alts = (L _ [L _ (Match { m_pats = []
, m_grhss = grhss })])}
| GRHSs _ [L _ (GRHS _ [] body)] lbinds <- grhss
, EmptyLocalBinds _ <- lbinds
, HsVar _ lrhsName <- unLoc body = Just (unLoc lrhsName)
isAliasMG _ = Nothing
-- got "lhs = rhs" but expected something different
addWarnNonCanonicalMethod1 refURL flag lhs rhs = do
let dia = mkTcRnUnknownMessage $
mkPlainDiagnostic (WarningWithFlag flag) noHints $
vcat [ text "Noncanonical" <+>
quotes (text (lhs ++ " = " ++ rhs)) <+>
text "definition detected"
, instDeclCtxt1 poly_ty
, text "Move definition from" <+>
quotes (text rhs) <+>
text "to" <+> quotes (text lhs)
, text "See also:" <+>
text refURL
]
addDiagnostic dia
-- expected "lhs = rhs" but got something else
addWarnNonCanonicalMethod2 refURL flag lhs rhs = do
let dia = mkTcRnUnknownMessage $
mkPlainDiagnostic (WarningWithFlag flag) noHints $
vcat [ text "Noncanonical" <+>
quotes (text lhs) <+>
text "definition detected"
, instDeclCtxt1 poly_ty
, quotes (text lhs) <+>
text "will eventually be removed in favour of" <+>
quotes (text rhs)
, text "Either remove definition for" <+>
quotes (text lhs) <+> text "(recommended)" <+>
text "or define as" <+>
quotes (text (lhs ++ " = " ++ rhs))
, text "See also:" <+>
text refURL
]
addDiagnostic dia
-- stolen from GHC.Tc.TyCl.Instance
instDeclCtxt1 :: LHsSigType GhcRn -> SDoc
instDeclCtxt1 hs_inst_ty
= inst_decl_ctxt (ppr (getLHsInstDeclHead hs_inst_ty))
inst_decl_ctxt :: SDoc -> SDoc
inst_decl_ctxt doc = hang (text "in the instance declaration for")
2 (quotes doc <> text ".")
rnClsInstDecl :: ClsInstDecl GhcPs -> RnM (ClsInstDecl GhcRn, FreeVars)
rnClsInstDecl (ClsInstDecl { cid_poly_ty = inst_ty, cid_binds = mbinds
, cid_sigs = uprags, cid_tyfam_insts = ats
, cid_overlap_mode = oflag
, cid_datafam_insts = adts })
= do { checkInferredVars ctxt inf_err inst_ty
; (inst_ty', inst_fvs) <- rnHsSigType ctxt TypeLevel inst_ty
; let (ktv_names, _, head_ty') = splitLHsInstDeclTy inst_ty'
-- Check if there are any nested `forall`s or contexts, which are
-- illegal in the type of an instance declaration (see
-- Note [No nested foralls or contexts in instance types] in
-- GHC.Hs.Type)...
mb_nested_msg = noNestedForallsContextsErr
(text "Instance head") head_ty'
-- ...then check if the instance head is actually headed by a
-- class type constructor...
eith_cls = case hsTyGetAppHead_maybe head_ty' of
Just (L _ cls) -> Right cls
Nothing -> Left
( getLocA head_ty'
, mkTcRnUnknownMessage $ mkPlainError noHints $
hang (text "Illegal head of an instance declaration:"
<+> quotes (ppr head_ty'))
2 (vcat [ text "Instance heads must be of the form"
, nest 2 $ text "C ty_1 ... ty_n"
, text "where" <+> quotes (char 'C')
<+> text "is a class"
])
)
-- ...finally, attempt to retrieve the class type constructor, failing
-- with an error message if there isn't one. To avoid excessive
-- amounts of error messages, we will only report one of the errors
-- from mb_nested_msg or eith_cls at a time.
; cls <- case (mb_nested_msg, eith_cls) of
(Nothing, Right cls) -> pure cls
(Just err1, _) -> bail_out err1
(_, Left err2) -> bail_out err2
-- Rename the bindings
-- The typechecker (not the renamer) checks that all
-- the bindings are for the right class
-- (Slightly strangely) when scoped type variables are on, the
-- forall-d tyvars scope over the method bindings too
; (mbinds', uprags', meth_fvs) <- rnMethodBinds False cls ktv_names mbinds uprags
; checkCanonicalInstances cls inst_ty' mbinds'
-- Rename the associated types, and type signatures
-- Both need to have the instance type variables in scope
; traceRn "rnSrcInstDecl" (ppr inst_ty' $$ ppr ktv_names)
; ((ats', adts'), more_fvs)
<- bindLocalNamesFV ktv_names $
do { (ats', at_fvs) <- rnATInstDecls rnTyFamInstDecl cls ktv_names ats
; (adts', adt_fvs) <- rnATInstDecls rnDataFamInstDecl cls ktv_names adts
; return ( (ats', adts'), at_fvs `plusFV` adt_fvs) }
; let all_fvs = meth_fvs `plusFV` more_fvs
`plusFV` inst_fvs
; return (ClsInstDecl { cid_ext = noExtField
, cid_poly_ty = inst_ty', cid_binds = mbinds'
, cid_sigs = uprags', cid_tyfam_insts = ats'
, cid_overlap_mode = oflag
, cid_datafam_insts = adts' },
all_fvs) }
-- We return the renamed associated data type declarations so
-- that they can be entered into the list of type declarations
-- for the binding group, but we also keep a copy in the instance.
-- The latter is needed for well-formedness checks in the type
-- checker (eg, to ensure that all ATs of the instance actually
-- receive a declaration).
-- NB: Even the copies in the instance declaration carry copies of
-- the instance context after renaming. This is a bit
-- strange, but should not matter (and it would be more work
-- to remove the context).
where
ctxt = GenericCtx $ text "an instance declaration"
inf_err = Just (text "Inferred type variables are not allowed")
-- The instance is malformed. We'd still like to make *some* progress
-- (rather than failing outright), so we report an error and continue for
-- as long as we can. Importantly, this error should be thrown before we
-- reach the typechecker, lest we encounter different errors that are
-- hopelessly confusing (such as the one in #16114).
bail_out (l, err_msg) = do
addErrAt l $ TcRnWithHsDocContext ctxt err_msg
pure $ mkUnboundName (mkTcOccFS (fsLit "<class>"))
rnFamEqn :: HsDocContext
-> AssocTyFamInfo
-> FreeKiTyVars
-- ^ Additional kind variables to implicitly bind if there is no
-- explicit forall. (See the comments on @all_imp_vars@ below for a
-- more detailed explanation.)
-> FamEqn GhcPs rhs
-> (HsDocContext -> rhs -> RnM (rhs', FreeVars))
-> RnM (FamEqn GhcRn rhs', FreeVars)
rnFamEqn doc atfi extra_kvars
(FamEqn { feqn_tycon = tycon
, feqn_bndrs = outer_bndrs
, feqn_pats = pats
, feqn_fixity = fixity
, feqn_rhs = payload }) rn_payload
= do { tycon' <- lookupFamInstName mb_cls tycon
-- all_imp_vars represent the implicitly bound type variables. This is
-- empty if we have an explicit `forall` (see
-- Note [forall-or-nothing rule] in GHC.Hs.Type), which means
-- ignoring:
--
-- - pat_kity_vars, the free variables mentioned in the type patterns
-- on the LHS of the equation, and
-- - extra_kvars, which is one of the following:
-- * For type family instances, extra_kvars are the free kind
-- variables mentioned in an outermost kind signature on the RHS
-- of the equation.
-- (See Note [Implicit quantification in type synonyms] in
-- GHC.Rename.HsType.)
-- * For data family instances, extra_kvars are the free kind
-- variables mentioned in the explicit return kind, if one is
-- provided. (e.g., the `k` in `data instance T :: k -> Type`).
--
-- Some examples:
--
-- @
-- type family F a b
-- type instance forall a b c. F [(a, b)] c = a -> b -> c
-- -- all_imp_vars = []
-- type instance F [(a, b)] c = a -> b -> c
-- -- all_imp_vars = [a, b, c]
--
-- type family G :: Maybe a
-- type instance forall a. G = (Nothing :: Maybe a)
-- -- all_imp_vars = []
-- type instance G = (Nothing :: Maybe a)
-- -- all_imp_vars = [a]
--
-- data family H :: k -> Type
-- data instance forall k. H :: k -> Type where ...
-- -- all_imp_vars = []
-- data instance H :: k -> Type where ...
-- -- all_imp_vars = [k]
-- @
--
-- For associated type family instances, exclude the type variables
-- bound by the instance head with filterInScopeM (#19649).
; all_imp_vars <- filterInScopeM $ pat_kity_vars ++ extra_kvars
; bindHsOuterTyVarBndrs doc mb_cls all_imp_vars outer_bndrs $ \rn_outer_bndrs ->
do { (pats', pat_fvs) <- rnLHsTypeArgs (FamPatCtx tycon) pats
; (payload', rhs_fvs) <- rn_payload doc payload
-- Report unused binders on the LHS
-- See Note [Unused type variables in family instances]
; let -- The SrcSpan that bindHsOuterFamEqnTyVarBndrs will attach to each
-- implicitly bound type variable Name in outer_bndrs' will
-- span the entire type family instance, which will be reflected in
-- -Wunused-type-patterns warnings. We can be a little more precise
-- than that by pointing to the LHS of the instance instead, which
-- is what lhs_loc corresponds to.
rn_outer_bndrs' = mapHsOuterImplicit (map (`setNameLoc` lhs_loc))
rn_outer_bndrs
groups :: [NonEmpty (LocatedN RdrName)]
groups = equivClasses cmpLocated pat_kity_vars
; nms_dups <- mapM (lookupOccRn . unLoc) $
[ tv | (tv :| (_:_)) <- groups ]
-- Add to the used variables
-- a) any variables that appear *more than once* on the LHS
-- e.g. F a Int a = Bool
-- b) for associated instances, the variables
-- of the instance decl. See
-- Note [Unused type variables in family instances]
; let nms_used = extendNameSetList rhs_fvs $
nms_dups {- (a) -} ++ inst_head_tvs {- (b) -}
all_nms = hsOuterTyVarNames rn_outer_bndrs'
; warnUnusedTypePatterns all_nms nms_used
-- For associated family instances, if a type variable from the
-- parent instance declaration is mentioned on the RHS of the
-- associated family instance but not bound on the LHS, then reject
-- that type variable as being out of scope.
-- See Note [Renaming associated types].
-- Per that Note, the LHS type variables consist of:
--
-- - The variables mentioned in the instance's type patterns
-- (pat_fvs), and
--
-- - The variables mentioned in an outermost kind signature on the
-- RHS. This is a subset of `rhs_fvs`. To compute it, we look up
-- each RdrName in `extra_kvars` to find its corresponding Name in
-- the LocalRdrEnv.
; extra_kvar_nms <- mapMaybeM (lookupLocalOccRn_maybe . unLoc) extra_kvars
; let lhs_bound_vars = pat_fvs `extendNameSetList` extra_kvar_nms
improperly_scoped cls_tkv =
cls_tkv `elemNameSet` rhs_fvs
-- Mentioned on the RHS...
&& not (cls_tkv `elemNameSet` lhs_bound_vars)
-- ...but not bound on the LHS.
bad_tvs = filter improperly_scoped inst_head_tvs
; unless (null bad_tvs) (badAssocRhs bad_tvs)
; let eqn_fvs = rhs_fvs `plusFV` pat_fvs
-- See Note [Type family equations and occurrences]
all_fvs = case atfi of
NonAssocTyFamEqn ClosedTyFam
-> eqn_fvs
_ -> eqn_fvs `addOneFV` unLoc tycon'
; return (FamEqn { feqn_ext = noAnn
, feqn_tycon = tycon'
-- Note [Wildcards in family instances]
, feqn_bndrs = rn_outer_bndrs'
, feqn_pats = pats'
, feqn_fixity = fixity
, feqn_rhs = payload' },
all_fvs) } }
where
-- The parent class, if we are dealing with an associated type family
-- instance.
mb_cls = case atfi of
NonAssocTyFamEqn _ -> Nothing
AssocTyFamDeflt cls -> Just cls
AssocTyFamInst cls _ -> Just cls
-- The type variables from the instance head, if we are dealing with an
-- associated type family instance.
inst_head_tvs = case atfi of
NonAssocTyFamEqn _ -> []
AssocTyFamDeflt _ -> []
AssocTyFamInst _ inst_head_tvs -> inst_head_tvs
pat_kity_vars = extractHsTyArgRdrKiTyVars pats
-- It is crucial that extractHsTyArgRdrKiTyVars return
-- duplicate occurrences, since they're needed to help
-- determine unused binders on the LHS.
