1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TupleSections #-}
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-2012
Note [Unarisation]
~~~~~~~~~~~~~~~~~~
The idea of this pass is to translate away *all* unboxed-tuple and unboxed-sum
binders. So for example:
f (x :: (# Int, Bool #)) = f x + f (# 1, True #)
==>
f (x1 :: Int) (x2 :: Bool) = f x1 x2 + f 1 True
It is important that we do this at the STG level and NOT at the Core level
because it would be very hard to make this pass Core-type-preserving. In this
example the type of 'f' changes, for example.
STG fed to the code generators *must* be unarised because the code generators do
not support unboxed tuple and unboxed sum binders natively.
In more detail: (see next note for unboxed sums)
Suppose that a variable x : (# t1, t2 #).
* At the binding site for x, make up fresh vars x1:t1, x2:t2
* Extend the UnariseEnv x :-> MultiVal [x1,x2]
* Replace the binding with a curried binding for x1,x2
Lambda: \x.e ==> \x1 x2. e
Case alt: MkT a b x c d -> e ==> MkT a b x1 x2 c d -> e
* Replace argument occurrences with a sequence of args via a lookup in
UnariseEnv
f a b x c d ==> f a b x1 x2 c d
* Replace tail-call occurrences with an unboxed tuple via a lookup in
UnariseEnv
x ==> (# x1, x2 #)
So, for example
f x = x ==> f x1 x2 = (# x1, x2 #)
* We /always/ eliminate a case expression when
- It scrutinises an unboxed tuple or unboxed sum
- The scrutinee is a variable (or when it is an explicit tuple, but the
simplifier eliminates those)
The case alternative (there can be only one) can be one of these two
things:
- An unboxed tuple pattern. e.g.
case v of x { (# x1, x2, x3 #) -> ... }
Scrutinee has to be in form `(# t1, t2, t3 #)` so we just extend the
environment with
x :-> MultiVal [t1,t2,t3]
x1 :-> UnaryVal t1, x2 :-> UnaryVal t2, x3 :-> UnaryVal t3
- A DEFAULT alternative. Just the same, without the bindings for x1,x2,x3
By the end of this pass, we only have unboxed tuples in return positions.
Unboxed sums are completely eliminated, see next note.
Note [Translating unboxed sums to unboxed tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unarise also eliminates unboxed sum binders, and translates unboxed sums in
return positions to unboxed tuples. We want to overlap fields of a sum when
translating it to a tuple to have efficient memory layout. When translating a
sum pattern to a tuple pattern, we need to translate it so that binders of sum
alternatives will be mapped to right arguments after the term translation. So
translation of sum DataCon applications to tuple DataCon applications and
translation of sum patterns to tuple patterns need to be in sync.
These translations work like this. Suppose we have
(# x1 | | ... #) :: (# t1 | t2 | ... #)
remember that t1, t2 ... can be sums and tuples too. So we first generate
layouts of those. Then we "merge" layouts of each alternative, which gives us a
sum layout with best overlapping possible.
Layout of a flat type 'ty1' is just [ty1].
Layout of a tuple is just concatenation of layouts of its fields.
For layout of a sum type,
- We first get layouts of all alternatives.
- We sort these layouts based on their "slot types".
- We merge all the alternatives.
For example, say we have (# (# Int#, Char #) | (# Int#, Int# #) | Int# #)
- Layouts of alternatives: [ [Word, LiftedPtr], [Word, Word], [Word] ]
- Sorted: [ [LiftedPtr, Word], [Word, Word], [Word] ]
- Merge all alternatives together: [ LiftedPtr, Word, Word ]
We add a slot for the tag to the first position. So our tuple type is
(# Tag#, Any, Word#, Word# #)
(we use Any for pointer slots)
Now, any term of this sum type needs to generate a tuple of this type instead.
The translation works by simply putting arguments to first slots that they fit
in. Suppose we had
(# (# 42#, 'c' #) | | #)
42# fits in Word#, 'c' fits in Any, so we generate this application:
(# 1#, 'c', 42#, rubbish #)
Another example using the same type: (# | (# 2#, 3# #) | #). 2# fits in Word#,
3# fits in Word #, so we get:
(# 2#, rubbish, 2#, 3# #).
