1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE UndecidableInstances #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Shared term graph (STG) syntax for spineless-tagless code generation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This data type represents programs just before code generation (conversion to
@Cmm@): basically, what we have is a stylised form of Core syntax, the style
being one that happens to be ideally suited to spineless tagless code
generation.
-}
module GHC.Stg.Syntax (
StgArg(..),
GenStgTopBinding(..), GenStgBinding(..), GenStgExpr(..), GenStgRhs(..),
GenStgAlt(..), AltType(..),
StgPass(..), BinderP, XRhsClosure, XLet, XLetNoEscape,
NoExtFieldSilent, noExtFieldSilent,
OutputablePass,
UpdateFlag(..), isUpdatable,
ConstructorNumber(..),
-- a set of synonyms for the vanilla parameterisation
StgTopBinding, StgBinding, StgExpr, StgRhs, StgAlt,
-- a set of synonyms for the code gen parameterisation
CgStgTopBinding, CgStgBinding, CgStgExpr, CgStgRhs, CgStgAlt,
-- Same for taggedness
TgStgTopBinding, TgStgBinding, TgStgExpr, TgStgRhs, TgStgAlt,
-- a set of synonyms for the lambda lifting parameterisation
LlStgTopBinding, LlStgBinding, LlStgExpr, LlStgRhs, LlStgAlt,
-- a set of synonyms to distinguish in- and out variants
InStgArg, InStgTopBinding, InStgBinding, InStgExpr, InStgRhs, InStgAlt,
OutStgArg, OutStgTopBinding, OutStgBinding, OutStgExpr, OutStgRhs, OutStgAlt,
-- StgOp
StgOp(..),
-- utils
stgRhsArity, freeVarsOfRhs,
isDllConApp,
stgArgType,
stgCaseBndrInScope,
-- ppr
StgPprOpts(..),
panicStgPprOpts, shortStgPprOpts,
pprStgArg, pprStgExpr, pprStgRhs, pprStgBinding,
pprGenStgTopBinding, pprStgTopBinding,
pprGenStgTopBindings, pprStgTopBindings
) where
import GHC.Prelude
import GHC.Core ( AltCon )
import GHC.Types.CostCentre ( CostCentreStack )
import Data.ByteString ( ByteString )
import Data.Data ( Data )
import Data.List ( intersperse )
import GHC.Core.DataCon
import GHC.Types.ForeignCall ( ForeignCall )
import GHC.Types.Id
import GHC.Types.Name ( isDynLinkName )
import GHC.Types.Tickish ( StgTickish )
import GHC.Types.Var.Set
import GHC.Types.Literal ( Literal, literalType )
import GHC.Unit.Module ( Module )
import GHC.Utils.Outputable
import GHC.Platform
import GHC.Core.Ppr( {- instances -} )
import GHC.Builtin.PrimOps ( PrimOp, PrimCall )
import GHC.Core.TyCon ( PrimRep(..), TyCon )
import GHC.Core.Type ( Type )
import GHC.Types.RepType ( typePrimRep1 )
import GHC.Utils.Panic.Plain
{-
************************************************************************
* *
GenStgBinding
* *
************************************************************************
As usual, expressions are interesting; other things are boring. Here are the
boring things (except note the @GenStgRhs@), parameterised with respect to
binder and occurrence information (just as in @GHC.Core@):
-}
-- | A top-level binding.
data GenStgTopBinding pass
-- See Note [Core top-level string literals]
= StgTopLifted (GenStgBinding pass)
| StgTopStringLit Id ByteString
data GenStgBinding pass
= StgNonRec (BinderP pass) (GenStgRhs pass)
| StgRec [(BinderP pass, GenStgRhs pass)]
{-
************************************************************************
* *
StgArg
* *
************************************************************************
-}
data StgArg
= StgVarArg Id
| StgLitArg Literal
-- | Does this constructor application refer to anything in a different
-- *Windows* DLL?
-- If so, we can't allocate it statically
isDllConApp
:: Platform
-> Bool -- is Opt_ExternalDynamicRefs enabled?