-- The SrcSpan of the LHS of the instance. For example, lhs_loc would be
-- the highlighted part in the example below:
--
-- type instance F a b c = Either a b
-- ^^^^^
lhs_loc = case map lhsTypeArgSrcSpan pats ++ map getLocA extra_kvars of
[] -> panic "rnFamEqn.lhs_loc"
[loc] -> loc
(loc:locs) -> loc `combineSrcSpans` last locs
badAssocRhs :: [Name] -> RnM ()
badAssocRhs ns
= addErr $ mkTcRnUnknownMessage $ mkPlainError noHints $
(hang (text "The RHS of an associated type declaration mentions"
<+> text "out-of-scope variable" <> plural ns
<+> pprWithCommas (quotes . ppr) ns)
2 (text "All such variables must be bound on the LHS"))
rnTyFamInstDecl :: AssocTyFamInfo
-> TyFamInstDecl GhcPs
-> RnM (TyFamInstDecl GhcRn, FreeVars)
rnTyFamInstDecl atfi (TyFamInstDecl { tfid_xtn = x, tfid_eqn = eqn })
= do { (eqn', fvs) <- rnTyFamInstEqn atfi eqn
; return (TyFamInstDecl { tfid_xtn = x, tfid_eqn = eqn' }, fvs) }
-- | Tracks whether we are renaming:
--
-- 1. A type family equation that is not associated
-- with a parent type class ('NonAssocTyFamEqn'). Examples:
--
-- @
-- type family F a
-- type instance F Int = Bool -- NonAssocTyFamEqn NotClosed
--
-- type family G a where
-- G Int = Bool -- NonAssocTyFamEqn Closed
-- @
--
-- 2. An associated type family default declaration ('AssocTyFamDeflt').
-- Example:
--
-- @
-- class C a where
-- type A a
-- type instance A a = a -> a -- AssocTyFamDeflt C
-- @
--
-- 3. An associated type family instance declaration ('AssocTyFamInst').
-- Example:
--
-- @
-- instance C a => C [a] where
-- type A [a] = Bool -- AssocTyFamInst C [a]
-- @
data AssocTyFamInfo
= NonAssocTyFamEqn
ClosedTyFamInfo -- Is this a closed type family?
| AssocTyFamDeflt
Name -- Name of the parent class
| AssocTyFamInst
Name -- Name of the parent class
[Name] -- Names of the tyvars of the parent instance decl
-- | Tracks whether we are renaming an equation in a closed type family
-- equation ('ClosedTyFam') or not ('NotClosedTyFam').
data ClosedTyFamInfo
= NotClosedTyFam
| ClosedTyFam
rnTyFamInstEqn :: AssocTyFamInfo
-> TyFamInstEqn GhcPs
-> RnM (TyFamInstEqn GhcRn, FreeVars)
rnTyFamInstEqn atfi eqn@(FamEqn { feqn_tycon = tycon, feqn_rhs = rhs })
= rnFamEqn (TySynCtx tycon) atfi extra_kvs eqn rnTySyn
where
extra_kvs = extractHsTyRdrTyVarsKindVars rhs
rnTyFamDefltDecl :: Name
-> TyFamDefltDecl GhcPs
-> RnM (TyFamDefltDecl GhcRn, FreeVars)
rnTyFamDefltDecl cls = rnTyFamInstDecl (AssocTyFamDeflt cls)
rnDataFamInstDecl :: AssocTyFamInfo
-> DataFamInstDecl GhcPs
-> RnM (DataFamInstDecl GhcRn, FreeVars)
rnDataFamInstDecl atfi (DataFamInstDecl { dfid_eqn =
eqn@(FamEqn { feqn_tycon = tycon
, feqn_rhs = rhs })})
= do { let extra_kvs = extractDataDefnKindVars rhs
; (eqn', fvs) <-
rnFamEqn (TyDataCtx tycon) atfi extra_kvs eqn rnDataDefn
; return (DataFamInstDecl { dfid_eqn = eqn' }, fvs) }
-- Renaming of the associated types in instances.
-- Rename associated type family decl in class
rnATDecls :: Name -- Class
-> [LFamilyDecl GhcPs]
-> RnM ([LFamilyDecl GhcRn], FreeVars)
rnATDecls cls at_decls
= rnList (rnFamDecl (Just cls)) at_decls
rnATInstDecls :: (AssocTyFamInfo -> -- The function that renames
decl GhcPs -> -- an instance. rnTyFamInstDecl
RnM (decl GhcRn, FreeVars)) -- or rnDataFamInstDecl
-> Name -- Class
-> [Name]
-> [LocatedA (decl GhcPs)]
-> RnM ([LocatedA (decl GhcRn)], FreeVars)
-- Used for data and type family defaults in a class decl
-- and the family instance declarations in an instance
--
-- NB: We allow duplicate associated-type decls;
-- See Note [Associated type instances] in GHC.Tc.TyCl.Instance
rnATInstDecls rnFun cls tv_ns at_insts
= rnList (rnFun (AssocTyFamInst cls tv_ns)) at_insts
-- See Note [Renaming associated types]
{- Note [Wildcards in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Wild cards can be used in type/data family instance declarations to indicate
that the name of a type variable doesn't matter. Each wild card will be
replaced with a new unique type variable. For instance:
type family F a b :: *
type instance F Int _ = Int
is the same as
type family F a b :: *
type instance F Int b = Int
This is implemented as follows: Unnamed wildcards remain unchanged after
the renamer, and then given fresh meta-variables during typechecking, and
it is handled pretty much the same way as the ones in partial type signatures.
We however don't want to emit hole constraints on wildcards in family
instances, so we turn on PartialTypeSignatures and turn off warning flag to
let typechecker know this.
See related Note [Wildcards in visible kind application] in GHC.Tc.Gen.HsType
Note [Unused type variables in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the flag -fwarn-unused-type-patterns is on, the compiler reports
warnings about unused type variables in type-family instances. A
tpye variable is considered used (i.e. cannot be turned into a wildcard)
when
* it occurs on the RHS of the family instance
e.g. type instance F a b = a -- a is used on the RHS
* it occurs multiple times in the patterns on the LHS
e.g. type instance F a a = Int -- a appears more than once on LHS
* it is one of the instance-decl variables, for associated types
e.g. instance C (a,b) where
type T (a,b) = a
Here the type pattern in the type instance must be the same as that
for the class instance, so
type T (a,_) = a
would be rejected. So we should not complain about an unused variable b
As usual, the warnings are not reported for type variables with names
beginning with an underscore.
Extra-constraints wild cards are not supported in type/data family
instance declarations.
Relevant tickets: #3699, #10586, #10982 and #11451.
Note [Renaming associated types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When renaming a type/data family instance, be it top-level or associated with
a class, we must check that all of the type variables mentioned on the RHS are
properly scoped. Specifically, the rule is this:
Every variable mentioned on the RHS of a type instance declaration
(whether associated or not) must be either
* Mentioned on the LHS, or
* Mentioned in an outermost kind signature on the RHS
(see Note [Implicit quantification in type synonyms])
Here is a simple example of something we should reject:
class C a b where
type F a x
instance C Int Bool where
type F Int x = z
Here, `z` is mentioned on the RHS of the associated instance without being
mentioned on the LHS, nor is `z` mentioned in an outermost kind signature. The
renamer will reject `z` as being out of scope without much fuss.
Things get slightly trickier when the instance header itself binds type
variables. Consider this example (adapted from #5515):
instance C (p,q) z where
type F (p,q) x = (x, z)
According to the rule above, this instance is improperly scoped. However, due
to the way GHC's renamer works, `z` is /technically/ in scope, as GHC will
always bring type variables from an instance header into scope over the
associated type family instances. As a result, the renamer won't simply reject
the `z` as being out of scope (like it would for the `type F Int x = z`
example) unless further action is taken. It is important to reject this sort of
thing in the renamer, because if it is allowed to make it through to the
typechecker, unexpected shenanigans can occur (see #18021 for examples).
To prevent these sorts of shenanigans, we reject programs like the one above
with an extra validity check in rnFamEqn. For each type variable bound in the
parent instance head, we check if it is mentioned on the RHS of the associated
family instance but not bound on the LHS. If any of the instance-head-bound
variables meet these criteria, we throw an error.
(See rnFamEqn.improperly_scoped for how this is implemented.)
Some additional wrinkles:
* This Note only applies to *instance* declarations. In *class* declarations
there is no RHS to worry about, and the class variables can all be in scope
(#5862):
class Category (x :: k -> k -> *) where
type Ob x :: k -> Constraint
id :: Ob x a => x a a
(.) :: (Ob x a, Ob x b, Ob x c) => x b c -> x a b -> x a c
Here 'k' is in scope in the kind signature, just like 'x'.
* Although type family equations can bind type variables with explicit foralls,
it need not be the case that all variables that appear on the RHS must be
bound by a forall. For instance, the following is acceptable:
class C4 a where
type T4 a b
instance C4 (Maybe a) where
type forall b. T4 (Maybe a) b = Either a b
Even though `a` is not bound by the forall, this is still accepted because `a`
was previously bound by the `instance C4 (Maybe a)` part. (see #16116).
* In addition to the validity check in rnFamEqn.improperly_scoped, there is an
additional check in GHC.Tc.Validity.checkFamPatBinders that checks each family
instance equation for type variables used on the RHS but not bound on the
LHS. This is not made redundant by rmFamEqn.improperly_scoped, as there are
programs that each check will reject that the other check will not catch:
- checkValidFamPats is used on all forms of family instances, whereas
rmFamEqn.improperly_scoped only checks associated family instances. Since
checkFamPatBinders occurs after typechecking, it can catch programs that
introduce dodgy scoping by way of type synonyms (see #7536), which is
impractical to accomplish in the renamer.
- rnFamEqn.improperly_scoped catches some programs that, if allowed to escape
the renamer, would accidentally be accepted by the typechecker. Here is one
such program (#18021):
class C5 a where
data family D a
instance forall a. C5 Int where
data instance D Int = MkD a
If this is not rejected in the renamer, the typechecker would treat this
program as though the `a` were existentially quantified, like so:
data instance D Int = forall a. MkD a
This is likely not what the user intended!
Here is another such program (#9574):
class Funct f where
type Codomain f
instance Funct ('KProxy :: KProxy o) where
type Codomain 'KProxy = NatTr (Proxy :: o -> Type)
Where:
data Proxy (a :: k) = Proxy
data KProxy (t :: Type) = KProxy
data NatTr (c :: o -> Type)
Note that the `o` in the `Codomain 'KProxy` instance should be considered
improperly scoped. It does not meet the criteria for being explicitly
quantified, as it is not mentioned by name on the LHS, nor does it meet the
criteria for being implicitly quantified, as it is used in a RHS kind
signature that is not outermost (see Note [Implicit quantification in type
synonyms]). However, `o` /is/ bound by the instance header, so if this
program is not rejected by the renamer, the typechecker would treat it as
though you had written this:
instance Funct ('KProxy :: KProxy o) where
type Codomain ('KProxy @o) = NatTr (Proxy :: o -> Type)
Although this is a valid program, it's probably a stretch too far to turn
`type Codomain 'KProxy = ...` into `type Codomain ('KProxy @o) = ...` here.
If the user really wants the latter, it is simple enough to communicate
their intent by mentioning `o` on the LHS by name.