Note [Don't merge lifted and unlifted slots]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When merging slots, one might be tempted to collapse lifted and unlifted
pointers. However, as seen in #19645, this is wrong. Imagine that you have
the program:
test :: (# Char | ByteArray# #) -> ByteArray#
test (# c | #) = doSomething c
test (# | ba #) = ba
Collapsing the Char and ByteArray# slots would produce STG like:
test :: forall {t}. (# t | GHC.Prim.ByteArray# #) -> GHC.Prim.ByteArray#
= {} \r [ (tag :: Int#) (slot0 :: (Any :: Type)) ]
case tag of tag'
1# -> doSomething slot0
2# -> slot0;
Note how `slot0` has a lifted type, despite being bound to an unlifted
ByteArray# in the 2# alternative. This liftedness would cause the code generator to
attempt to enter it upon returning. As unlifted objects do not have entry code,
this causes a runtime crash.
For this reason, Unarise treats unlifted and lifted things as distinct slot
types, despite both being GC pointers. This approach is a slight pessimisation
(since we need to pass more arguments) but appears to be the simplest way to
avoid #19645. Other alternatives considered include:
a. Giving unlifted objects "trivial" entry code. However, we ultimately
concluded that the value of the "unlifted things are never entered" invariant
outweighed the simplicity of this approach.
b. Annotating occurrences with calling convention information instead of
relying on the binder's type. This seemed like a very complicated
way to fix what is ultimately a corner-case.
Note [Types in StgConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have this unboxed sum term:
(# 123 | #)
What will be the unboxed tuple representation? We can't tell without knowing the
type of this term. For example, these are all valid tuples for this:
(# 1#, 123 #) -- when type is (# Int | String #)
(# 1#, 123, rubbish #) -- when type is (# Int | Float# #)
(# 1#, 123, rubbish, rubbish #)
-- when type is (# Int | (# Int, Int, Int #) #)
So we pass type arguments of the DataCon's TyCon in StgConApp to decide what
layout to use. Note that unlifted values can't be let-bound, so we don't need
types in StgRhsCon.
Note [Casting slot arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this function which selects between Int32# and Int64# from a unboxed sum.
foo :: (# Int32# | Int64# #) -> FD
foo x = case x of
(# x1 | #) -> F x1
(# | x2 #) -> D x2
Naturally we would expect x1 to have a PrimRep of Int32Rep and x2 of DoubleRep.
However we used to generate this (bogus) code after Unarise giving rise to #22208:
M.foo :: (# GHC.Prim.Int32# | GHC.Prim.Int64# #) -> M.FD
[GblId, Arity=1, Unf=OtherCon []] =
{} \r [sum_tag sum_field]
case sum_tag of tag_gsc {
__DEFAULT -> M.F [sum_field];
2# -> M.D [sum_field];
};
Where sum_field is used both as Int32# and Int64# depending on the branch
because they share the same SlotTy.
This usually works out since we put all int's in the same sort of register.
So even if the reps where wrong (x :: bits32) = (y :: bits64) would produce
correct code in the most cases.
However there are cases where this goes wrong, causing lint errors,in the case of #22208
compiler panics or in some cases incorrect results in the C backend.
For now our solution is to construct proper casts between the PrimRep of the slot and
the variables we want to store in, or read out of these slots.
This means when we have a sum (# Int32# | Int64# #) if we want to store a Int32
we convert it to a Int64 on construction of the tuple value, and convert it back
to a Int32 once when want to use the field. On most backends these coversions should
be no-ops at runtime so this seems reasonable.
Conversion for values coming out of a strict field happen in mapSumIdBinders. While
conversion during the construction of sums happen inside mkUbxSum.
------------- A full example of casting during sum construction ----------------
To compile a constructor application of a unboxed sum of type (# Int32# | Int64# )
in an expression like `let sum = (# x | #)` we will call mkUbxSum to determine
which binders we have to replace sum with at use sites during unarise.
See also Note [Translating unboxed sums to unboxed tuples].
Int32# and Int64# in this case will share the same slot in the unboxed sum. This means
the sum after unarise will be represented by two binders. One for the tag and one for
the field. The later having Int64Rep.