-> Module
-> DataCon
-> [StgArg]
-> Bool
isDllConApp platform ext_dyn_refs this_mod con args
| not ext_dyn_refs = False
| platformOS platform == OSMinGW32
= isDynLinkName platform this_mod (dataConName con) || any is_dll_arg args
| otherwise = False
where
-- NB: typePrimRep1 is legit because any free variables won't have
-- unlifted type (there are no unlifted things at top level)
is_dll_arg :: StgArg -> Bool
is_dll_arg (StgVarArg v) = isAddrRep (typePrimRep1 (idType v))
&& isDynLinkName platform this_mod (idName v)
is_dll_arg _ = False
-- True of machine addresses; these are the things that don't work across DLLs.
-- The key point here is that VoidRep comes out False, so that a top level
-- nullary GADT constructor is False for isDllConApp
--
-- data T a where
-- T1 :: T Int
--
-- gives
--
-- T1 :: forall a. (a~Int) -> T a
--
-- and hence the top-level binding
--
-- $WT1 :: T Int
-- $WT1 = T1 Int (Coercion (Refl Int))
--
-- The coercion argument here gets VoidRep
isAddrRep :: PrimRep -> Bool
isAddrRep AddrRep = True
isAddrRep LiftedRep = True
isAddrRep UnliftedRep = True
isAddrRep _ = False
-- | Type of an @StgArg@
--
-- Very half baked because we have lost the type arguments.
stgArgType :: StgArg -> Type
stgArgType (StgVarArg v) = idType v
stgArgType (StgLitArg lit) = literalType lit
-- | Given an alt type and whether the program is unarised, return whether the
-- case binder is in scope.
--
-- Case binders of unboxed tuple or unboxed sum type always dead after the
-- unariser has run. See Note [Post-unarisation invariants].
stgCaseBndrInScope :: AltType -> Bool {- ^ unarised? -} -> Bool
stgCaseBndrInScope alt_ty unarised =
case alt_ty of
AlgAlt _ -> True
PrimAlt _ -> True
MultiValAlt _ -> not unarised
PolyAlt -> True
{-
************************************************************************
* *
STG expressions
* *
************************************************************************
The @GenStgExpr@ data type is parameterised on binder and occurrence info, as
before.
************************************************************************
* *
GenStgExpr
* *
************************************************************************
An application is of a function to a list of atoms (not expressions).
Operationally, we want to push the arguments on the stack and call the function.
(If the arguments were expressions, we would have to build their closures
first.)
There is no constructor for a lone variable; it would appear as @StgApp var []@.
-}
data GenStgExpr pass
= StgApp
Id -- function
[StgArg] -- arguments; may be empty
{-
************************************************************************
* *
StgConApp and StgPrimApp --- saturated applications
* *
************************************************************************
There are specialised forms of application, for constructors, primitives, and
literals.
-}
| StgLit Literal
-- StgConApp is vital for returning unboxed tuples or sums
-- which can't be let-bound
| StgConApp DataCon
ConstructorNumber
[StgArg] -- Saturated
[Type] -- See Note [Types in StgConApp] in GHC.Stg.Unarise
| StgOpApp StgOp -- Primitive op or foreign call
[StgArg] -- Saturated.
Type -- Result type
-- We need to know this so that we can
-- assign result registers
{-
************************************************************************
* *
GenStgExpr: case-expressions
* *
************************************************************************
This has the same boxed/unboxed business as Core case expressions.
-}
| StgCase
(GenStgExpr pass) -- the thing to examine
(BinderP pass) -- binds the result of evaluating the scrutinee
AltType
[GenStgAlt pass]
-- The DEFAULT case is always *first*
-- if it is there at all
{-
************************************************************************
* *
GenStgExpr: let(rec)-expressions
* *
************************************************************************
The various forms of let(rec)-expression encode most of the interesting things
we want to do.
- let-closure x = [free-vars] [args] expr in e
is equivalent to
let x = (\free-vars -> \args -> expr) free-vars
@args@ may be empty (and is for most closures). It isn't under circumstances
like this:
let x = (\y -> y+z)
This gets mangled to
let-closure x = [z] [y] (y+z)
The idea is that we compile code for @(y+z)@ in an environment in which @z@ is
bound to an offset from Node, and `y` is bound to an offset from the stack
pointer.
(A let-closure is an @StgLet@ with a @StgRhsClosure@ RHS.)