Note [Type family equations and occurrences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In most data/type family equations, the type family name used in the equation
is treated as an occurrence. For example:
module A where
type family F a
module B () where
import B (F)
type instance F Int = Bool
We do not want to warn about `F` being unused in the module `B`, as the
instance constitutes a use site for `F`. The exception to this rule is closed
type families, whose equations constitute a definition, not occurrences. For
example:
module C () where
type family CF a where
CF Char = Float
Here, we /do/ want to warn that `CF` is unused in the module `C`, as it is
defined but not used (#18470).
GHC accomplishes this in rnFamEqn when determining the set of free
variables to return at the end. If renaming a data family or open type family
equation, we add the name of the type family constructor to the set of returned
free variables to ensure that the name is marked as an occurrence. If renaming
a closed type family equation, we avoid adding the type family constructor name
to the free variables. This is quite simple, but it is not a perfect solution.
Consider this example:
module X () where
type family F a where
F Int = Bool
F Double = F Int
At present, GHC will treat any use of a type family constructor on the RHS of a
type family equation as an occurrence. Since `F` is used on the RHS of the
second equation of `F`, it is treated as an occurrence, causing `F` not to be
warned about. This is not ideal, since `F` isn't exported—it really /should/
cause a warning to be emitted. There is some discussion in #10089/#12920 about
how this limitation might be overcome, but until then, we stick to the
simplistic solution above, as it fixes the egregious bug in #18470.
-}
{-
*********************************************************
* *
\subsection{Stand-alone deriving declarations}
* *
*********************************************************
-}
rnSrcDerivDecl :: DerivDecl GhcPs -> RnM (DerivDecl GhcRn, FreeVars)
rnSrcDerivDecl (DerivDecl _ ty mds overlap)
= do { standalone_deriv_ok <- xoptM LangExt.StandaloneDeriving
; unless standalone_deriv_ok (addErr standaloneDerivErr)
; checkInferredVars ctxt inf_err nowc_ty
; (mds', ty', fvs) <- rnLDerivStrategy ctxt mds $ rnHsSigWcType ctxt ty
-- Check if there are any nested `forall`s or contexts, which are
-- illegal in the type of an instance declaration (see
-- Note [No nested foralls or contexts in instance types] in
-- GHC.Hs.Type).
; addNoNestedForallsContextsErr ctxt
(text "Standalone-derived instance head")
(getLHsInstDeclHead $ dropWildCards ty')
; warnNoDerivStrat mds' loc
; return (DerivDecl noAnn ty' mds' overlap, fvs) }
where
ctxt = DerivDeclCtx
inf_err = Just (text "Inferred type variables are not allowed")
loc = getLocA nowc_ty
nowc_ty = dropWildCards ty
standaloneDerivErr :: TcRnMessage
standaloneDerivErr
= mkTcRnUnknownMessage $ mkPlainError noHints $
hang (text "Illegal standalone deriving declaration")
2 (text "Use StandaloneDeriving to enable this extension")
{-
*********************************************************
* *
\subsection{Rules}
* *
*********************************************************
-}
rnHsRuleDecls :: RuleDecls GhcPs -> RnM (RuleDecls GhcRn, FreeVars)
rnHsRuleDecls (HsRules { rds_ext = (_, src)
, rds_rules = rules })
= do { (rn_rules,fvs) <- rnList rnHsRuleDecl rules
; return (HsRules { rds_ext = src
, rds_rules = rn_rules }, fvs) }
rnHsRuleDecl :: RuleDecl GhcPs -> RnM (RuleDecl GhcRn, FreeVars)
rnHsRuleDecl (HsRule { rd_ext = (_, st)
, rd_name = rule_name
, rd_act = act
, rd_tyvs = tyvs
, rd_tmvs = tmvs
, rd_lhs = lhs
, rd_rhs = rhs })
= do { let rdr_names_w_loc = map (get_var . unLoc) tmvs
; mapM_ warnForallIdentifier rdr_names_w_loc
; checkDupRdrNamesN rdr_names_w_loc
; checkShadowedRdrNames rdr_names_w_loc
; names <- newLocalBndrsRn rdr_names_w_loc
; let doc = RuleCtx (unLoc rule_name)
; bindRuleTyVars doc tyvs $ \ tyvs' ->
bindRuleTmVars doc tyvs' tmvs names $ \ tmvs' ->
do { (lhs', fv_lhs') <- rnLExpr lhs
; (rhs', fv_rhs') <- rnLExpr rhs
; checkValidRule (unLoc rule_name) names lhs' fv_lhs'
; return (HsRule { rd_ext = (HsRuleRn fv_lhs' fv_rhs', st)
, rd_name = rule_name
, rd_act = act
, rd_tyvs = tyvs'
, rd_tmvs = tmvs'
, rd_lhs = lhs'
, rd_rhs = rhs' }, fv_lhs' `plusFV` fv_rhs') } }
where
get_var :: RuleBndr GhcPs -> LocatedN RdrName
get_var (RuleBndrSig _ v _) = v
get_var (RuleBndr _ v) = v
bindRuleTmVars :: HsDocContext -> Maybe ty_bndrs
-> [LRuleBndr GhcPs] -> [Name]
-> ([LRuleBndr GhcRn] -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
bindRuleTmVars doc tyvs vars names thing_inside
= go vars names $ \ vars' ->
bindLocalNamesFV names (thing_inside vars')
where
go ((L l (RuleBndr _ (L loc _))) : vars) (n : ns) thing_inside
= go vars ns $ \ vars' ->
thing_inside (L l (RuleBndr noAnn (L loc n)) : vars')
go ((L l (RuleBndrSig _ (L loc _) bsig)) : vars)
(n : ns) thing_inside
= rnHsPatSigType bind_free_tvs doc bsig $ \ bsig' ->
go vars ns $ \ vars' ->
thing_inside (L l (RuleBndrSig noAnn (L loc n) bsig') : vars')
go [] [] thing_inside = thing_inside []
go vars names _ = pprPanic "bindRuleVars" (ppr vars $$ ppr names)
bind_free_tvs = case tyvs of Nothing -> AlwaysBind
Just _ -> NeverBind
bindRuleTyVars :: HsDocContext -> Maybe [LHsTyVarBndr () GhcPs]
-> (Maybe [LHsTyVarBndr () GhcRn] -> RnM (b, FreeVars))
-> RnM (b, FreeVars)
bindRuleTyVars doc (Just bndrs) thing_inside
= bindLHsTyVarBndrs doc WarnUnusedForalls Nothing bndrs (thing_inside . Just)
bindRuleTyVars _ _ thing_inside = thing_inside Nothing
{-
Note [Rule LHS validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check the shape of a rewrite rule LHS. Currently we only allow
LHSs of the form @(f e1 .. en)@, where @f@ is not one of the
@forall@'d variables.
We used restrict the form of the 'ei' to prevent you writing rules
with LHSs with a complicated desugaring (and hence unlikely to match);
(e.g. a case expression is not allowed: too elaborate.)
But there are legitimate non-trivial args ei, like sections and
lambdas. So it seems simpler not to check at all, and that is why
check_e is commented out.
-}
checkValidRule :: FastString -> [Name] -> LHsExpr GhcRn -> NameSet -> RnM ()
checkValidRule rule_name ids lhs' fv_lhs'
= do { -- Check for the form of the LHS
case (validRuleLhs ids lhs') of
Nothing -> return ()
Just bad -> failWithTc (badRuleLhsErr rule_name lhs' bad)
-- Check that LHS vars are all bound
; let bad_vars = [var | var <- ids, not (var `elemNameSet` fv_lhs')]
; mapM_ (addErr . badRuleVar rule_name) bad_vars }
validRuleLhs :: [Name] -> LHsExpr GhcRn -> Maybe (HsExpr GhcRn)
-- Nothing => OK
-- Just e => Not ok, and e is the offending sub-expression
validRuleLhs foralls lhs
= checkl lhs
where
checkl = check . unLoc
check (OpApp _ e1 op e2) = checkl op `mplus` checkl_e e1
`mplus` checkl_e e2
check (HsApp _ e1 e2) = checkl e1 `mplus` checkl_e e2
check (HsAppType _ e _ _) = checkl e
check (HsVar _ lv)
| (unLoc lv) `notElem` foralls = Nothing
check other = Just other -- Failure
-- Check an argument
checkl_e _ = Nothing
-- Was (check_e e); see Note [Rule LHS validity checking]
{- Commented out; see Note [Rule LHS validity checking] above
check_e (HsVar v) = Nothing
check_e (HsPar e) = checkl_e e
check_e (HsLit e) = Nothing
check_e (HsOverLit e) = Nothing
check_e (OpApp e1 op _ e2) = checkl_e e1 `mplus` checkl_e op `mplus` checkl_e e2
check_e (HsApp e1 e2) = checkl_e e1 `mplus` checkl_e e2
check_e (NegApp e _) = checkl_e e
check_e (ExplicitList _ es) = checkl_es es
check_e other = Just other -- Fails
checkl_es es = foldr (mplus . checkl_e) Nothing es
-}
badRuleVar :: FastString -> Name -> TcRnMessage
badRuleVar name var
= mkTcRnUnknownMessage $ mkPlainError noHints $
sep [text "Rule" <+> doubleQuotes (ftext name) <> colon,
text "Forall'd variable" <+> quotes (ppr var) <+>
text "does not appear on left hand side"]
badRuleLhsErr :: FastString -> LHsExpr GhcRn -> HsExpr GhcRn -> TcRnMessage
badRuleLhsErr name lhs bad_e
= mkTcRnUnknownMessage $ mkPlainError noHints $
sep [text "Rule" <+> pprRuleName name <> colon,
nest 2 (vcat [err,
text "in left-hand side:" <+> ppr lhs])]
$$
text "LHS must be of form (f e1 .. en) where f is not forall'd"
where
err =
case bad_e of
HsUnboundVar _ uv ->
pprScopeError uv $ notInScopeErr WL_Global uv
_ -> text "Illegal expression:" <+> ppr bad_e
{- **************************************************************
* *
Renaming type, class, instance and role declarations
* *
*****************************************************************
@rnTyDecl@ uses the `global name function' to create a new type
declaration in which local names have been replaced by their original
names, reporting any unknown names.
Renaming type variables is a pain. Because they now contain uniques,
it is necessary to pass in an association list which maps a parsed
tyvar to its @Name@ representation.
In some cases (type signatures of values),
it is even necessary to go over the type first
in order to get the set of tyvars used by it, make an assoc list,
and then go over it again to rename the tyvars!
However, we can also do some scoping checks at the same time.
Note [Dependency analysis of type, class, and instance decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A TyClGroup represents a strongly connected components of
type/class/instance decls, together with the role annotations for the
type/class declarations. The renamer uses strongly connected
component analysis to build these groups. We do this for a number of
reasons:
* Improve kind error messages. Consider
data T f a = MkT f a
data S f a = MkS f (T f a)
This has a kind error, but the error message is better if you
check T first, (fixing its kind) and *then* S. If you do kind
inference together, you might get an error reported in S, which
is jolly confusing. See #4875
* Increase kind polymorphism. See GHC.Tc.TyCl
Note [Grouping of type and class declarations]
Why do the instance declarations participate? At least two reasons
* Consider (#11348)
type family F a
type instance F Int = Bool
data R = MkR (F Int)
type Foo = 'MkR 'True
For Foo to kind-check we need to know that (F Int) ~ Bool. But we won't
know that unless we've looked at the type instance declaration for F
before kind-checking Foo.
* Another example is this (#3990).
data family Complex a
data instance Complex Double = CD {-# UNPACK #-} !Double
{-# UNPACK #-} !Double
data T = T {-# UNPACK #-} !(Complex Double)
Here, to generate the right kind of unpacked implementation for T,
we must have access to the 'data instance' declaration.
* Things become more complicated when we introduce transitive
dependencies through imported definitions, like in this scenario:
A.hs
type family Closed (t :: Type) :: Type where
Closed t = Open t
type family Open (t :: Type) :: Type
B.hs
data Q where
Q :: Closed Bool -> Q
type instance Open Int = Bool
type S = 'Q 'True
Somehow, we must ensure that the instance Open Int = Bool is checked before
the type synonym S. While we know that S depends upon 'Q depends upon Closed,
we have no idea that Closed depends upon Open!
