1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
{-# LANGUAGE TypeFamilies #-}
{- |
Non-global free variable analysis on STG terms. This pass annotates
non-top-level closure bindings with captured variables. Global variables are not
captured. For example, in a top-level binding like (pseudo-STG)
f = \[x,y] .
let g = \[p] . reverse (x ++ p)
in g y
In g, `reverse` and `(++)` are global variables so they're not considered free.
`p` is an argument, so `x` is the only actual free variable here. The annotated
version is thus:
f = \[x,y] .
let g = [x] \[p] . reverse (x ++ p)
in g y
Note that non-top-level recursive bindings are also considered free within the
group:
map = {} \r [f xs0]
let {
Rec {
go = {f, go} \r [xs1]
case xs1 of {
[] -> [] [];
: x xs2 ->
let { xs' = {go, xs2} \u [] go xs2; } in
let { x' = {f, x} \u [] f x; } in
: [x' xs'];
};
end Rec }
} in go xs0;
Here go is free in its RHS.
Top-level closure bindings never capture variables as all of their free
variables are global.
-}
module GHC.Stg.FVs (
depSortWithAnnotStgPgm,
annBindingFreeVars
) where
import GHC.Prelude hiding (mod)
import GHC.Stg.Syntax
import GHC.Stg.Utils (bindersOf)
import GHC.Types.Id
import GHC.Types.Name (Name, nameIsLocalOrFrom)
import GHC.Types.Tickish ( GenTickish(Breakpoint) )
import GHC.Types.Unique.Set (nonDetEltsUniqSet)
import GHC.Types.Var.Set
import GHC.Unit.Module (Module)
import GHC.Utils.Misc
import Data.Graph (SCC (..))
import GHC.Data.Graph.Directed( Node(..), stronglyConnCompFromEdgedVerticesUniq )
{- Note [Why do we need dependency analysis?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The program needs to be in dependency order for the SRT algorithm to
work (see CmmBuildInfoTables, which also includes a detailed
description of the algorithm).
But isn't it in correct dependency order already? No:
* The simplifier does not guarantee to produce programs in dependency
order (see #16192 and Note [Glomming] in GHC.Core.Opt.OccurAnal).
This could be solved by a final run of the occurrence analyser, but
that's more work
* We also don't guarantee that StgLiftLams will preserve the order or
only create minimal recursive groups.
-}
--------------------------------------------------------------------------------
-- | Dependency sort a STG program, and annotate it with free variables
-- The returned bindings:
-- * Are in dependency order
-- * Each StgRhsClosure is correctly annotated (in its extension field)
-- with the free variables needed in the closure
-- * Each StgCase is correctly annotated (in its extension field) with
-- the variables that must be saved across the case
depSortWithAnnotStgPgm :: Module -> [StgTopBinding] -> [CgStgTopBinding]
depSortWithAnnotStgPgm this_mod binds
= {-# SCC "STG.depSortWithAnnotStgPgm" #-}
lit_binds ++ map from_scc sccs
where
lit_binds :: [CgStgTopBinding]
pairs :: [(Id, StgRhs)]
(lit_binds, pairs) = flattenTopStgBindings binds
nodes :: [Node Name (Id, CgStgRhs)]
nodes = map (annotateTopPair env0) pairs
env0 = Env { locals = emptyVarSet, mod = this_mod }
-- Do strongly connected component analysis. Why?
-- See Note [Why do we need dependency analysis?]