- let-constructor x = Constructor [args] in e
(A let-constructor is an @StgLet@ with a @StgRhsCon@ RHS.)
- Letrec-expressions are essentially the same deal as let-closure/
let-constructor, so we use a common structure and distinguish between them
with an @is_recursive@ boolean flag.
- let-unboxed u = <an arbitrary arithmetic expression in unboxed values> in e
All the stuff on the RHS must be fully evaluated. No function calls either!
(We've backed away from this toward case-expressions with suitably-magical
alts ...)
- Advanced stuff here! Not to start with, but makes pattern matching generate
more efficient code.
let-escapes-not fail = expr
in e'
Here the idea is that @e'@ guarantees not to put @fail@ in a data structure,
or pass it to another function. All @e'@ will ever do is tail-call @fail@.
Rather than build a closure for @fail@, all we need do is to record the stack
level at the moment of the @let-escapes-not@; then entering @fail@ is just a
matter of adjusting the stack pointer back down to that point and entering the
code for it.
Another example:
f x y = let z = huge-expression in
if y==1 then z else
if y==2 then z else
1
(A let-escapes-not is an @StgLetNoEscape@.)
- We may eventually want:
let-literal x = Literal in e
And so the code for let(rec)-things:
-}
| StgLet
(XLet pass)
(GenStgBinding pass) -- right hand sides (see below)
(GenStgExpr pass) -- body
| StgLetNoEscape
(XLetNoEscape pass)
(GenStgBinding pass) -- right hand sides (see below)
(GenStgExpr pass) -- body
{-
*************************************************************************
* *
GenStgExpr: hpc, scc and other debug annotations
* *
*************************************************************************
Finally for @hpc@ expressions we introduce a new STG construct.
-}
| StgTick
StgTickish
(GenStgExpr pass) -- sub expression
-- END of GenStgExpr
{-
************************************************************************
* *
STG right-hand sides
* *
************************************************************************
Here's the rest of the interesting stuff for @StgLet@s; the first flavour is for
closures:
-}
data GenStgRhs pass
= StgRhsClosure
(XRhsClosure pass) -- ^ Extension point for non-global free var
-- list just before 'CodeGen'.
CostCentreStack -- ^ CCS to be attached (default is CurrentCCS)
!UpdateFlag -- ^ 'ReEntrant' | 'Updatable' | 'SingleEntry'
[BinderP pass] -- ^ arguments; if empty, then not a function;
-- as above, order is important.
(GenStgExpr pass) -- ^ body
{-
An example may be in order. Consider:
let t = \x -> \y -> ... x ... y ... p ... q in e
Pulling out the free vars and stylising somewhat, we get the equivalent:
let t = (\[p,q] -> \[x,y] -> ... x ... y ... p ...q) p q
Stg-operationally, the @[x,y]@ are on the stack, the @[p,q]@ are offsets from
@Node@ into the closure, and the code ptr for the closure will be exactly that
in parentheses above.
The second flavour of right-hand-side is for constructors (simple but
important):
-}
| StgRhsCon
CostCentreStack -- CCS to be attached (default is CurrentCCS).
-- Top-level (static) ones will end up with
-- DontCareCCS, because we don't count static
-- data in heap profiles, and we don't set CCCS
-- from static closure.
DataCon -- Constructor. Never an unboxed tuple or sum, as those
-- are not allocated.
ConstructorNumber
[StgTickish]
[StgArg] -- Args
-- | Like 'GHC.Hs.Extension.NoExtField', but with an 'Outputable' instance that
-- returns 'empty'.
data NoExtFieldSilent = NoExtFieldSilent
deriving (Data, Eq, Ord)
instance Outputable NoExtFieldSilent where
ppr _ = empty
-- | Used when constructing a term with an unused extension point that should
-- not appear in pretty-printed output at all.
noExtFieldSilent :: NoExtFieldSilent
noExtFieldSilent = NoExtFieldSilent
-- TODO: Maybe move this to GHC.Hs.Extension? I'm not sure about the
-- implications on build time...
stgRhsArity :: StgRhs -> Int
stgRhsArity (StgRhsClosure _ _ _ bndrs _)
= assert (all isId bndrs) $ length bndrs
-- The arity never includes type parameters, but they should have gone by now
stgRhsArity (StgRhsCon {}) = 0
freeVarsOfRhs :: (XRhsClosure pass ~ DIdSet) => GenStgRhs pass -> DIdSet
freeVarsOfRhs (StgRhsCon _ _ _ _ args) = mkDVarSet [ id | StgVarArg id <- args ]
freeVarsOfRhs (StgRhsClosure fvs _ _ _ _) = fvs
{-
************************************************************************
* *
STG case alternatives
* *
************************************************************************
Very like in Core syntax (except no type-world stuff).
