summaryrefslogtreecommitdiff
path: root/compiler/GHC/Stg/InferTags/Rewrite.hs
blob: 127e75f848bd56425682613fdcdeee803c6f4ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
--
-- Copyright (c) 2019 Andreas Klebinger
--

{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE GeneralisedNewtypeDeriving #-}

module GHC.Stg.InferTags.Rewrite (rewriteTopBinds)
where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Unique.Supply
import GHC.Types.Unique.FM
import GHC.Types.RepType
import GHC.Unit.Types (Module)

import GHC.Core.DataCon
import GHC.Core (AltCon(..) )
import GHC.Core.Type

import GHC.StgToCmm.Types

import GHC.Stg.Utils
import GHC.Stg.Syntax as StgSyn hiding (AlwaysEnter)

import GHC.Data.Maybe
import GHC.Utils.Panic

import GHC.Utils.Outputable
import GHC.Utils.Monad.State
import GHC.Utils.Misc

import GHC.Stg.InferTags.Types

import Control.Monad
import Data.Coerce


-- import GHC.Driver.Ppr

newtype RM a = RM { unRM :: (State (UniqFM Id TagSig, UniqSupply, Module) a) }
    deriving (Functor, Monad, Applicative)
------------------------------------------------------------
-- Add cases around strict fields where required.
------------------------------------------------------------

{-
The idea is simple:
* We traverse the STG AST looking for constructor allocation.
* For any allocation we check if there are strict fields.
* For any strict field we check if the argument is known to be tagged.
* If it's not, we wrap the whole thing in a case, which will force the
  argument before allocation.

This is described in detail in Note [Strict field invariant].

-}


--------------------------------
-- Utilities
--------------------------------

instance MonadUnique RM where
    getUniqueSupplyM = RM $ do
        (m, us, mod) <- get
        let (us1, us2) = splitUniqSupply us
        (put) (m,us2,mod)
        return us1

-- type TaggedSet = VarSet

getMap :: RM (UniqFM Id TagSig)
getMap = RM $ (fstOf3 <$> get)

setMap :: (UniqFM Id TagSig) -> RM ()
setMap m = RM $ do
    (_,us,mod) <- get
    put (m, us,mod)

getMod :: RM Module
getMod = RM $ (thdOf3 <$> get)

withBind :: GenStgBinding 'InferTaggedBinders -> RM a -> RM a
withBind (StgNonRec (id, tag) _) cont = coerce $ do
    oldMap <- getMap
    -- pprTraceM "AddBind" (ppr id)
    setMap $ addToUFM oldMap id tag
    a <- cont
    setMap oldMap
    return a
withBind (StgRec binds) cont = coerce $ do
    let (bnds,_rhss) = unzip binds
    !oldMap <- getMap
    -- pprTraceM "AddBinds" (ppr $ map fst bnds)
    setMap $! addListToUFM oldMap bnds
    a <- cont
    setMap oldMap
    return a



addBind :: GenStgBinding 'InferTaggedBinders -> RM ()
addBind (StgNonRec (id, tag) _) = coerce $ do
    s <- getMap
    -- pprTraceM "AddBind" (ppr id)
    setMap $ addToUFM s id tag
    return ()
addBind (StgRec binds) = coerce $ do
    let (bnds,_rhss) = unzip binds
    !s <- getMap
    -- pprTraceM "AddBinds" (ppr $ map fst bnds)
    setMap $! addListToUFM s bnds

withBinder :: (Id, TagSig) -> RM a -> RM a
withBinder (id,sig) cont = do
    oldMap <- getMap
    setMap $ addToUFM oldMap id sig
    a <- cont
    setMap oldMap
    return a

withBinders :: [(Id, TagSig)] -> RM a -> RM a
withBinders sigs cont = do
    oldMap <- getMap
    setMap $ addListToUFM oldMap sigs
    a <- cont
    setMap oldMap
    return a