sccs :: [SCC (Id,CgStgRhs)]
sccs = stronglyConnCompFromEdgedVerticesUniq nodes
from_scc (CyclicSCC pairs) = StgTopLifted (StgRec pairs)
from_scc (AcyclicSCC (bndr,rhs)) = StgTopLifted (StgNonRec bndr rhs)
flattenTopStgBindings :: [StgTopBinding] -> ([CgStgTopBinding], [(Id,StgRhs)])
flattenTopStgBindings binds
= go [] [] binds
where
go lits pairs [] = (lits, pairs)
go lits pairs (bind:binds)
= case bind of
StgTopStringLit bndr rhs -> go (StgTopStringLit bndr rhs:lits) pairs binds
StgTopLifted stg_bind -> go lits (flatten_one stg_bind ++ pairs) binds
flatten_one (StgNonRec b r) = [(b,r)]
flatten_one (StgRec pairs) = pairs
annotateTopPair :: Env -> (Id, StgRhs) -> Node Name (Id, CgStgRhs)
annotateTopPair env0 (bndr, rhs)
= DigraphNode { node_key = idName bndr
, node_payload = (bndr, rhs')
, node_dependencies = map idName (nonDetEltsUniqSet top_fvs) }
where
(rhs', top_fvs, _) = rhsFVs env0 rhs
--------------------------------------------------------------------------------
-- * Non-global free variable analysis
data Env
= Env
{ -- | Set of locally-bound, not-top-level binders in scope.
-- That is, variables bound by a let (but not let-no-escape), a lambda
-- (in a StgRhsClsoure), a case binder, or a case alternative. These
-- are the variables that must be captured in a function closure, if they
-- are free in the RHS. Example
-- f = \x. let g = \y. x+1
-- let h = \z. g z + 1
-- in h x
-- In the body of h we have locals = {x, g, z}. Note that f is top level
-- and does not appear in locals.
locals :: IdSet
, mod :: Module
}
addLocals :: [Id] -> Env -> Env
addLocals bndrs env
= env { locals = extendVarSetList (locals env) bndrs }
--------------------------------------------------------------------------------
-- | TopFVs: set of variables that are:
-- (a) bound at the top level of this module, and
-- (b) appear free in the expression
-- It is a /non-deterministic/ set because we use it only to perform dependency
-- analysis on the top-level bindings.
type TopFVs = IdSet
-- | LocalFVs: set of variable that are:
-- (a) bound locally (by a lambda, non-top-level let, or case); that is,
-- it appears in the 'locals' field of 'Env'
-- (b) appear free in the expression
-- It is a /deterministic/ set because it is used to annotate closures with
-- their free variables, and we want closure layout to be deterministic.
--
-- Invariant: the LocalFVs returned is a subset of the 'locals' field of Env
type LocalFVs = DIdSet
-- | Dependency analysis on STG terms.
--
-- Dependencies of a binding are just free variables in the binding. This
-- includes imported ids and ids in the current module. For recursive groups we
-- just return one set of free variables which is just the union of dependencies
-- of all bindings in the group.
--
-- Implementation: pass bound variables (NestedIds) to recursive calls, get free
-- variables (TopFVs) back. We ignore imported TopFVs as they do not change the
-- ordering but it improves performance (see `nameIsExternalFrom` call in `vars_fvs`).
--
annBindingFreeVars :: Module -> StgBinding -> CgStgBinding
annBindingFreeVars this_mod = fstOf3 . bindingFVs (Env emptyVarSet this_mod) emptyDVarSet