The type constructor is guaranteed not to be abstract; that is, we can see its
representation. This is important because the code generator uses it to
determine return conventions etc. But it's not trivial where there's a module
loop involved, because some versions of a type constructor might not have all
the constructors visible. So mkStgAlgAlts (in CoreToStg) ensures that it gets
the TyCon from the constructors or literals (which are guaranteed to have the
Real McCoy) rather than from the scrutinee type.
-}
data GenStgAlt pass = GenStgAlt
{ alt_con :: !AltCon -- alts: data constructor,
, alt_bndrs :: ![BinderP pass] -- constructor's parameters,
, alt_rhs :: !(GenStgExpr pass) -- right-hand side.
}
data AltType
= PolyAlt -- Polymorphic (a boxed type variable, lifted or unlifted)
| MultiValAlt Int -- Multi value of this arity (unboxed tuple or sum)
-- the arity could indeed be 1 for unary unboxed tuple
-- or enum-like unboxed sums
| AlgAlt TyCon -- Algebraic data type; the AltCons will be DataAlts
| PrimAlt PrimRep -- Primitive data type; the AltCons (if any) will be LitAlts
{-
************************************************************************
* *
The Plain STG parameterisation
* *
************************************************************************
Note [STG Extension points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now make use of extension points in STG for different passes which want
to associate information with AST nodes.
Currently the pipeline is roughly:
CoreToStg: Core -> Stg
StgSimpl: Stg -> Stg
CodeGen: Stg -> Cmm
As part of StgSimpl we run late lambda lifting (Ll).
Late lambda lift:
Stg -> FvStg -> LlStg -> Stg
CodeGen:
As part of CodeGen we run tag inference.
Tag Inference:
Stg -> Stg 'InferTaggedBinders` -> Stg
And at a last step we add the free Variables:
Stg -> CgStg
Which finally CgStg being used to generate Cmm.
-}
type StgTopBinding = GenStgTopBinding 'Vanilla
type StgBinding = GenStgBinding 'Vanilla
type StgExpr = GenStgExpr 'Vanilla
type StgRhs = GenStgRhs 'Vanilla
type StgAlt = GenStgAlt 'Vanilla
type LlStgTopBinding = GenStgTopBinding 'LiftLams
type LlStgBinding = GenStgBinding 'LiftLams
type LlStgExpr = GenStgExpr 'LiftLams
type LlStgRhs = GenStgRhs 'LiftLams
type LlStgAlt = GenStgAlt 'LiftLams
type CgStgTopBinding = GenStgTopBinding 'CodeGen
type CgStgBinding = GenStgBinding 'CodeGen
type CgStgExpr = GenStgExpr 'CodeGen
type CgStgRhs = GenStgRhs 'CodeGen
type CgStgAlt = GenStgAlt 'CodeGen
type TgStgTopBinding = GenStgTopBinding 'CodeGen
type TgStgBinding = GenStgBinding 'CodeGen
type TgStgExpr = GenStgExpr 'CodeGen
type TgStgRhs = GenStgRhs 'CodeGen
type TgStgAlt = GenStgAlt 'CodeGen
{- Many passes apply a substitution, and it's very handy to have type
synonyms to remind us whether or not the substitution has been applied.