However our input for the field is of Int32Rep. So in order to soundly construct
`(# x | #) :: (# Int32# | Int64# )` we must upcast `x` to Int64#.
To do this mkUbxSum will produce an expression with a hole for constructor application
to go into. That is the call to mkUbxSum and it's result will look something like:
>>> mkUbxSum (#|#) [Int32#, Int64#] (x::Int32#) us (x')
([1#::Int#, x'::Int64#], \rhs -> case int32ToInt# x of x' -> rhs )
We will use the returned arguments to construct an application to an unboxed tuple:
>>> mkTuple [tag::Int#, x'::Int64#]
(# tag, x' #)
Which we will then use as the rhs to pass into the casting wrapper to
construct an expression that casts `x` to the right type before constructing the
tuple
>>> (\rhs -> case int32ToInt# x of x' -> rhs ) (# tag, x' #)
case int32ToInt# x of x' -> (# #) 1# x'
Which results in the this definition for `sum` after all is said and done:
let sum = case int32ToInt# x of { x' -> (# #) 1# x' }
Not that the renaming is not optional. Cmm requires binders of different uniques
to have at least different types. See Note [CorePrep Overview]: 6. Clone all local Ids
------------- A full example of casting during sum matching --------------------
When matching on an unboxed sum constructor we start out with
something like this the pre-unarise:
f :: (# Int32 | Int64# ) -> ...
f sum = case sum of
(# x |#) -> alt_rhs
...
We unarise the function arguments and get:
f sum_tag sum_slot1 = case sum_tag of
1# -> ???
Now we need to match up the original alternative binders with the sum slots passed
to the function. This is done by mapSumIdBinders which we we call for our
example alternative like this:
>>> mapSumIdBinders [x] [sum_slot1] alt_rhs env
(env', alt_rhs')
mapSumIdBinders first matches up the list of binders with the slots passed to
the function which is trivial in this case. Then we check if the slot and the
variable residing inside it agree on their Rep. If alternative binders and
the function arguments agree in their slot reps we we just extend the environment
with a mapping from `x` to `sum_slot1` and we return the rhs as is.
If the reps of the sum_slots do not agree with alternative binders they represent
then we need to wrap the whole RHS in nested cases which cast the sum_slot<n>
variables to the correct rep. Here `x` is of Int32Rep while `sum_slot1` will be
of Int64Rep. This means instead of retuning the original alt_rhs we will return:
>>> mapSumIdBinders [x] [sum_slot1] alt_rhs env
( env'[x=x']
, case int64ToInt32# (sum_slot1 :: Int64#) of
(x' :: Int32#) -> alt_rhs
)
We then run unarise on alt_rhs within that expression, which will replace the first occurence
of `x` with sum_slot_arg_1 giving us post-unarise:
f sum_tag sum_slot1 =
case sum_tag of
1# -> case int64ToInt32# sum_slot1 of
x' -> ... x' ...
...
Note [UnariseEnv]
~~~~~~~~~~~~~~~~~~
At any variable occurrence 'v',
* If the UnariseEnv has a binding for 'v', the binding says what 'v' is bound to
* If not, 'v' stands just for itself.
Most variables are unaffected by unarisation, and (for efficiency) we don't put
them in the UnariseEnv at all. But NB: when we go under a binding for 'v' we must
remember to delete 'v' from the UnariseEnv, lest occurrences of 'v' see the outer
binding for the variable (#21396).
Note [UnariseEnv can map to literals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To avoid redundant case expressions when unarising unboxed sums, UnariseEnv
needs to map variables to literals too. Suppose we have this Core:
f (# x | #)
==> (CorePrep)
case (# x | #) of y {
_ -> f y
}
==> (MultiVal)
case (# 1#, x #) of [x1, x2] {
_ -> f x1 x2
}
To eliminate this case expression we need to map x1 to 1# in UnariseEnv:
x1 :-> UnaryVal 1#, x2 :-> UnaryVal x
so that `f x1 x2` becomes `f 1# x`.
Note [Unarisation and arity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because of unarisation, the arity that will be recorded in the generated info
table for an Id may be larger than the idArity. Instead we record what we call
the RepArity, which is the Arity taking into account any expanded arguments, and
corresponds to the number of (possibly-void) *registers* arguments will arrive
in.