isTagged :: Id -> RM Bool
isTagged v = do
    this_mod <- getMod
    case nameIsLocalOrFrom this_mod (idName v) of
        True
            | isUnliftedType (idType v)
            -> return True
            | otherwise -> do -- Local binding
                !s <- getMap
                let !sig = lookupWithDefaultUFM s (pprPanic "unknown Id:" (ppr v)) v
                return $ case sig of
                    TagSig _arity info ->
                        case info of
                            TagDunno -> False
                            TagProper -> True
                            TagTuple _ -> True -- Consider unboxed tuples tagged
        False -- Imported
            | Just con <- (isDataConWorkId_maybe v)
            , isNullaryRepDataCon con
            -> return True
            | Just lf_info <- idLFInfo_maybe v
            -> return $ case lf_info of
                    -- Function, applied not entered.
                    LFReEntrant {}
                        -> True
                    -- Thunks need to be entered.
                    LFThunk {}
                        -> False
                    -- Constructors, already tagged.
                    LFCon {}
                        -- If we ever bind the fields we can infer the tags
                        -- based on the fields strictness. So a flat lattice
                        -- is fine.
                        -> True
                    LFUnknown {}
                        -> False
                    LFUnlifted {}
                        -> True
                    -- Shouldn't be possible. I don't think we can export letNoEscapes
                    LFLetNoEscape {}
                        -> True

            | otherwise
            -> return False


isArgTagged :: StgArg -> RM Bool
isArgTagged (StgLitArg _) = return True
isArgTagged (StgVarArg v) = isTagged v

mkLocalArgId :: Id -> RM Id
mkLocalArgId id = do
    !u <- getUniqueM
    return $! setIdUnique (localiseId id) u

---------------------------
-- Actual rewrite pass
---------------------------


rewriteTopBinds :: Module -> UniqSupply -> [GenStgTopBinding 'InferTaggedBinders] -> [TgStgTopBinding]
rewriteTopBinds mod us binds =
    let doBinds = mapM rewriteTop binds

    in evalState (unRM doBinds) (mempty, us, mod)

rewriteTop :: InferStgTopBinding -> RM TgStgTopBinding
rewriteTop (StgTopStringLit v s) = return $! (StgTopStringLit v s)
rewriteTop (StgTopLifted bind)   = do
    -- Top level bindings can, and must remain in scope
    addBind bind
    (StgTopLifted . fst) <$!> (rewriteBinds bind)

-- For top level binds, the wrapper is guaranteed to be `id`
rewriteBinds :: InferStgBinding -> RM (TgStgBinding, TgStgExpr -> TgStgExpr)
rewriteBinds (StgNonRec v rhs) = do
        (!rhs, wrapper) <-  rewriteRhs v rhs
        return $! (StgNonRec (fst v) rhs, wrapper)
rewriteBinds b@(StgRec binds) =
    -- Bring sigs of binds into scope for all rhss
    withBind b $ do
        (rhss, wrappers) <- unzip <$> mapM (uncurry rewriteRhs) binds
        let wrapper = foldl1 (.) wrappers
        return $! (mkRec rhss, wrapper)
        where
            mkRec :: [TgStgRhs] -> TgStgBinding
            mkRec rhss = StgRec (zip (map (fst . fst) binds) rhss)

-- Rewrite a RHS, the rewriteFlag tells us weither or not the RHS is in a context in which
-- we can avoid turning the RhsCon into a closure. (e.g. for top level bindings)
rewriteRhs :: (Id,TagSig) -> InferStgRhs -> RM (TgStgRhs, TgStgExpr -> TgStgExpr)
rewriteRhs (_id, tagSig) (StgRhsCon ccs con cn ticks args) = {-# SCC rewriteRhs_ #-} do
    -- pprTraceM "rewriteRhs" (ppr _id)

    -- Look up the nodes representing the constructor arguments.
    fieldInfos <- mapM isArgTagged args