See GHC.Core for precedence in Core land
-}
type InStgTopBinding = StgTopBinding
type InStgBinding = StgBinding
type InStgArg = StgArg
type InStgExpr = StgExpr
type InStgRhs = StgRhs
type InStgAlt = StgAlt
type OutStgTopBinding = StgTopBinding
type OutStgBinding = StgBinding
type OutStgArg = StgArg
type OutStgExpr = StgExpr
type OutStgRhs = StgRhs
type OutStgAlt = StgAlt
-- | When `-fdistinct-constructor-tables` is turned on then
-- each usage of a constructor is given an unique number and
-- an info table is generated for each different constructor.
data ConstructorNumber =
NoNumber | Numbered Int
instance Outputable ConstructorNumber where
ppr NoNumber = empty
ppr (Numbered n) = text "#" <> ppr n
{-
Note Stg Passes
~~~~~~~~~~~~~~~
Here is a short summary of the STG pipeline and where we use the different
StgPass data type indexes:
1. CoreToStg.Prep performs several transformations that prepare the desugared
and simplified core to be converted to STG. One of these transformations is
making it so that value lambdas only exist as the RHS of a binding.
See Note [CorePrep Overview].
2. CoreToStg converts the prepared core to STG, specifically GenStg*
parameterised by 'Vanilla. See the GHC.CoreToStg Module.
3. Stg.Pipeline does a number of passes on the generated STG. One of these is
the lambda-lifting pass, which internally uses the 'LiftLams
parameterisation to store information for deciding whether or not to lift
each binding.
See Note [Late lambda lifting in STG].
4. Tag inference takes in 'Vanilla and produces 'InferTagged STG, while using
the InferTaggedBinders annotated AST internally.
See Note [Tag Inference].
5. Stg.FVs annotates closures with their free variables. To store these
annotations we use the 'CodeGen parameterisation.
See the GHC.Stg.FVs module.
6. The Module Stg.StgToCmm generates Cmm from the CodeGen annotated STG.
-}
-- | Used as a data type index for the stgSyn AST
data StgPass
= Vanilla
| LiftLams -- ^ Use internally by the lambda lifting pass
| InferTaggedBinders -- ^ Tag inference information on binders.
-- See Note [Tag inference passes] in GHC.Stg.InferTags
| InferTagged -- ^ Tag inference information put on relevant StgApp nodes
-- See Note [Tag inference passes] in GHC.Stg.InferTags
| CodeGen
type family BinderP (pass :: StgPass)
type instance BinderP 'Vanilla = Id
type instance BinderP 'CodeGen = Id
type instance BinderP 'InferTagged = Id
type family XRhsClosure (pass :: StgPass)
type instance XRhsClosure 'Vanilla = NoExtFieldSilent
type instance XRhsClosure 'InferTagged = NoExtFieldSilent
-- | Code gen needs to track non-global free vars
type instance XRhsClosure 'CodeGen = DIdSet
type family XLet (pass :: StgPass)
type instance XLet 'Vanilla = NoExtFieldSilent
type instance XLet 'InferTagged = NoExtFieldSilent
type instance XLet 'CodeGen = NoExtFieldSilent
type family XLetNoEscape (pass :: StgPass)
type instance XLetNoEscape 'Vanilla = NoExtFieldSilent
type instance XLetNoEscape 'InferTagged = NoExtFieldSilent
type instance XLetNoEscape 'CodeGen = NoExtFieldSilent
{-
************************************************************************
* *
UpdateFlag
* *
************************************************************************
This is also used in @LambdaFormInfo@ in the @ClosureInfo@ module.
A @ReEntrant@ closure may be entered multiple times, but should not be updated
or blackholed. An @Updatable@ closure should be updated after evaluation (and
may be blackholed during evaluation). A @SingleEntry@ closure will only be
entered once, and so need not be updated but may safely be blackholed.
-}
data UpdateFlag = ReEntrant | Updatable | SingleEntry
instance Outputable UpdateFlag where
ppr u = char $ case u of
ReEntrant -> 'r'
Updatable -> 'u'
SingleEntry -> 's'
isUpdatable :: UpdateFlag -> Bool
isUpdatable ReEntrant = False
isUpdatable SingleEntry = False
isUpdatable Updatable = True
{-
************************************************************************
* *
StgOp
* *
************************************************************************
An StgOp allows us to group together PrimOps and ForeignCalls. It's quite useful
to move these around together, notably in StgOpApp and COpStmt.