bindingFVs :: Env -> LocalFVs -> StgBinding -> (CgStgBinding, TopFVs, LocalFVs)
bindingFVs env body_fv b =
case b of
StgNonRec bndr r -> (StgNonRec bndr r', fvs, lcl_fvs)
where
(r', fvs, rhs_lcl_fvs) = rhsFVs env r
lcl_fvs = delDVarSet body_fv bndr `unionDVarSet` rhs_lcl_fvs
StgRec pairs -> (StgRec pairs', fvs, lcl_fvss)
where
bndrs = map fst pairs
env' = addLocals bndrs env
(rhss, rhs_fvss, rhs_lcl_fvss) = mapAndUnzip3 (rhsFVs env' . snd) pairs
fvs = unionVarSets rhs_fvss
pairs' = zip bndrs rhss
lcl_fvss = delDVarSetList (unionDVarSets (body_fv:rhs_lcl_fvss)) bndrs
varFVs :: Env -> Id -> (TopFVs, LocalFVs) -> (TopFVs, LocalFVs)
varFVs env v (top_fvs, lcl_fvs)
| v `elemVarSet` locals env -- v is locally bound
= (top_fvs, lcl_fvs `extendDVarSet` v)
| nameIsLocalOrFrom (mod env) (idName v) -- v is bound at top level
= (top_fvs `extendVarSet` v, lcl_fvs)
| otherwise -- v is imported
= (top_fvs, lcl_fvs)
exprFVs :: Env -> StgExpr -> (CgStgExpr, TopFVs, LocalFVs)
exprFVs env = go
where
go (StgApp f as)
| (top_fvs, lcl_fvs) <- varFVs env f (argsFVs env as)
= (StgApp f as, top_fvs, lcl_fvs)
go (StgLit lit) = (StgLit lit, emptyVarSet, emptyDVarSet)
go (StgConApp dc n as tys)
| (top_fvs, lcl_fvs) <- argsFVs env as
= (StgConApp dc n as tys, top_fvs, lcl_fvs)
go (StgOpApp op as ty)
| (top_fvs, lcl_fvs) <- argsFVs env as
= (StgOpApp op as ty, top_fvs, lcl_fvs)
go (StgCase scrut bndr ty alts)
| (scrut',scrut_top_fvs,scrut_lcl_fvs) <- exprFVs env scrut
, (alts',alts_top_fvss,alts_lcl_fvss)
<- mapAndUnzip3 (altFVs (addLocals [bndr] env)) alts
, let top_fvs = scrut_top_fvs `unionVarSet` unionVarSets alts_top_fvss
alts_lcl_fvs = unionDVarSets alts_lcl_fvss
lcl_fvs = delDVarSet (unionDVarSet scrut_lcl_fvs alts_lcl_fvs) bndr
= (StgCase scrut' bndr ty alts', top_fvs,lcl_fvs)
go (StgLet ext bind body) = go_bind (StgLet ext) bind body
go (StgLetNoEscape ext bind body) = go_bind (StgLetNoEscape ext) bind body
go (StgTick tick e)
| (e', top_fvs, lcl_fvs) <- exprFVs env e
, let lcl_fvs' = unionDVarSet (tickish tick) lcl_fvs
= (StgTick tick e', top_fvs, lcl_fvs')
where
tickish (Breakpoint _ _ ids) = mkDVarSet ids
tickish _ = emptyDVarSet
go_bind dc bind body = (dc bind' body', top_fvs, lcl_fvs)
where
env' = addLocals (bindersOf bind) env
(body', body_top_fvs, body_lcl_fvs) = exprFVs env' body
(bind', bind_top_fvs, lcl_fvs) = bindingFVs env' body_lcl_fvs bind
top_fvs = bind_top_fvs `unionVarSet` body_top_fvs
rhsFVs :: Env -> StgRhs -> (CgStgRhs, TopFVs, LocalFVs)
rhsFVs env (StgRhsClosure _ ccs uf bs body)
| (body', top_fvs, lcl_fvs) <- exprFVs (addLocals bs env) body
, let lcl_fvs' = delDVarSetList lcl_fvs bs
= (StgRhsClosure lcl_fvs' ccs uf bs body', top_fvs, lcl_fvs')
rhsFVs env (StgRhsCon ccs dc mu ts bs)
| (top_fvs, lcl_fvs) <- argsFVs env bs
= (StgRhsCon ccs dc mu ts bs, top_fvs, lcl_fvs)
argsFVs :: Env -> [StgArg] -> (TopFVs, LocalFVs)
argsFVs env = foldl' f (emptyVarSet, emptyDVarSet)
where
f (fvs,ids) StgLitArg{} = (fvs, ids)
f (fvs,ids) (StgVarArg v) = varFVs env v (fvs, ids)
altFVs :: Env -> StgAlt -> (CgStgAlt, TopFVs, LocalFVs)
altFVs env (con,bndrs,e)
| (e', top_fvs, lcl_fvs) <- exprFVs (addLocals bndrs env) e
, let lcl_fvs' = delDVarSetList lcl_fvs bndrs
= ((con,bndrs, e'), top_fvs, lcl_fvs')
|