To accommodate for these situations, we ensure that an instance is checked
before every @TyClDecl@ on which it does not depend. That's to say, instances
are checked as early as possible in @tcTyAndClassDecls@.
------------------------------------
So much for WHY. What about HOW? It's pretty easy:
(1) Rename the type/class, instance, and role declarations
individually
(2) Do strongly-connected component analysis of the type/class decls,
We'll make a TyClGroup for each SCC
In this step we treat a reference to a (promoted) data constructor
K as a dependency on its parent type. Thus
data T = K1 | K2
data S = MkS (Proxy 'K1)
Here S depends on 'K1 and hence on its parent T.
In this step we ignore instances; see
Note [No dependencies on data instances]
(3) Attach roles to the appropriate SCC
(4) Attach instances to the appropriate SCC.
We add an instance decl to SCC when:
all its free types/classes are bound in this SCC or earlier ones
(5) We make an initial TyClGroup, with empty group_tyclds, for any
(orphan) instances that affect only imported types/classes
Steps (3) and (4) are done by the (mapAccumL mk_group) call.
Note [No dependencies on data instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
data family D a
data instance D Int = D1
data S = MkS (Proxy 'D1)
Here the declaration of S depends on the /data instance/ declaration
for 'D Int'. That makes things a lot more complicated, especially
if the data instance is an associated type of an enclosing class instance.
(And the class instance might have several associated type instances
with different dependency structure!)
Ugh. For now we simply don't allow promotion of data constructors for
data instances. See Note [AFamDataCon: not promoting data family
constructors] in GHC.Tc.Utils.Env
-}
rnTyClDecls :: [TyClGroup GhcPs]
-> RnM ([TyClGroup GhcRn], FreeVars)
-- Rename the declarations and do dependency analysis on them
rnTyClDecls tycl_ds
= do { -- Rename the type/class, instance, and role declarations
; tycls_w_fvs <- mapM (wrapLocFstMA rnTyClDecl) (tyClGroupTyClDecls tycl_ds)
; let tc_names = mkNameSet (map (tcdName . unLoc . fst) tycls_w_fvs)
; kisigs_w_fvs <- rnStandaloneKindSignatures tc_names (tyClGroupKindSigs tycl_ds)
; instds_w_fvs <- mapM (wrapLocFstMA rnSrcInstDecl) (tyClGroupInstDecls tycl_ds)
; role_annots <- rnRoleAnnots tc_names (tyClGroupRoleDecls tycl_ds)
-- Do SCC analysis on the type/class decls
; rdr_env <- getGlobalRdrEnv
; let tycl_sccs = depAnalTyClDecls rdr_env kisig_fv_env tycls_w_fvs
role_annot_env = mkRoleAnnotEnv role_annots
(kisig_env, kisig_fv_env) = mkKindSig_fv_env kisigs_w_fvs
inst_ds_map = mkInstDeclFreeVarsMap rdr_env tc_names instds_w_fvs
(init_inst_ds, rest_inst_ds) = getInsts [] inst_ds_map
first_group
| null init_inst_ds = []
| otherwise = [TyClGroup { group_ext = noExtField
, group_tyclds = []
, group_kisigs = []
, group_roles = []
, group_instds = init_inst_ds }]
(final_inst_ds, groups)
= mapAccumL (mk_group role_annot_env kisig_env) rest_inst_ds tycl_sccs
all_fvs = foldr (plusFV . snd) emptyFVs tycls_w_fvs `plusFV`
foldr (plusFV . snd) emptyFVs instds_w_fvs `plusFV`
foldr (plusFV . snd) emptyFVs kisigs_w_fvs
all_groups = first_group ++ groups
; massertPpr (null final_inst_ds)
(ppr instds_w_fvs
$$ ppr inst_ds_map
$$ ppr (flattenSCCs tycl_sccs)
$$ ppr final_inst_ds)
; traceRn "rnTycl dependency analysis made groups" (ppr all_groups)
; return (all_groups, all_fvs) }
where
mk_group :: RoleAnnotEnv
-> KindSigEnv
-> InstDeclFreeVarsMap
-> SCC (LTyClDecl GhcRn)
-> (InstDeclFreeVarsMap, TyClGroup GhcRn)
mk_group role_env kisig_env inst_map scc
= (inst_map', group)
where
tycl_ds = flattenSCC scc
bndrs = map (tcdName . unLoc) tycl_ds
roles = getRoleAnnots bndrs role_env
kisigs = getKindSigs bndrs kisig_env
(inst_ds, inst_map') = getInsts bndrs inst_map
group = TyClGroup { group_ext = noExtField
, group_tyclds = tycl_ds
, group_kisigs = kisigs
, group_roles = roles
, group_instds = inst_ds }
-- | Free variables of standalone kind signatures.
newtype KindSig_FV_Env = KindSig_FV_Env (NameEnv FreeVars)
lookupKindSig_FV_Env :: KindSig_FV_Env -> Name -> FreeVars
lookupKindSig_FV_Env (KindSig_FV_Env e) name
= fromMaybe emptyFVs (lookupNameEnv e name)
-- | Standalone kind signatures.
type KindSigEnv = NameEnv (LStandaloneKindSig GhcRn)
mkKindSig_fv_env :: [(LStandaloneKindSig GhcRn, FreeVars)] -> (KindSigEnv, KindSig_FV_Env)
mkKindSig_fv_env kisigs_w_fvs = (kisig_env, kisig_fv_env)
where
kisig_env = mapNameEnv fst compound_env
kisig_fv_env = KindSig_FV_Env (mapNameEnv snd compound_env)
compound_env :: NameEnv (LStandaloneKindSig GhcRn, FreeVars)
= mkNameEnvWith (standaloneKindSigName . unLoc . fst) kisigs_w_fvs
getKindSigs :: [Name] -> KindSigEnv -> [LStandaloneKindSig GhcRn]
getKindSigs bndrs kisig_env = mapMaybe (lookupNameEnv kisig_env) bndrs
rnStandaloneKindSignatures
:: NameSet -- names of types and classes in the current TyClGroup
-> [LStandaloneKindSig GhcPs]
-> RnM [(LStandaloneKindSig GhcRn, FreeVars)]
rnStandaloneKindSignatures tc_names kisigs
= do { let (no_dups, dup_kisigs) = removeDups (compare `on` get_name) kisigs
get_name = standaloneKindSigName . unLoc
; mapM_ dupKindSig_Err dup_kisigs
; mapM (wrapLocFstMA (rnStandaloneKindSignature tc_names)) no_dups
}
rnStandaloneKindSignature
:: NameSet -- names of types and classes in the current TyClGroup
-> StandaloneKindSig GhcPs
-> RnM (StandaloneKindSig GhcRn, FreeVars)
rnStandaloneKindSignature tc_names (StandaloneKindSig _ v ki)
= do { standalone_ki_sig_ok <- xoptM LangExt.StandaloneKindSignatures
; unless standalone_ki_sig_ok $ addErr standaloneKiSigErr
; new_v <- lookupSigCtxtOccRnN (TopSigCtxt tc_names) (text "standalone kind signature") v
; let doc = StandaloneKindSigCtx (ppr v)
; (new_ki, fvs) <- rnHsSigType doc KindLevel ki
; return (StandaloneKindSig noExtField new_v new_ki, fvs)
}
where
standaloneKiSigErr :: TcRnMessage
standaloneKiSigErr = mkTcRnUnknownMessage $ mkPlainError noHints $
hang (text "Illegal standalone kind signature")
2 (text "Did you mean to enable StandaloneKindSignatures?")
depAnalTyClDecls :: GlobalRdrEnv
-> KindSig_FV_Env
-> [(LTyClDecl GhcRn, FreeVars)]
-> [SCC (LTyClDecl GhcRn)]
-- See Note [Dependency analysis of type, class, and instance decls]
depAnalTyClDecls rdr_env kisig_fv_env ds_w_fvs
= stronglyConnCompFromEdgedVerticesUniq edges
where
edges :: [ Node Name (LTyClDecl GhcRn) ]
edges = [ DigraphNode d name (map (getParent rdr_env) (nonDetEltsUniqSet deps))
| (d, fvs) <- ds_w_fvs,
let { name = tcdName (unLoc d)
; kisig_fvs = lookupKindSig_FV_Env kisig_fv_env name
; deps = fvs `plusFV` kisig_fvs
}
]
-- It's OK to use nonDetEltsUFM here as
-- stronglyConnCompFromEdgedVertices is still deterministic
-- even if the edges are in nondeterministic order as explained
-- in Note [Deterministic SCC] in GHC.Data.Graph.Directed.
toParents :: GlobalRdrEnv -> NameSet -> NameSet
toParents rdr_env ns
= nonDetStrictFoldUniqSet add emptyNameSet ns
-- It's OK to use a non-deterministic fold because we immediately forget the
-- ordering by creating a set
where
add n s = extendNameSet s (getParent rdr_env n)
getParent :: GlobalRdrEnv -> Name -> Name
getParent rdr_env n
= case lookupGRE_Name rdr_env n of
Just gre -> case gre_par gre of
ParentIs { par_is = p } -> p
_ -> n
Nothing -> n
{- ******************************************************
* *
Role annotations
* *
****************************************************** -}
-- | Renames role annotations, returning them as the values in a NameEnv
-- and checks for duplicate role annotations.
-- It is quite convenient to do both of these in the same place.
-- See also Note [Role annotations in the renamer]
rnRoleAnnots :: NameSet
-> [LRoleAnnotDecl GhcPs]
-> RnM [LRoleAnnotDecl GhcRn]
rnRoleAnnots tc_names role_annots
= do { -- Check for duplicates *before* renaming, to avoid
-- lumping together all the unboundNames
let (no_dups, dup_annots) = removeDups (compare `on` get_name) role_annots
get_name = roleAnnotDeclName . unLoc
; mapM_ dupRoleAnnotErr dup_annots
; mapM (wrapLocMA rn_role_annot1) no_dups }
where
rn_role_annot1 (RoleAnnotDecl _ tycon roles)
= do { -- the name is an *occurrence*, but look it up only in the
-- decls defined in this group (see #10263)
tycon' <- lookupSigCtxtOccRnN (RoleAnnotCtxt tc_names)
(text "role annotation")
tycon
; return $ RoleAnnotDecl noExtField tycon' roles }
dupRoleAnnotErr :: NonEmpty (LRoleAnnotDecl GhcPs) -> RnM ()
dupRoleAnnotErr list
= addErrAt (locA loc) $ mkTcRnUnknownMessage $ mkPlainError noHints $
hang (text "Duplicate role annotations for" <+>
quotes (ppr $ roleAnnotDeclName first_decl) <> colon)
2 (vcat $ map pp_role_annot $ NE.toList sorted_list)
where
sorted_list = NE.sortBy cmp_loc list
((L loc first_decl) :| _) = sorted_list
pp_role_annot (L loc decl) = hang (ppr decl)
4 (text "-- written at" <+> ppr (locA loc))
cmp_loc = SrcLoc.leftmost_smallest `on` getLocA
dupKindSig_Err :: NonEmpty (LStandaloneKindSig GhcPs) -> RnM ()
dupKindSig_Err list
= addErrAt (locA loc) $ mkTcRnUnknownMessage $ mkPlainError noHints $
hang (text "Duplicate standalone kind signatures for" <+>
quotes (ppr $ standaloneKindSigName first_decl) <> colon)
2 (vcat $ map pp_kisig $ NE.toList sorted_list)
where
sorted_list = NE.sortBy cmp_loc list
((L loc first_decl) :| _) = sorted_list
pp_kisig (L loc decl) =
hang (ppr decl) 4 (text "-- written at" <+> ppr (locA loc))
cmp_loc = SrcLoc.leftmost_smallest `on` getLocA
{- Note [Role annotations in the renamer]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must ensure that a type's role annotation is put in the same group as the
proper type declaration. This is because role annotations are needed during
type-checking when creating the type's TyCon. So, rnRoleAnnots builds a
NameEnv (LRoleAnnotDecl Name) that maps a name to a role annotation for that
type, if any. Then, this map can be used to add the role annotations to the
groups after dependency analysis.
This process checks for duplicate role annotations, where we must be careful
to do the check *before* renaming to avoid calling all unbound names duplicates
of one another.