Note [Post-unarisation invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STG programs after unarisation have these invariants:
* No unboxed sums at all.
* No unboxed tuple binders. Tuples only appear in return position.
* DataCon applications (StgRhsCon and StgConApp) don't have void arguments.
This means that it's safe to wrap `StgArg`s of DataCon applications with
`GHC.StgToCmm.Env.NonVoid`, for example.
* Similar to unboxed tuples, Note [Rubbish literals] of TupleRep may only
appear in return position.
* Alt binders (binders in patterns) are always non-void.
* Binders always have zero (for void arguments) or one PrimRep.
-}
module GHC.Stg.Unarise (unarise) where
import GHC.Prelude
import GHC.Types.Basic
import GHC.Core
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Data.FastString (FastString, mkFastString, fsLit)
import GHC.Types.Id
import GHC.Types.Literal
import GHC.Core.Make (aBSENT_SUM_FIELD_ERROR_ID)
import GHC.Types.Id.Make (voidPrimId, voidArgId)
import GHC.Utils.Monad (mapAccumLM)
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Types.RepType
import GHC.Stg.Syntax
import GHC.Stg.Utils
import GHC.Core.Type
import GHC.Builtin.Types.Prim (intPrimTy)
import GHC.Builtin.Types
import GHC.Types.Unique.Supply
import GHC.Types.Unique
import GHC.Utils.Misc
import GHC.Types.Var.Env
import Data.Bifunctor (second)
import Data.List.NonEmpty (NonEmpty (..))
import Data.Maybe (mapMaybe)
import qualified Data.IntMap as IM
import GHC.Builtin.PrimOps
import GHC.Builtin.PrimOps.Casts
import Data.List (mapAccumL)
-- import GHC.Utils.Trace
--------------------------------------------------------------------------------
-- | A mapping from binders to the Ids they were expanded/renamed to.
--
-- x :-> MultiVal [a,b,c] in rho
--
-- iff x's typePrimRep is not a singleton, or equivalently
-- x's type is an unboxed tuple, sum or void.
--
-- x :-> UnaryVal x'
--
-- iff x's RepType is UnaryRep or equivalently
-- x's type is not unboxed tuple, sum or void.
--
-- So
-- x :-> MultiVal [a] in rho
-- means x is represented by singleton tuple.
--
-- x :-> MultiVal [] in rho
-- means x is void.
--
-- INVARIANT: OutStgArgs in the range only have NvUnaryTypes
-- (i.e. no unboxed tuples, sums or voids)
--
newtype UnariseEnv = UnariseEnv { ue_rho :: (VarEnv UnariseVal) }
initUnariseEnv :: VarEnv UnariseVal -> UnariseEnv
initUnariseEnv = UnariseEnv
data UnariseVal
= MultiVal [OutStgArg] -- MultiVal to tuple. Can be empty list (void).
| UnaryVal OutStgArg -- See Note [Renaming during unarisation].
instance Outputable UnariseVal where
ppr (MultiVal args) = text "MultiVal" <+> ppr args
ppr (UnaryVal arg) = text "UnaryVal" <+> ppr arg
-- | Extend the environment, checking the UnariseEnv invariant.
-- The id is mapped to one or more things.
-- See Note [UnariseEnv]
extendRho :: UnariseEnv -> Id -> UnariseVal -> UnariseEnv
extendRho env x (MultiVal args)
= assert (all (isNvUnaryType . stgArgType) args)
env { ue_rho = extendVarEnv (ue_rho env) x (MultiVal args) }
extendRho env x (UnaryVal val)
= assert (isNvUnaryType (stgArgType val))
env { ue_rho = extendVarEnv (ue_rho env) x (UnaryVal val) }
-- Properly shadow things from an outer scope.
-- See Note [UnariseEnv]
-- The id stands for itself so we don't record a mapping.