    -- Filter out non-strict fields.
    let strictFields =
            getStrictConArgs con (zip args fieldInfos) :: [(StgArg,Bool)] -- (nth-argument, tagInfo)
    -- Filter out already tagged arguments.
    let needsEval = map fst . --get the actual argument
                        filter (not . snd) $ -- Keep untagged (False) elements.
                        strictFields :: [StgArg]
    let evalArgs = [v | StgVarArg v <- needsEval] :: [Id]

    if (null evalArgs)
        then return $! (StgRhsCon ccs con cn ticks args, id)
        else do
            -- pprTraceM "CreatingSeqs for " $ ppr _id <+> ppr node_id

            evaldArgs <- mapM mkLocalArgId evalArgs -- Create case binders
            let varMap = zip evalArgs evaldArgs -- Match them up with original ids
            let updateArg (StgLitArg lit) = (StgLitArg lit)
                updateArg (StgVarArg v)
                    | Just v' <- lookup v varMap
                    = StgVarArg v'
                    | otherwise = StgVarArg v
            let evaldConArgs = map updateArg args
            -- At this point iff we have:
            --  * possibly untagged arguments to strict fields
            --  * and Dunno as tag signature
            -- Then we return a RhsClosure, otherwise we return a wrapper
            -- which will evaluate the arguments first when applied to an expression.
            if not (isTaggedSig tagSig) || True --rewriteFlag == MaybeClosure
                then do -- Turn the rhs into a closure that evaluates the arguments to the strict fields
                    conExpr <- mkSeqs evalArgs con cn args (panic "mkSeqs should not need to provide types")
                    return $! (StgRhsClosure noExtFieldSilent ccs ReEntrant [] $! conExpr, id)
                else do -- Return a case expression that will evaluate the arguments.
                    let evalExpr expr = foldr (\(v, vEvald) e -> mkSeq v vEvald e) expr varMap
                    return $! ((StgRhsCon ccs con cn ticks evaldConArgs), evalExpr)
rewriteRhs _binding (StgRhsClosure ext ccs flag args body) = do
    -- mapM_ addBinder  args
    withBinders args $ do
        closure <- StgRhsClosure ext ccs flag (map fst args) <$> rewriteExpr False body
        return (closure, id)

type IsScrut = Bool

rewriteExpr :: IsScrut -> InferStgExpr -> RM TgStgExpr
rewriteExpr _ (e@StgCase {})          = rewriteCase e
rewriteExpr _ (e@StgLet {})           = rewriteLet e
rewriteExpr _ (e@StgLetNoEscape {})   = rewriteLetNoEscape e
rewriteExpr isScrut (StgTick t e)     = StgTick t <$!> rewriteExpr isScrut e
rewriteExpr _ e@(StgConApp {})        = rewriteConApp e

rewriteExpr isScrut e@(StgApp {})     = rewriteApp isScrut e
rewriteExpr _ (StgLit lit)           = return $! (StgLit lit)
rewriteExpr _ (StgOpApp op args res_ty) = return $! (StgOpApp op args res_ty)

rewriteCase :: InferStgExpr -> RM TgStgExpr
rewriteCase (StgCase scrut bndr alt_type alts) =
    withBinder bndr $ do
        pure StgCase <*>
            rewriteExpr True scrut <*>
            pure (fst bndr) <*>
            pure alt_type <*>
            mapM rewriteAlt alts

rewriteCase _ = panic "Impossible: nodeCase"

rewriteAlt :: InferStgAlt -> RM TgStgAlt
rewriteAlt (altCon, bndrs, rhs) = do
    withBinders bndrs $ do
        !rhs' <- rewriteExpr False rhs
        return $! (altCon, map fst bndrs, rhs')

rewriteLet :: InferStgExpr -> RM TgStgExpr
rewriteLet (StgLet xt bind expr) = do
    (!bind', !wrapper) <- rewriteBinds bind
    withBind bind $ do
        !expr' <- rewriteExpr False expr
        return $! wrapper (StgLet xt bind' expr')
rewriteLet _ = panic "Impossible"