The renaming process, as usual, might identify and report errors for unbound
names. This is done by using lookupSigCtxtOccRn in rnRoleAnnots (using
lookupGlobalOccRn led to #8485).
-}
{- ******************************************************
* *
Dependency info for instances
* *
****************************************************** -}
----------------------------------------------------------
-- | 'InstDeclFreeVarsMap is an association of an
-- @InstDecl@ with @FreeVars@. The @FreeVars@ are
-- the tycon names that are both
-- a) free in the instance declaration
-- b) bound by this group of type/class/instance decls
type InstDeclFreeVarsMap = [(LInstDecl GhcRn, FreeVars)]
-- | Construct an @InstDeclFreeVarsMap@ by eliminating any @Name@s from the
-- @FreeVars@ which are *not* the binders of a @TyClDecl@.
mkInstDeclFreeVarsMap :: GlobalRdrEnv
-> NameSet
-> [(LInstDecl GhcRn, FreeVars)]
-> InstDeclFreeVarsMap
mkInstDeclFreeVarsMap rdr_env tycl_bndrs inst_ds_fvs
= [ (inst_decl, toParents rdr_env fvs `intersectFVs` tycl_bndrs)
| (inst_decl, fvs) <- inst_ds_fvs ]
-- | Get the @LInstDecl@s which have empty @FreeVars@ sets, and the
-- @InstDeclFreeVarsMap@ with these entries removed.
-- We call (getInsts tcs instd_map) when we've completed the declarations
-- for 'tcs'. The call returns (inst_decls, instd_map'), where
-- inst_decls are the instance declarations all of
-- whose free vars are now defined
-- instd_map' is the inst-decl map with 'tcs' removed from
-- the free-var set
getInsts :: [Name] -> InstDeclFreeVarsMap
-> ([LInstDecl GhcRn], InstDeclFreeVarsMap)
getInsts bndrs inst_decl_map
= partitionWith pick_me inst_decl_map
where
pick_me :: (LInstDecl GhcRn, FreeVars)
-> Either (LInstDecl GhcRn) (LInstDecl GhcRn, FreeVars)
pick_me (decl, fvs)
| isEmptyNameSet depleted_fvs = Left decl
| otherwise = Right (decl, depleted_fvs)
where
depleted_fvs = delFVs bndrs fvs
{- ******************************************************
* *
Renaming a type or class declaration
* *
****************************************************** -}
rnTyClDecl :: TyClDecl GhcPs
-> RnM (TyClDecl GhcRn, FreeVars)
-- All flavours of top-level type family declarations ("type family", "newtype
-- family", and "data family")
rnTyClDecl (FamDecl { tcdFam = fam })
= do { (fam', fvs) <- rnFamDecl Nothing fam
; return (FamDecl noExtField fam', fvs) }
rnTyClDecl (SynDecl { tcdLName = tycon, tcdTyVars = tyvars,
tcdFixity = fixity, tcdRhs = rhs })
= do { tycon' <- lookupLocatedTopConstructorRnN tycon
; let kvs = extractHsTyRdrTyVarsKindVars rhs
doc = TySynCtx tycon
; traceRn "rntycl-ty" (ppr tycon <+> ppr kvs)
; bindHsQTyVars doc Nothing kvs tyvars $ \ tyvars' _ ->
do { (rhs', fvs) <- rnTySyn doc rhs
; return (SynDecl { tcdLName = tycon', tcdTyVars = tyvars'
, tcdFixity = fixity
, tcdRhs = rhs', tcdSExt = fvs }, fvs) } }
-- "data", "newtype" declarations
rnTyClDecl (DataDecl
{ tcdLName = tycon, tcdTyVars = tyvars,
tcdFixity = fixity,
tcdDataDefn = defn@HsDataDefn{ dd_cons = cons, dd_kindSig = kind_sig} })
= do { tycon' <- lookupLocatedTopConstructorRnN tycon
; let kvs = extractDataDefnKindVars defn
doc = TyDataCtx tycon
new_or_data = dataDefnConsNewOrData cons
; traceRn "rntycl-data" (ppr tycon <+> ppr kvs)
; bindHsQTyVars doc Nothing kvs tyvars $ \ tyvars' no_rhs_kvs ->
do { (defn', fvs) <- rnDataDefn doc defn
; cusk <- data_decl_has_cusk tyvars' new_or_data no_rhs_kvs kind_sig
; let rn_info = DataDeclRn { tcdDataCusk = cusk
, tcdFVs = fvs }
; traceRn "rndata" (ppr tycon <+> ppr cusk <+> ppr no_rhs_kvs)
; return (DataDecl { tcdLName = tycon'
, tcdTyVars = tyvars'
, tcdFixity = fixity
, tcdDataDefn = defn'
, tcdDExt = rn_info }, fvs) } }
rnTyClDecl (ClassDecl { tcdLayout = layout,
tcdCtxt = context, tcdLName = lcls,
tcdTyVars = tyvars, tcdFixity = fixity,
tcdFDs = fds, tcdSigs = sigs,
tcdMeths = mbinds, tcdATs = ats, tcdATDefs = at_defs,
tcdDocs = docs})
= do { lcls' <- lookupLocatedTopConstructorRnN lcls
; let cls' = unLoc lcls'
kvs = [] -- No scoped kind vars except those in
-- kind signatures on the tyvars
-- Tyvars scope over superclass context and method signatures
; ((tyvars', context', fds', ats'), stuff_fvs)
<- bindHsQTyVars cls_doc Nothing kvs tyvars $ \ tyvars' _ -> do
-- Checks for distinct tyvars
{ (context', cxt_fvs) <- rnMaybeContext cls_doc context
; fds' <- rnFds fds
-- The fundeps have no free variables
; (ats', fv_ats) <- rnATDecls cls' ats
; let fvs = cxt_fvs `plusFV`
fv_ats
; return ((tyvars', context', fds', ats'), fvs) }
; (at_defs', fv_at_defs) <- rnList (rnTyFamDefltDecl cls') at_defs
-- No need to check for duplicate associated type decls
-- since that is done by GHC.Rename.Names.extendGlobalRdrEnvRn
-- Check the signatures
-- First process the class op sigs (op_sigs), then the fixity sigs (non_op_sigs).
; let sig_rdr_names_w_locs =
[op | L _ (ClassOpSig _ False ops _) <- sigs
, op <- ops]
; checkDupRdrNamesN sig_rdr_names_w_locs
-- Typechecker is responsible for checking that we only
-- give default-method bindings for things in this class.
-- The renamer *could* check this for class decls, but can't
-- for instance decls.
-- The newLocals call is tiresome: given a generic class decl
-- class C a where
-- op :: a -> a
-- op {| x+y |} (Inl a) = ...
-- op {| x+y |} (Inr b) = ...
-- op {| a*b |} (a*b) = ...
-- we want to name both "x" tyvars with the same unique, so that they are
-- easy to group together in the typechecker.
; (mbinds', sigs', meth_fvs)
<- rnMethodBinds True cls' (hsAllLTyVarNames tyvars') mbinds sigs
-- No need to check for duplicate method signatures
-- since that is done by GHC.Rename.Names.extendGlobalRdrEnvRn
-- and the methods are already in scope
; let all_fvs = meth_fvs `plusFV` stuff_fvs `plusFV` fv_at_defs
; docs' <- traverse rnLDocDecl docs
; return (ClassDecl { tcdLayout = rnLayoutInfo layout,
tcdCtxt = context', tcdLName = lcls',
tcdTyVars = tyvars', tcdFixity = fixity,
tcdFDs = fds', tcdSigs = sigs',
tcdMeths = mbinds', tcdATs = ats', tcdATDefs = at_defs',
tcdDocs = docs', tcdCExt = all_fvs },
all_fvs ) }
where
cls_doc = ClassDeclCtx lcls
rnLayoutInfo :: LayoutInfo GhcPs -> LayoutInfo GhcRn
rnLayoutInfo (ExplicitBraces ob cb) = ExplicitBraces ob cb
rnLayoutInfo (VirtualBraces n) = VirtualBraces n
rnLayoutInfo NoLayoutInfo = NoLayoutInfo
-- Does the data type declaration include a CUSK?
data_decl_has_cusk :: LHsQTyVars (GhcPass p) -> NewOrData -> Bool -> Maybe (LHsKind (GhcPass p')) -> RnM Bool
data_decl_has_cusk tyvars new_or_data no_rhs_kvs kind_sig = do
{ -- See Note [Unlifted Newtypes and CUSKs], and for a broader
-- picture, see Note [Implementation of UnliftedNewtypes].
; unlifted_newtypes <- xoptM LangExt.UnliftedNewtypes
; let non_cusk_newtype
| NewType <- new_or_data =
unlifted_newtypes && isNothing kind_sig
| otherwise = False
-- See Note [CUSKs: complete user-supplied kind signatures] in GHC.Hs.Decls
; return $ hsTvbAllKinded tyvars && no_rhs_kvs && not non_cusk_newtype
}
{- Note [Unlifted Newtypes and CUSKs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When unlifted newtypes are enabled, a newtype must have a kind signature
in order to be considered have a CUSK. This is because the flow of
kind inference works differently. Consider:
newtype Foo = FooC Int
When UnliftedNewtypes is disabled, we decide that Foo has kind
`TYPE 'LiftedRep` without looking inside the data constructor. So, we
can say that Foo has a CUSK. However, when UnliftedNewtypes is enabled,
we fill in the kind of Foo as a metavar that gets solved by unification
with the kind of the field inside FooC (that is, Int, whose kind is
`TYPE 'LiftedRep`). But since we have to look inside the data constructors
to figure out the kind signature of Foo, it does not have a CUSK.
See Note [Implementation of UnliftedNewtypes] for where this fits in to
the broader picture of UnliftedNewtypes.
-}
-- "type" and "type instance" declarations
rnTySyn :: HsDocContext -> LHsType GhcPs -> RnM (LHsType GhcRn, FreeVars)
rnTySyn doc rhs = rnLHsType doc rhs
rnDataDefn :: HsDocContext -> HsDataDefn GhcPs
-> RnM (HsDataDefn GhcRn, FreeVars)
rnDataDefn doc (HsDataDefn { dd_cType = cType, dd_ctxt = context, dd_cons = condecls
, dd_kindSig = m_sig, dd_derivs = derivs })
= do { -- DatatypeContexts (i.e., stupid contexts) can't be combined with
-- GADT syntax. See Note [The stupid context] in GHC.Core.DataCon.
checkTc (h98_style || null (fromMaybeContext context))
(badGadtStupidTheta doc)
-- Check restrictions on "type data" declarations.
-- See Note [Type data declarations].
; when (isTypeDataDefnCons condecls) check_type_data
; (m_sig', sig_fvs) <- case m_sig of
Just sig -> first Just <$> rnLHsKind doc sig
Nothing -> return (Nothing, emptyFVs)
; (context', fvs1) <- rnMaybeContext doc context
; (derivs', fvs3) <- rn_derivs derivs
-- For the constructor declarations, drop the LocalRdrEnv
-- in the GADT case, where the type variables in the declaration
-- do not scope over the constructor signatures
-- data T a where { T1 :: forall b. b-> b }
; let { zap_lcl_env | h98_style = \ thing -> thing
| otherwise = setLocalRdrEnv emptyLocalRdrEnv }
; (condecls', con_fvs) <- zap_lcl_env $ rnConDecls condecls
-- No need to check for duplicate constructor decls
-- since that is done by GHC.Rename.Names.extendGlobalRdrEnvRn
; let all_fvs = fvs1 `plusFV` fvs3 `plusFV`
con_fvs `plusFV` sig_fvs
; return ( HsDataDefn { dd_ext = noExtField, dd_cType = cType
, dd_ctxt = context', dd_kindSig = m_sig'
, dd_cons = condecls'
, dd_derivs = derivs' }
, all_fvs )
}
where
h98_style = not $ anyLConIsGadt condecls -- Note [Stupid theta]
rn_derivs ds
= do { deriv_strats_ok <- xoptM LangExt.DerivingStrategies
; failIfTc (lengthExceeds ds 1 && not deriv_strats_ok)
multipleDerivClausesErr
; (ds', fvs) <- mapFvRn (rnLHsDerivingClause doc) ds
; return (ds', fvs) }
-- Given a "type data" declaration, check that the TypeData extension
-- is enabled and check restrictions (R1), (R2), (R3) and (R5)
-- on the declaration. See Note [Type data declarations].
check_type_data
= do { unlessXOptM LangExt.TypeData $ failWith TcRnIllegalTypeData
; unless (null (fromMaybeContext context)) $
failWith $ TcRnTypeDataForbids TypeDataForbidsDatatypeContexts
; mapM_ (addLocMA check_type_data_condecl) condecls
; unless (null derivs) $
failWith $ TcRnTypeDataForbids TypeDataForbidsDerivingClauses
}
-- Check restrictions (R2) and (R3) on a "type data" constructor.