-- See Note [UnariseEnv]
extendRhoWithoutValue :: UnariseEnv -> Id -> UnariseEnv
extendRhoWithoutValue env x = env { ue_rho = delVarEnv (ue_rho env) x }
lookupRho :: UnariseEnv -> Id -> Maybe UnariseVal
lookupRho env v = lookupVarEnv (ue_rho env) v
--------------------------------------------------------------------------------
unarise :: UniqSupply -> [StgTopBinding] -> [StgTopBinding]
unarise us binds = initUs_ us (mapM (unariseTopBinding (initUnariseEnv emptyVarEnv)) binds)
unariseTopBinding :: UnariseEnv -> StgTopBinding -> UniqSM StgTopBinding
unariseTopBinding rho (StgTopLifted bind)
= StgTopLifted <$> unariseBinding rho bind
unariseTopBinding _ bind@StgTopStringLit{} = return bind
unariseBinding :: UnariseEnv -> StgBinding -> UniqSM StgBinding
unariseBinding rho (StgNonRec x rhs)
= StgNonRec x <$> unariseRhs rho rhs
unariseBinding rho (StgRec xrhss)
= StgRec <$> mapM (\(x, rhs) -> (x,) <$> unariseRhs rho rhs) xrhss
unariseRhs :: UnariseEnv -> StgRhs -> UniqSM StgRhs
unariseRhs rho (StgRhsClosure ext ccs update_flag args expr)
= do (rho', args1) <- unariseFunArgBinders rho args
expr' <- unariseExpr rho' expr
return (StgRhsClosure ext ccs update_flag args1 expr')
unariseRhs rho (StgRhsCon ccs con mu ts args)
= assert (not (isUnboxedTupleDataCon con || isUnboxedSumDataCon con))
return (StgRhsCon ccs con mu ts (unariseConArgs rho args))
--------------------------------------------------------------------------------
unariseExpr :: UnariseEnv -> StgExpr -> UniqSM StgExpr
unariseExpr rho e@(StgApp f [])
= case lookupRho rho f of
Just (MultiVal args) -- Including empty tuples
-> return (mkTuple args)
Just (UnaryVal (StgVarArg f'))
-> return (StgApp f' [])
Just (UnaryVal (StgLitArg f'))
-> return (StgLit f')
Nothing
-> return e
unariseExpr rho e@(StgApp f args)
= return (StgApp f' (unariseFunArgs rho args))
where
f' = case lookupRho rho f of
Just (UnaryVal (StgVarArg f')) -> f'
Nothing -> f
err -> pprPanic "unariseExpr - app2" (pprStgExpr panicStgPprOpts e $$ ppr err)
-- Can't happen because 'args' is non-empty, and
-- a tuple or sum cannot be applied to anything
unariseExpr _ (StgLit l)
= return (StgLit l)
unariseExpr rho (StgConApp dc n args ty_args)
| isUnboxedSumDataCon dc || isUnboxedTupleDataCon dc
= do
us <- getUniqueSupplyM
case unariseUbxSumOrTupleArgs rho us dc args ty_args of
(args', Just cast_wrapper)
-> return $ cast_wrapper (mkTuple args')
(args', Nothing)
-> return $ (mkTuple args')
| otherwise =
let args' = unariseConArgs rho args in
return $ (StgConApp dc n args' (map stgArgType args'))
unariseExpr rho (StgOpApp op args ty)
= return (StgOpApp op (unariseFunArgs rho args) ty)
unariseExpr rho (StgCase scrut bndr alt_ty alts)
-- tuple/sum binders in the scrutinee can always be eliminated
| StgApp v [] <- scrut
, Just (MultiVal xs) <- lookupRho rho v
= elimCase rho xs bndr alt_ty alts
-- Handle strict lets for tuples and sums:
-- case (# a,b #) of r -> rhs
-- and analogously for sums
| StgConApp dc _n args ty_args <- scrut
, isUnboxedSumDataCon dc || isUnboxedTupleDataCon dc
= do
us <- getUniqueSupplyM
case unariseUbxSumOrTupleArgs rho us dc args ty_args of
(args',Just wrapper) -> wrapper <$> elimCase rho args' bndr alt_ty alts
(args',Nothing) -> elimCase rho args' bndr alt_ty alts
-- See (3) of Note [Rubbish literals] in GHC.Types.Literal
| StgLit lit <- scrut
, Just args' <- unariseRubbish_maybe lit
= elimCase rho args' bndr alt_ty alts
-- general case
| otherwise
= do scrut' <- unariseExpr rho scrut
alts' <- unariseAlts rho alt_ty bndr alts
return (StgCase scrut' bndr alt_ty alts')
-- bndr may have a unboxed sum/tuple type but it will be
-- dead after unarise (checked in GHC.Stg.Lint)
unariseExpr rho (StgLet ext bind e)
= StgLet ext <$> unariseBinding rho bind <*> unariseExpr rho e
unariseExpr rho (StgLetNoEscape ext bind e)
= StgLetNoEscape ext <$> unariseBinding rho bind <*> unariseExpr rho e
unariseExpr rho (StgTick tick e)
= StgTick tick <$> unariseExpr rho e
-- Doesn't return void args.