rewriteLetNoEscape :: InferStgExpr -> RM TgStgExpr
rewriteLetNoEscape (StgLetNoEscape xt bind expr) = do
    (!bind', wrapper) <- rewriteBinds bind
    withBind bind $ do
        !expr' <- rewriteExpr False expr
        return $! wrapper (StgLetNoEscape xt bind' expr')
rewriteLetNoEscape _ = panic "Impossible"

rewriteConApp :: InferStgExpr -> RM TgStgExpr
rewriteConApp (StgConApp con cn args tys) = do
    -- We check if the strict field arguments are already known to be tagged.
    -- If not we evaluate them first.
    fieldInfos <- mapM isArgTagged args
    let strictIndices = getStrictConArgs con (zip fieldInfos args) :: [(Bool, StgArg)]
    let needsEval = map snd . filter (not . fst) $ strictIndices :: [StgArg]
    let evalArgs = [v | StgVarArg v <- needsEval] :: [Id]
    if (not $ null evalArgs)
        then do
            -- pprTraceM "Creating conAppSeqs for " $ ppr nodeId <+> parens ( ppr evalArgs ) -- <+> parens ( ppr fieldInfos )
            mkSeqs evalArgs con cn args tys
        else return $! (StgConApp con cn args tys)

rewriteConApp _ = panic "Impossible"

rewriteApp :: IsScrut -> InferStgExpr -> RM TgStgExpr
rewriteApp True (StgApp _nodeId f args)
    | null args = do
        tagInfo <- isTagged f
        let !enter = (extInfo $ tagInfo)
        return $! StgApp enter f args
  where
    extInfo True        = StgSyn.NoEnter
    extInfo False       = StgSyn.MayEnter
    -- extInfo MaybeEnter        = StgSyn.MayEnter
    -- extInfo NoValue          = StgSyn.MayEnter
    -- extInfo UndetEnterInfo    = StgSyn.MayEnter

rewriteApp _ (StgApp _ f args) = return $ StgApp MayEnter f args
rewriteApp _ _ = panic "Impossible"


-- We would ideally replace ALL references to the evaluatee with the evaluted binding.
-- But for now we don't bother.
mkSeq :: Id -> Id -> TgStgExpr -> TgStgExpr
mkSeq id bndr !expr =
    -- pprTrace "mkSeq" (ppr (id,bndr)) $
    let altTy = mkStgAltTypeFromStgAlts bndr [(DEFAULT, [], panic "Not used")]
    in
    StgCase (StgApp MayEnter id []) bndr altTy [(DEFAULT, [], expr)]

-- Create a ConApp which is guaranteed to evaluate the given ids.
mkSeqs :: [Id] -> DataCon -> ConstructorNumber -> [StgArg] -> [Type] -> RM TgStgExpr
mkSeqs untaggedIds con cn args tys = do
    argMap <- mapM (\arg -> (arg,) <$> mkLocalArgId arg ) untaggedIds :: RM [(InId, OutId)]
    -- mapM_ (pprTraceM "Forcing strict args before allocation:" . ppr) argMap
    let taggedArgs
            = map   (\v -> case v of
                        StgVarArg v' -> StgVarArg $ fromMaybe v' $ lookup v' argMap
                        lit -> lit)
                    args

    let conBody = StgConApp con cn taggedArgs tys
    let body = foldr (\(v,bndr) expr -> mkSeq v bndr expr) conBody argMap
    return $! body

-- Out of all arguments passed at runtime only return these ending up in a
-- strict field
getStrictConArgs :: DataCon -> [a] -> [a]
getStrictConArgs con args
    -- These are always lazy in their arguments.
    | isUnboxedTupleDataCon con = []
    | isUnboxedSumDataCon con = []
    -- For proper data cons we have to check.
    | otherwise =
        [ arg | (arg,MarkedStrict)
                    <- zipEqual "getStrictConArgs"
                                args
                                (dataConRuntimeRepStrictness con)]