-- See Note [Type data declarations].
check_type_data_condecl :: ConDecl GhcPs -> RnM ()
check_type_data_condecl condecl
= do {
; when (has_labelled_fields condecl) $
failWith $ TcRnTypeDataForbids TypeDataForbidsLabelledFields
; when (has_strictness_flags condecl) $
failWith $ TcRnTypeDataForbids TypeDataForbidsStrictnessAnnotations
}
has_labelled_fields (ConDeclGADT { con_g_args = RecConGADT _ _ }) = True
has_labelled_fields (ConDeclH98 { con_args = RecCon rec })
= not (null (unLoc rec))
has_labelled_fields _ = False
has_strictness_flags condecl
= any (is_strict . getBangStrictness . hsScaledThing) (con_args condecl)
is_strict (HsSrcBang _ _ s) = isSrcStrict s
con_args (ConDeclGADT { con_g_args = PrefixConGADT args }) = args
con_args (ConDeclH98 { con_args = PrefixCon _ args }) = args
con_args (ConDeclH98 { con_args = InfixCon arg1 arg2 }) = [arg1, arg2]
con_args _ = []
{-
Note [Type data declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With the TypeData extension (GHC proposal #106), one can write `type data`
declarations, like
type data Nat = Zero | Succ Nat
or equivalently in GADT style:
type data Nat where
Zero :: Nat
Succ :: Nat -> Nat
This defines the constructors `Zero` and `Succ` in the TcCls namespace
(type constructors and classes) instead of the Data namespace (data
constructors). This contrasts with the DataKinds extension, which
allows constructors defined in the Data namespace to be promoted to the
TcCls namespace at the point of use in a type.
Type data declarations have the syntax of `data` declarations (but not
`newtype` declarations), either ordinary algebraic data types or GADTs,
preceded by `type`, with the following restrictions:
(R1) There are no data type contexts (even with the DatatypeContexts
extension).
(R2) There are no labelled fields. Perhaps these could be supported
using type families, but they are omitted for now.
(R3) There are no strictness flags, because they don't make sense at
the type level.
(R4) The types of the constructors contain no constraints other than
equality constraints. (This is the same restriction imposed
on constructors to be promoted with the DataKinds extension in
dc_theta_illegal_constraint called from GHC.Tc.Gen.HsType.tcTyVar,
but in that case the restriction is imposed if and when a data
constructor is used in a type, whereas here it is imposed at
the point of definition. See also Note [Constraints in kinds]
in GHC.Core.TyCo.Rep.)
(R5) There are no deriving clauses.
The main parts of the implementation are:
* The parser recognizes `type data` (but not `type newtype`).
* During the initial construction of the AST,
GHC.Parser.PostProcess.checkNewOrData sets the `Bool` argument of the
`DataTypeCons` inside a `HsDataDefn` to mark a `type data` declaration.
It also puts the the constructor names (`Zero` and `Succ` in our
example) in the TcCls namespace.
* GHC.Rename.Module.rnDataDefn calls `check_type_data` on these
declarations, which checks that the TypeData extension is enabled and
checks restrictions (R1), (R2), (R3) and (R5). They could equally
well be checked in the typechecker, but we err on the side of catching
imposters early.
* GHC.Tc.TyCl.checkValidDataCon checks restriction (R4) on these declarations.
* When beginning to type check a mutually recursive group of declarations,
the `type data` constructors (`Zero` and `Succ` in our example) are
added to the type-checker environment as `APromotionErr TyConPE` by
GHC.Tc.TyCl.mkPromotionErrorEnv, so they cannot be used within the
recursive group. This mirrors the DataKinds behaviour described
at Note [Recursion and promoting data constructors] in GHC.Tc.TyCl.
For example, this is rejected:
type data T f = K (f (K Int)) -- illegal: tycon K is recursively defined
* The `type data` data type, such as `Nat` in our example, is represented
by a `TyCon` that is an `AlgTyCon`, but its `AlgTyConRhs` has the
`is_type_data` field set.
* The constructors of the data type, `Zero` and `Succ` in our example,
are each represented by a `DataCon` as usual. That `DataCon`'s
`dcPromotedField` is a `TyCon` (for `Zero`, say) that you can use
in a type.
* After a `type data` declaration has been type-checked, the type-checker
environment entry for each constructor (`Zero` and `Succ` in our
example) is just the promoted type constructor, not the bundle required
for a data constructor. (GHC.Types.TyThing.implicitTyConThings)
* GHC.Core.TyCon.isDataKindsPromotedDataCon ignores promoted constructors
from `type data`, which do not use the distinguishing quote mark added
to constructors promoted by DataKinds.
* GHC.Core.TyCon.isDataTyCon ignores types coming from a `type data`
declaration (by checking the `is_type_data` field), so that these do
not contribute executable code such as constructor wrappers.
* The `is_type_data` field is copied into a Boolean argument
of the `IfDataTyCon` constructor of `IfaceConDecls` by
GHC.Iface.Make.tyConToIfaceDecl.
* The Template Haskell `Dec` type has an constructor `TypeDataD` for
`type data` declarations. When these are converted back to Hs types
in a splice, the constructors are placed in the TcCls namespace.
-}
warnNoDerivStrat :: Maybe (LDerivStrategy GhcRn)
-> SrcSpan
-> RnM ()
warnNoDerivStrat mds loc
= do { dyn_flags <- getDynFlags
; case mds of
Nothing ->
let dia = mkTcRnUnknownMessage $
mkPlainDiagnostic (WarningWithFlag Opt_WarnMissingDerivingStrategies) noHints $
(if xopt LangExt.DerivingStrategies dyn_flags
then no_strat_warning
else no_strat_warning $+$ deriv_strat_nenabled
)
in addDiagnosticAt loc dia
_ -> pure ()
}
where
no_strat_warning :: SDoc
no_strat_warning = text "No deriving strategy specified. Did you want stock"
<> text ", newtype, or anyclass?"
deriv_strat_nenabled :: SDoc
deriv_strat_nenabled = text "Use DerivingStrategies to specify a strategy."
rnLHsDerivingClause :: HsDocContext -> LHsDerivingClause GhcPs
-> RnM (LHsDerivingClause GhcRn, FreeVars)
rnLHsDerivingClause doc
(L loc (HsDerivingClause
{ deriv_clause_ext = noExtField
, deriv_clause_strategy = dcs
, deriv_clause_tys = dct }))
= do { (dcs', dct', fvs)
<- rnLDerivStrategy doc dcs $ rn_deriv_clause_tys dct
; warnNoDerivStrat dcs' (locA loc)
; pure ( L loc (HsDerivingClause { deriv_clause_ext = noExtField
, deriv_clause_strategy = dcs'
, deriv_clause_tys = dct' })
, fvs ) }
where
rn_deriv_clause_tys :: LDerivClauseTys GhcPs
-> RnM (LDerivClauseTys GhcRn, FreeVars)
rn_deriv_clause_tys (L l dct) = case dct of
DctSingle x ty -> do
(ty', fvs) <- rn_clause_pred ty
pure (L l (DctSingle x ty'), fvs)
DctMulti x tys -> do
(tys', fvs) <- mapFvRn rn_clause_pred tys
pure (L l (DctMulti x tys'), fvs)
rn_clause_pred :: LHsSigType GhcPs -> RnM (LHsSigType GhcRn, FreeVars)
rn_clause_pred pred_ty = do
let inf_err = Just (text "Inferred type variables are not allowed")
checkInferredVars doc inf_err pred_ty
ret@(pred_ty', _) <- rnHsSigType doc TypeLevel pred_ty
-- Check if there are any nested `forall`s, which are illegal in a
-- `deriving` clause.
-- See Note [No nested foralls or contexts in instance types]
-- (Wrinkle: Derived instances) in GHC.Hs.Type.
addNoNestedForallsContextsErr doc (text "Derived class type")
(getLHsInstDeclHead pred_ty')
pure ret
rnLDerivStrategy :: forall a.
HsDocContext
-> Maybe (LDerivStrategy GhcPs)
-> RnM (a, FreeVars)
-> RnM (Maybe (LDerivStrategy GhcRn), a, FreeVars)
rnLDerivStrategy doc mds thing_inside
= case mds of
Nothing -> boring_case Nothing
Just (L loc ds) ->
setSrcSpanA loc $ do
(ds', thing, fvs) <- rn_deriv_strat ds
pure (Just (L loc ds'), thing, fvs)
where
rn_deriv_strat :: DerivStrategy GhcPs
-> RnM (DerivStrategy GhcRn, a, FreeVars)
rn_deriv_strat ds = do
let extNeeded :: LangExt.Extension
extNeeded
| ViaStrategy{} <- ds
= LangExt.DerivingVia
| otherwise
= LangExt.DerivingStrategies
unlessXOptM extNeeded $
failWith $ illegalDerivStrategyErr ds
case ds of
StockStrategy _ -> boring_case (StockStrategy noExtField)
AnyclassStrategy _ -> boring_case (AnyclassStrategy noExtField)
NewtypeStrategy _ -> boring_case (NewtypeStrategy noExtField)
ViaStrategy (XViaStrategyPs _ via_ty) ->
do checkInferredVars doc inf_err via_ty
(via_ty', fvs1) <- rnHsSigType doc TypeLevel via_ty
let HsSig { sig_bndrs = via_outer_bndrs
, sig_body = via_body } = unLoc via_ty'
via_tvs = hsOuterTyVarNames via_outer_bndrs
-- Check if there are any nested `forall`s, which are illegal in a
-- `via` type.
-- See Note [No nested foralls or contexts in instance types]
-- (Wrinkle: Derived instances) in GHC.Hs.Type.
addNoNestedForallsContextsErr doc
(quotes (text "via") <+> text "type") via_body
(thing, fvs2) <- bindLocalNamesFV via_tvs thing_inside
pure (ViaStrategy via_ty', thing, fvs1 `plusFV` fvs2)
inf_err = Just (text "Inferred type variables are not allowed")
boring_case :: ds -> RnM (ds, a, FreeVars)
boring_case ds = do
(thing, fvs) <- thing_inside
pure (ds, thing, fvs)
badGadtStupidTheta :: HsDocContext -> TcRnMessage
badGadtStupidTheta _
= mkTcRnUnknownMessage $ mkPlainError noHints $
vcat [text "No context is allowed on a GADT-style data declaration",
text "(You can put a context on each constructor, though.)"]