-}
data StgOp
= StgPrimOp PrimOp
| StgPrimCallOp PrimCall
| StgFCallOp ForeignCall Type
-- The Type, which is obtained from the foreign import declaration
-- itself, is needed by the stg-to-cmm pass to determine the offset to
-- apply to unlifted boxed arguments in GHC.StgToCmm.Foreign. See Note
-- [Unlifted boxed arguments to foreign calls]
{-
************************************************************************
* *
Pretty-printing
* *
************************************************************************
Robin Popplestone asked for semi-colon separators on STG binds; here's hoping he
likes terminators instead... Ditto for case alternatives.
-}
type OutputablePass pass =
( Outputable (XLet pass)
, Outputable (XLetNoEscape pass)
, Outputable (XRhsClosure pass)
, OutputableBndr (BinderP pass)
)
-- | STG pretty-printing options
data StgPprOpts = StgPprOpts
{ stgSccEnabled :: !Bool -- ^ Enable cost-centres
}
-- | STG pretty-printing options used for panic messages
panicStgPprOpts :: StgPprOpts
panicStgPprOpts = StgPprOpts
{ stgSccEnabled = True
}
-- | STG pretty-printing options used for short messages
shortStgPprOpts :: StgPprOpts
shortStgPprOpts = StgPprOpts
{ stgSccEnabled = False
}
pprGenStgTopBinding
:: OutputablePass pass => StgPprOpts -> GenStgTopBinding pass -> SDoc
pprGenStgTopBinding opts b = case b of
StgTopStringLit bndr str -> hang (hsep [pprBndr LetBind bndr, equals]) 4 (pprHsBytes str <> semi)
StgTopLifted bind -> pprGenStgBinding opts bind
pprGenStgBinding :: OutputablePass pass => StgPprOpts -> GenStgBinding pass -> SDoc
pprGenStgBinding opts b = case b of
StgNonRec bndr rhs -> hang (hsep [pprBndr LetBind bndr, equals]) 4 (pprStgRhs opts rhs <> semi)
StgRec pairs -> vcat [ text "Rec {"
, vcat (intersperse blankLine (map ppr_bind pairs))
, text "end Rec }" ]
where
ppr_bind (bndr, expr)
= hang (hsep [pprBndr LetBind bndr, equals])
4 (pprStgRhs opts expr <> semi)
instance OutputablePass pass => Outputable (GenStgBinding pass) where
ppr = pprGenStgBinding panicStgPprOpts
pprGenStgTopBindings :: (OutputablePass pass) => StgPprOpts -> [GenStgTopBinding pass] -> SDoc
pprGenStgTopBindings opts binds
= vcat $ intersperse blankLine (map (pprGenStgTopBinding opts) binds)
pprStgBinding :: OutputablePass pass => StgPprOpts -> GenStgBinding pass -> SDoc
pprStgBinding = pprGenStgBinding
pprStgTopBinding :: OutputablePass pass => StgPprOpts -> GenStgTopBinding pass -> SDoc
pprStgTopBinding = pprGenStgTopBinding
pprStgTopBindings :: OutputablePass pass => StgPprOpts -> [GenStgTopBinding pass] -> SDoc
pprStgTopBindings = pprGenStgTopBindings
instance Outputable StgArg where
ppr = pprStgArg
pprStgArg :: StgArg -> SDoc
pprStgArg (StgVarArg var) = ppr var
pprStgArg (StgLitArg con) = ppr con
instance OutputablePass pass => Outputable (GenStgExpr pass) where
ppr = pprStgExpr panicStgPprOpts
pprStgExpr :: OutputablePass pass => StgPprOpts -> GenStgExpr pass -> SDoc
pprStgExpr opts e = case e of
-- special case
StgLit lit -> ppr lit
-- general case
StgApp func args
| null args
, Just sig <- idTagSig_maybe func
-> ppr func <> ppr sig
| otherwise -> hang (ppr func) 4 (interppSP args) -- TODO: Print taggedness
StgConApp con n args _ -> hsep [ ppr con, ppr n, brackets (interppSP args) ]
StgOpApp op args _ -> hsep [ pprStgOp op, brackets (interppSP args)]
-- special case: let v = <very specific thing>
-- in
-- let ...
-- in
-- ...