illegalDerivStrategyErr :: DerivStrategy GhcPs -> TcRnMessage
illegalDerivStrategyErr ds
= mkTcRnUnknownMessage $ mkPlainError noHints $
vcat [ text "Illegal deriving strategy" <> colon <+> derivStrategyName ds
, text enableStrategy ]
where
enableStrategy :: String
enableStrategy
| ViaStrategy{} <- ds
= "Use DerivingVia to enable this extension"
| otherwise
= "Use DerivingStrategies to enable this extension"
multipleDerivClausesErr :: TcRnMessage
multipleDerivClausesErr
= mkTcRnUnknownMessage $ mkPlainError noHints $
vcat [ text "Illegal use of multiple, consecutive deriving clauses"
, text "Use DerivingStrategies to allow this" ]
rnFamDecl :: Maybe Name -- Just cls => this FamilyDecl is nested
-- inside an *class decl* for cls
-- used for associated types
-> FamilyDecl GhcPs
-> RnM (FamilyDecl GhcRn, FreeVars)
rnFamDecl mb_cls (FamilyDecl { fdLName = tycon, fdTyVars = tyvars
, fdTopLevel = toplevel
, fdFixity = fixity
, fdInfo = info, fdResultSig = res_sig
, fdInjectivityAnn = injectivity })
= do { tycon' <- lookupLocatedTopConstructorRnN tycon
; ((tyvars', res_sig', injectivity'), fv1) <-
bindHsQTyVars doc mb_cls kvs tyvars $ \ tyvars' _ ->
do { let rn_sig = rnFamResultSig doc
; (res_sig', fv_kind) <- wrapLocFstMA rn_sig res_sig
; injectivity' <- traverse (rnInjectivityAnn tyvars' res_sig')
injectivity
; return ( (tyvars', res_sig', injectivity') , fv_kind ) }
; (info', fv2) <- rn_info info
; return (FamilyDecl { fdExt = noAnn
, fdLName = tycon', fdTyVars = tyvars'
, fdTopLevel = toplevel
, fdFixity = fixity
, fdInfo = info', fdResultSig = res_sig'
, fdInjectivityAnn = injectivity' }
, fv1 `plusFV` fv2) }
where
doc = TyFamilyCtx tycon
kvs = extractRdrKindSigVars res_sig
----------------------
rn_info :: FamilyInfo GhcPs -> RnM (FamilyInfo GhcRn, FreeVars)
rn_info (ClosedTypeFamily (Just eqns))
= do { (eqns', fvs)
<- rnList (rnTyFamInstEqn (NonAssocTyFamEqn ClosedTyFam)) eqns
-- no class context
; return (ClosedTypeFamily (Just eqns'), fvs) }
rn_info (ClosedTypeFamily Nothing)
= return (ClosedTypeFamily Nothing, emptyFVs)
rn_info OpenTypeFamily = return (OpenTypeFamily, emptyFVs)
rn_info DataFamily = return (DataFamily, emptyFVs)
rnFamResultSig :: HsDocContext
-> FamilyResultSig GhcPs
-> RnM (FamilyResultSig GhcRn, FreeVars)
rnFamResultSig _ (NoSig _)
= return (NoSig noExtField, emptyFVs)
rnFamResultSig doc (KindSig _ kind)
= do { (rndKind, ftvs) <- rnLHsKind doc kind
; return (KindSig noExtField rndKind, ftvs) }
rnFamResultSig doc (TyVarSig _ tvbndr)
= do { -- `TyVarSig` tells us that user named the result of a type family by
-- writing `= tyvar` or `= (tyvar :: kind)`. In such case we want to
-- be sure that the supplied result name is not identical to an
-- already in-scope type variable from an enclosing class.
--
-- Example of disallowed declaration:
-- class C a b where
-- type F b = a | a -> b
rdr_env <- getLocalRdrEnv
; let resName = hsLTyVarName tvbndr
; when (resName `elemLocalRdrEnv` rdr_env) $
addErrAt (getLocA tvbndr) $ mkTcRnUnknownMessage $ mkPlainError noHints $
(hsep [ text "Type variable", quotes (ppr resName) <> comma
, text "naming a type family result,"
] $$
text "shadows an already bound type variable")
; bindLHsTyVarBndr doc Nothing -- This might be a lie, but it's used for
-- scoping checks that are irrelevant here
tvbndr $ \ tvbndr' ->
return (TyVarSig noExtField tvbndr', unitFV (hsLTyVarName tvbndr')) }
-- Note [Renaming injectivity annotation]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- During renaming of injectivity annotation we have to make several checks to
-- make sure that it is well-formed. At the moment injectivity annotation
-- consists of a single injectivity condition, so the terms "injectivity
-- annotation" and "injectivity condition" might be used interchangeably. See
-- Note [Injectivity annotation] for a detailed discussion of currently allowed
-- injectivity annotations.
--
-- Checking LHS is simple because the only type variable allowed on the LHS of
-- injectivity condition is the variable naming the result in type family head.
-- Example of disallowed annotation:
--
-- type family Foo a b = r | b -> a
--
-- Verifying RHS of injectivity consists of checking that:
--
-- 1. only variables defined in type family head appear on the RHS (kind
-- variables are also allowed). Example of disallowed annotation:
--
-- type family Foo a = r | r -> b
--
-- 2. for associated types the result variable does not shadow any of type
-- class variables. Example of disallowed annotation:
--
-- class Foo a b where
-- type F a = b | b -> a
--
-- Breaking any of these assumptions results in an error.
-- | Rename injectivity annotation. Note that injectivity annotation is just the
-- part after the "|". Everything that appears before it is renamed in
-- rnFamDecl.
rnInjectivityAnn :: LHsQTyVars GhcRn -- ^ Type variables declared in
-- type family head
-> LFamilyResultSig GhcRn -- ^ Result signature
-> LInjectivityAnn GhcPs -- ^ Injectivity annotation
-> RnM (LInjectivityAnn GhcRn)
rnInjectivityAnn tvBndrs (L _ (TyVarSig _ resTv))
(L srcSpan (InjectivityAnn x injFrom injTo))
= do
{ (injDecl'@(L _ (InjectivityAnn _ injFrom' injTo')), noRnErrors)
<- askNoErrs $
bindLocalNames [hsLTyVarName resTv] $
-- The return type variable scopes over the injectivity annotation
-- e.g. type family F a = (r::*) | r -> a
do { injFrom' <- rnLTyVar injFrom
; injTo' <- mapM rnLTyVar injTo
-- Note: srcSpan is unchanged, but typechecker gets
-- confused, l2l call makes it happy
; return $ L (l2l srcSpan) (InjectivityAnn x injFrom' injTo') }
; let tvNames = Set.fromList $ hsAllLTyVarNames tvBndrs
resName = hsLTyVarName resTv
-- See Note [Renaming injectivity annotation]
lhsValid = EQ == (stableNameCmp resName (unLoc injFrom'))
rhsValid = Set.fromList (map unLoc injTo') `Set.difference` tvNames
-- if renaming of type variables ended with errors (eg. there were
-- not-in-scope variables) don't check the validity of injectivity
-- annotation. This gives better error messages.
; when (noRnErrors && not lhsValid) $
addErrAt (getLocA injFrom) $ mkTcRnUnknownMessage $ mkPlainError noHints $
( vcat [ text $ "Incorrect type variable on the LHS of "
++ "injectivity condition"
, nest 5
( vcat [ text "Expected :" <+> ppr resName
, text "Actual :" <+> ppr injFrom ])])
; when (noRnErrors && not (Set.null rhsValid)) $
do { let errorVars = Set.toList rhsValid
; addErrAt (locA srcSpan) $ mkTcRnUnknownMessage $ mkPlainError noHints $
( hsep
[ text "Unknown type variable" <> plural errorVars
, text "on the RHS of injectivity condition:"
, interpp'SP errorVars ] ) }
; return injDecl' }
-- We can only hit this case when the user writes injectivity annotation without
-- naming the result:
--
-- type family F a | result -> a
-- type family F a :: * | result -> a
--
-- So we rename injectivity annotation like we normally would except that
-- this time we expect "result" to be reported not in scope by rnLTyVar.
rnInjectivityAnn _ _ (L srcSpan (InjectivityAnn x injFrom injTo)) =
setSrcSpanA srcSpan $ do
(injDecl', _) <- askNoErrs $ do
injFrom' <- rnLTyVar injFrom
injTo' <- mapM rnLTyVar injTo
return $ L srcSpan (InjectivityAnn x injFrom' injTo')
return $ injDecl'
{-
Note [Stupid theta]
~~~~~~~~~~~~~~~~~~~
#3850 complains about a regression wrt 6.10 for
data Show a => T a
There is no reason not to allow the stupid theta if there are no data
constructors. It's still stupid, but does no harm, and I don't want
to cause programs to break unnecessarily (notably HList). So if there
are no data constructors we allow h98_style = True
-}
{- *****************************************************
* *
Support code for type/data declarations
* *
***************************************************** -}
-----------------
rnConDecls :: DataDefnCons (LConDecl GhcPs) -> RnM (DataDefnCons (LConDecl GhcRn), FreeVars)
rnConDecls = mapFvRn (wrapLocFstMA rnConDecl)
rnConDecl :: ConDecl GhcPs -> RnM (ConDecl GhcRn, FreeVars)
rnConDecl decl@(ConDeclH98 { con_name = name, con_ex_tvs = ex_tvs
, con_mb_cxt = mcxt, con_args = args
, con_doc = mb_doc, con_forall = forall_ })
= do { _ <- addLocMA checkConName name
; new_name <- lookupLocatedTopConstructorRnN name
-- We bind no implicit binders here; this is just like
-- a nested HsForAllTy. E.g. consider
-- data T a = forall (b::k). MkT (...)
-- The 'k' will already be in scope from the bindHsQTyVars
-- for the data decl itself. So we'll get
-- data T {k} a = ...
-- And indeed we may later discover (a::k). But that's the
-- scoping we get. So no implicit binders at the existential forall
; let ctxt = ConDeclCtx [new_name]
; bindLHsTyVarBndrs ctxt WarnUnusedForalls
Nothing ex_tvs $ \ new_ex_tvs ->
do { (new_context, fvs1) <- rnMbContext ctxt mcxt
; (new_args, fvs2) <- rnConDeclH98Details (unLoc new_name) ctxt args
; let all_fvs = fvs1 `plusFV` fvs2
; traceRn "rnConDecl (ConDeclH98)" (ppr name <+> vcat
[ text "ex_tvs:" <+> ppr ex_tvs
, text "new_ex_dqtvs':" <+> ppr new_ex_tvs ])
; mb_doc' <- traverse rnLHsDoc mb_doc
; return (decl { con_ext = noAnn
, con_name = new_name, con_ex_tvs = new_ex_tvs
, con_mb_cxt = new_context, con_args = new_args
, con_doc = mb_doc'
, con_forall = forall_ }, -- Remove when #18311 is fixed
all_fvs) }}
rnConDecl (ConDeclGADT { con_names = names
, con_dcolon = dcol
, con_bndrs = L l outer_bndrs
, con_mb_cxt = mcxt
, con_g_args = args
, con_res_ty = res_ty
, con_doc = mb_doc })
= do { mapM_ (addLocMA checkConName) names
; new_names <- mapM (lookupLocatedTopConstructorRnN) names
; let -- We must ensure that we extract the free tkvs in left-to-right
-- order of their appearance in the constructor type.
-- That order governs the order the implicitly-quantified type
-- variable, and hence the order needed for visible type application
-- See #14808.
implicit_bndrs =
extractHsOuterTvBndrs outer_bndrs $
extractHsTysRdrTyVars (hsConDeclTheta mcxt) $
extractConDeclGADTDetailsTyVars args $
extractHsTysRdrTyVars [res_ty] []
; let ctxt = ConDeclCtx (toList new_names)
; bindHsOuterTyVarBndrs ctxt Nothing implicit_bndrs outer_bndrs $ \outer_bndrs' ->
do { (new_cxt, fvs1) <- rnMbContext ctxt mcxt
; (new_args, fvs2) <- rnConDeclGADTDetails (unLoc (head new_names)) ctxt args
; (new_res_ty, fvs3) <- rnLHsType ctxt res_ty
-- Ensure that there are no nested `forall`s or contexts, per
-- Note [GADT abstract syntax] (Wrinkle: No nested foralls or contexts)
-- in GHC.Hs.Type.