--
-- Very special! Suspicious! (SLPJ)
{-
StgLet srt (StgNonRec bndr (StgRhsClosure cc bi free_vars upd_flag args rhs))
expr@(StgLet _ _))
-> ($$)
(hang (hcat [text "let { ", ppr bndr, text " = ",
ppr cc,
pp_binder_info bi,
text " [", whenPprDebug (interppSP free_vars), text "] \\",
ppr upd_flag, text " [",
interppSP args, char ']'])
8 (sep [hsep [ppr rhs, text "} in"]]))
(ppr expr)
-}
-- special case: let ... in let ...
StgLet ext bind expr@StgLet{} -> ($$)
(sep [hang (text "let" <+> ppr ext <+> text "{")
2 (hsep [pprGenStgBinding opts bind, text "} in"])])
(pprStgExpr opts expr)
-- general case
StgLet ext bind expr
-> sep [ hang (text "let" <+> ppr ext <+> text "{")
2 (pprGenStgBinding opts bind)
, hang (text "} in ") 2 (pprStgExpr opts expr)
]
StgLetNoEscape ext bind expr
-> sep [ hang (text "let-no-escape" <+> ppr ext <+> text "{")
2 (pprGenStgBinding opts bind)
, hang (text "} in ") 2 (pprStgExpr opts expr)
]
StgTick _tickish expr -> sdocOption sdocSuppressTicks $ \case
True -> pprStgExpr opts expr
False -> pprStgExpr opts expr
-- XXX sep [ ppr tickish, pprStgExpr opts expr ]
-- Don't indent for a single case alternative.
StgCase expr bndr alt_type [alt]
-> sep [ sep [ text "case"
, nest 4 (hsep [ pprStgExpr opts expr
, whenPprDebug (dcolon <+> ppr alt_type)
])
, text "of"
, pprBndr CaseBind bndr
, char '{'
]
, pprStgAlt opts False alt
, char '}'
]
StgCase expr bndr alt_type alts
-> sep [ sep [ text "case"
, nest 4 (hsep [ pprStgExpr opts expr
, whenPprDebug (dcolon <+> ppr alt_type)
])
, text "of"
, pprBndr CaseBind bndr, char '{'
]
, nest 2 (vcat (map (pprStgAlt opts True) alts))
, char '}'
]
pprStgAlt :: OutputablePass pass => StgPprOpts -> Bool -> GenStgAlt pass -> SDoc
pprStgAlt opts indent GenStgAlt{alt_con, alt_bndrs, alt_rhs}
| indent = hang altPattern 4 (pprStgExpr opts alt_rhs <> semi)
| otherwise = sep [altPattern, pprStgExpr opts alt_rhs <> semi]
where
altPattern = hsep [ ppr alt_con
, sep (map (pprBndr CasePatBind) alt_bndrs)
, text "->"
]
pprStgOp :: StgOp -> SDoc
pprStgOp (StgPrimOp op) = ppr op
pprStgOp (StgPrimCallOp op)= ppr op
pprStgOp (StgFCallOp op _) = ppr op
instance Outputable StgOp where
ppr = pprStgOp
instance Outputable AltType where
ppr PolyAlt = text "Polymorphic"
ppr (MultiValAlt n) = text "MultiAlt" <+> ppr n
ppr (AlgAlt tc) = text "Alg" <+> ppr tc
ppr (PrimAlt tc) = text "Prim" <+> ppr tc
pprStgRhs :: OutputablePass pass => StgPprOpts -> GenStgRhs pass -> SDoc
pprStgRhs opts rhs = case rhs of
StgRhsClosure ext cc upd_flag args body
-> hang (hsep [ if stgSccEnabled opts then ppr cc else empty
, ppUnlessOption sdocSuppressStgExts (ppr ext)
, char '\\' <> ppr upd_flag, brackets (interppSP args)
])
4 (pprStgExpr opts body)
StgRhsCon cc con mid _ticks args
-> hcat [ ppr cc, space
, case mid of
NoNumber -> empty
Numbered n -> hcat [ppr n, space]
-- The bang indicates this is an StgRhsCon instead of an StgConApp.
, ppr con, text "! ", brackets (sep (map pprStgArg args))]
instance OutputablePass pass => Outputable (GenStgRhs pass) where
ppr = pprStgRhs panicStgPprOpts
|