; addNoNestedForallsContextsErr ctxt
(text "GADT constructor type signature") new_res_ty
; let all_fvs = fvs1 `plusFV` fvs2 `plusFV` fvs3
; traceRn "rnConDecl (ConDeclGADT)"
(ppr names $$ ppr outer_bndrs')
; new_mb_doc <- traverse rnLHsDoc mb_doc
; return (ConDeclGADT { con_g_ext = noAnn, con_names = new_names
, con_dcolon = dcol
, con_bndrs = L l outer_bndrs', con_mb_cxt = new_cxt
, con_g_args = new_args, con_res_ty = new_res_ty
, con_doc = new_mb_doc },
all_fvs) } }
rnMbContext :: HsDocContext -> Maybe (LHsContext GhcPs)
-> RnM (Maybe (LHsContext GhcRn), FreeVars)
rnMbContext _ Nothing = return (Nothing, emptyFVs)
rnMbContext doc cxt = do { (ctx',fvs) <- rnMaybeContext doc cxt
; return (ctx',fvs) }
rnConDeclH98Details ::
Name
-> HsDocContext
-> HsConDeclH98Details GhcPs
-> RnM (HsConDeclH98Details GhcRn, FreeVars)
rnConDeclH98Details _ doc (PrefixCon _ tys)
= do { (new_tys, fvs) <- mapFvRn (rnScaledLHsType doc) tys
; return (PrefixCon noTypeArgs new_tys, fvs) }
rnConDeclH98Details _ doc (InfixCon ty1 ty2)
= do { (new_ty1, fvs1) <- rnScaledLHsType doc ty1
; (new_ty2, fvs2) <- rnScaledLHsType doc ty2
; return (InfixCon new_ty1 new_ty2, fvs1 `plusFV` fvs2) }
rnConDeclH98Details con doc (RecCon flds)
= do { (new_flds, fvs) <- rnRecConDeclFields con doc flds
; return (RecCon new_flds, fvs) }
rnConDeclGADTDetails ::
Name
-> HsDocContext
-> HsConDeclGADTDetails GhcPs
-> RnM (HsConDeclGADTDetails GhcRn, FreeVars)
rnConDeclGADTDetails _ doc (PrefixConGADT tys)
= do { (new_tys, fvs) <- mapFvRn (rnScaledLHsType doc) tys
; return (PrefixConGADT new_tys, fvs) }
rnConDeclGADTDetails con doc (RecConGADT flds arr)
= do { (new_flds, fvs) <- rnRecConDeclFields con doc flds
; return (RecConGADT new_flds arr, fvs) }
rnRecConDeclFields ::
Name
-> HsDocContext
-> LocatedL [LConDeclField GhcPs]
-> RnM (LocatedL [LConDeclField GhcRn], FreeVars)
rnRecConDeclFields con doc (L l fields)
= do { fls <- lookupConstructorFields con
; (new_fields, fvs) <- rnConDeclFields doc fls fields
-- No need to check for duplicate fields
-- since that is done by GHC.Rename.Names.extendGlobalRdrEnvRn
; pure (L l new_fields, fvs) }
-------------------------------------------------
-- | Brings pattern synonym names and also pattern synonym selectors
-- from record pattern synonyms into scope.
extendPatSynEnv :: DuplicateRecordFields -> FieldSelectors -> HsValBinds GhcPs -> MiniFixityEnv
-> ([Name] -> TcRnIf TcGblEnv TcLclEnv a) -> TcM a
extendPatSynEnv dup_fields_ok has_sel val_decls local_fix_env thing = do {
names_with_fls <- new_ps val_decls
; let pat_syn_bndrs = concat [ name: map flSelector fields
| (name, fields) <- names_with_fls ]
; let avails = map avail (map fst names_with_fls)
++ map availField (concatMap snd names_with_fls)
; (gbl_env, lcl_env) <- extendGlobalRdrEnvRn avails local_fix_env
; let field_env' = extendNameEnvList (tcg_field_env gbl_env) names_with_fls
final_gbl_env = gbl_env { tcg_field_env = field_env' }
; restoreEnvs (final_gbl_env, lcl_env) (thing pat_syn_bndrs) }
where
new_ps :: HsValBinds GhcPs -> TcM [(Name, [FieldLabel])]
new_ps (ValBinds _ binds _) = foldrM new_ps' [] binds
new_ps _ = panic "new_ps"
new_ps' :: LHsBindLR GhcPs GhcPs
-> [(Name, [FieldLabel])]
-> TcM [(Name, [FieldLabel])]
new_ps' bind names
| (L bind_loc (PatSynBind _ (PSB { psb_id = L _ n
, psb_args = RecCon as }))) <- bind
= do
bnd_name <- newTopSrcBinder (L (l2l bind_loc) n)
let field_occs = map ((\ f -> L (noAnnSrcSpan $ getLocA (foLabel f)) f) . recordPatSynField) as
flds <- mapM (newRecordSelector dup_fields_ok has_sel [bnd_name]) field_occs
return ((bnd_name, flds): names)
| L bind_loc (PatSynBind _ (PSB { psb_id = L _ n})) <- bind
= do
bnd_name <- newTopSrcBinder (L (la2na bind_loc) n)
return ((bnd_name, []): names)
| otherwise
= return names
{-
*********************************************************
* *
\subsection{Support code to rename types}
* *
*********************************************************
-}
rnFds :: [LHsFunDep GhcPs] -> RnM [LHsFunDep GhcRn]
rnFds fds
= mapM (wrapLocMA rn_fds) fds
where
rn_fds :: FunDep GhcPs -> RnM (FunDep GhcRn)
rn_fds (FunDep x tys1 tys2)
= do { tys1' <- rnHsTyVars tys1
; tys2' <- rnHsTyVars tys2
; return (FunDep x tys1' tys2') }
rnHsTyVars :: [LocatedN RdrName] -> RnM [LocatedN Name]
rnHsTyVars tvs = mapM rnHsTyVar tvs
rnHsTyVar :: LocatedN RdrName -> RnM (LocatedN Name)
rnHsTyVar (L l tyvar) = do
tyvar' <- lookupOccRn tyvar
return (L l tyvar')
{-
*********************************************************
* *
findSplice
* *
*********************************************************
This code marches down the declarations, looking for the first
Template Haskell splice. As it does so it
a) groups the declarations into a HsGroup
b) runs any top-level quasi-quotes
-}
findSplice :: [LHsDecl GhcPs]
-> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs]))
findSplice ds = addl emptyRdrGroup ds
addl :: HsGroup GhcPs -> [LHsDecl GhcPs]
-> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs]))
-- This stuff reverses the declarations (again) but it doesn't matter
addl gp [] = return (gp, Nothing)
addl gp (L l d : ds) = add gp l d ds
add :: HsGroup GhcPs -> SrcSpanAnnA -> HsDecl GhcPs -> [LHsDecl GhcPs]
-> RnM (HsGroup GhcPs, Maybe (SpliceDecl GhcPs, [LHsDecl GhcPs]))
-- #10047: Declaration QuasiQuoters are expanded immediately, without
-- causing a group split
add gp _ (SpliceD _ (SpliceDecl _ (L _ qq@HsQuasiQuote{}) _)) ds
= do { (ds', _) <- rnTopSpliceDecls qq
; addl gp (ds' ++ ds)
}
add gp loc (SpliceD _ splice@(SpliceDecl _ _ flag)) ds
= do { -- We've found a top-level splice. If it is an *implicit* one
-- (i.e. a naked top level expression)
case flag of
DollarSplice -> return ()
BareSplice -> do { th_on <- xoptM LangExt.TemplateHaskell
; unless th_on $ setSrcSpan (locA loc) $
failWith badImplicitSplice }
; return (gp, Just (splice, ds)) }
where
badImplicitSplice :: TcRnMessage
badImplicitSplice = mkTcRnUnknownMessage $ mkPlainError noHints $
text "Parse error: module header, import declaration"
$$ text "or top-level declaration expected."
-- The compiler should suggest the above, and not using
-- TemplateHaskell since the former suggestion is more
-- relevant to the larger base of users.
-- See #12146 for discussion.
-- Class declarations: added to the TyClGroup
add gp@(HsGroup {hs_tyclds = ts}) l (TyClD _ d) ds
= addl (gp { hs_tyclds = add_tycld (L l d) ts }) ds
-- Signatures: fixity sigs go a different place than all others
add gp@(HsGroup {hs_fixds = ts}) l (SigD _ (FixSig _ f)) ds
= addl (gp {hs_fixds = L l f : ts}) ds
-- Standalone kind signatures: added to the TyClGroup
add gp@(HsGroup {hs_tyclds = ts}) l (KindSigD _ s) ds
= addl (gp {hs_tyclds = add_kisig (L l s) ts}) ds
add gp@(HsGroup {hs_valds = ts}) l (SigD _ d) ds
= addl (gp {hs_valds = add_sig (L l d) ts}) ds
-- Value declarations: use add_bind
add gp@(HsGroup {hs_valds = ts}) l (ValD _ d) ds
= addl (gp { hs_valds = add_bind (L l d) ts }) ds
-- Role annotations: added to the TyClGroup
add gp@(HsGroup {hs_tyclds = ts}) l (RoleAnnotD _ d) ds
= addl (gp { hs_tyclds = add_role_annot (L l d) ts }) ds
-- NB instance declarations go into TyClGroups. We throw them into the first
-- group, just as we do for the TyClD case. The renamer will go on to group
-- and order them later.
add gp@(HsGroup {hs_tyclds = ts}) l (InstD _ d) ds
= addl (gp { hs_tyclds = add_instd (L l d) ts }) ds
-- The rest are routine
add gp@(HsGroup {hs_derivds = ts}) l (DerivD _ d) ds
= addl (gp { hs_derivds = L l d : ts }) ds
add gp@(HsGroup {hs_defds = ts}) l (DefD _ d) ds
= addl (gp { hs_defds = L l d : ts }) ds
add gp@(HsGroup {hs_fords = ts}) l (ForD _ d) ds
= addl (gp { hs_fords = L l d : ts }) ds
add gp@(HsGroup {hs_warnds = ts}) l (WarningD _ d) ds
= addl (gp { hs_warnds = L l d : ts }) ds
add gp@(HsGroup {hs_annds = ts}) l (AnnD _ d) ds
= addl (gp { hs_annds = L l d : ts }) ds
add gp@(HsGroup {hs_ruleds = ts}) l (RuleD _ d) ds
= addl (gp { hs_ruleds = L l d : ts }) ds
add gp l (DocD _ d) ds
= addl (gp { hs_docs = (L l d) : (hs_docs gp) }) ds
add_tycld :: LTyClDecl (GhcPass p) -> [TyClGroup (GhcPass p)]
-> [TyClGroup (GhcPass p)]
add_tycld d [] = [TyClGroup { group_ext = noExtField
, group_tyclds = [d]
, group_kisigs = []
, group_roles = []
, group_instds = []
}
]
add_tycld d (ds@(TyClGroup { group_tyclds = tyclds }):dss)
= ds { group_tyclds = d : tyclds } : dss
add_instd :: LInstDecl (GhcPass p) -> [TyClGroup (GhcPass p)]
-> [TyClGroup (GhcPass p)]
add_instd d [] = [TyClGroup { group_ext = noExtField
, group_tyclds = []
, group_kisigs = []
, group_roles = []
, group_instds = [d]
}
]
add_instd d (ds@(TyClGroup { group_instds = instds }):dss)
= ds { group_instds = d : instds } : dss
add_role_annot :: LRoleAnnotDecl (GhcPass p) -> [TyClGroup (GhcPass p)]
-> [TyClGroup (GhcPass p)]
add_role_annot d [] = [TyClGroup { group_ext = noExtField
, group_tyclds = []
, group_kisigs = []
, group_roles = [d]
, group_instds = []
}
]
add_role_annot d (tycls@(TyClGroup { group_roles = roles }) : rest)
= tycls { group_roles = d : roles } : rest
add_kisig :: LStandaloneKindSig (GhcPass p)
-> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)]
add_kisig d [] = [TyClGroup { group_ext = noExtField
, group_tyclds = []
, group_kisigs = [d]
, group_roles = []
, group_instds = []
}
]
add_kisig d (tycls@(TyClGroup { group_kisigs = kisigs }) : rest)
= tycls { group_kisigs = d : kisigs } : rest
add_bind :: LHsBind a -> HsValBinds a -> HsValBinds a
add_bind b (ValBinds x bs sigs) = ValBinds x (bs `snocBag` b) sigs
add_bind _ (XValBindsLR {}) = panic "GHC.Rename.Module.add_bind"
add_sig :: LSig (GhcPass a) -> HsValBinds (GhcPass a) -> HsValBinds (GhcPass a)
add_sig s (ValBinds x bs sigs) = ValBinds x bs (s:sigs)
add_sig _ (XValBindsLR {}) = panic "GHC.Rename.Module.add_sig"
|