unariseUbxSumOrTupleArgs :: UnariseEnv -> UniqSupply -> DataCon -> [InStgArg] -> [Type]
-> ( [OutStgArg] -- Arguments representing the unboxed sum
, Maybe (StgExpr -> StgExpr)) -- Transformation to apply to the arguments, to bring them
-- into the right Rep
unariseUbxSumOrTupleArgs rho us dc args ty_args
| isUnboxedTupleDataCon dc
= (unariseConArgs rho args, Nothing)
| isUnboxedSumDataCon dc
, let args1 = assert (isSingleton args) (unariseConArgs rho args)
= let (args2, cast_wrapper) = mkUbxSum dc ty_args args1 us
in (args2, Just cast_wrapper)
| otherwise
= panic "unariseUbxSumOrTupleArgs: Constructor not a unboxed sum or tuple"
-- Doesn't return void args.
unariseRubbish_maybe :: Literal -> Maybe [OutStgArg]
unariseRubbish_maybe (LitRubbish torc rep)
| [prep] <- preps
, not (isVoidRep prep)
= Nothing -- Single, non-void PrimRep. Nothing to do!
| otherwise -- Multiple reps, possibly with VoidRep. Eliminate via elimCase
= Just [ StgLitArg (LitRubbish torc (primRepToRuntimeRep prep))
| prep <- preps, not (isVoidRep prep) ]
where
preps = runtimeRepPrimRep (text "unariseRubbish_maybe") rep
unariseRubbish_maybe _ = Nothing
--------------------------------------------------------------------------------
elimCase :: UnariseEnv
-> [OutStgArg] -- non-void args
-> InId -> AltType -> [InStgAlt] -> UniqSM OutStgExpr
elimCase rho args bndr (MultiValAlt _) [GenStgAlt{ alt_con = _
, alt_bndrs = bndrs
, alt_rhs = rhs}]
= do let rho1 = extendRho rho bndr (MultiVal args)
(rho2, rhs') <- case () of
_
| isUnboxedTupleBndr bndr
-> return (mapTupleIdBinders bndrs args rho1, rhs)
| otherwise
-> assert (isUnboxedSumBndr bndr) $
case bndrs of
-- Sum with a void-type binder?
[] -> return (rho1, rhs)
[alt_bndr] -> mapSumIdBinders alt_bndr args rhs rho1
_ -> pprPanic "mapSumIdBinders" (ppr bndrs $$ ppr args)
unariseExpr rho2 rhs'
elimCase rho args@(tag_arg : real_args) bndr (MultiValAlt _) alts
| isUnboxedSumBndr bndr
= do tag_bndr <- mkId (mkFastString "tag") tagTy
-- this won't be used but we need a binder anyway
let rho1 = extendRho rho bndr (MultiVal args)
scrut' = case tag_arg of
StgVarArg v -> StgApp v []
StgLitArg l -> StgLit l
alts' <- unariseSumAlts rho1 real_args alts
return (StgCase scrut' tag_bndr tagAltTy alts')
elimCase _ args bndr alt_ty alts
= pprPanic "elimCase - unhandled case"
(ppr args <+> ppr bndr <+> ppr alt_ty $$ pprPanicAlts alts)
--------------------------------------------------------------------------------
unariseAlts :: UnariseEnv -> AltType -> InId -> [StgAlt] -> UniqSM [StgAlt]
unariseAlts rho (MultiValAlt n) bndr [GenStgAlt{ alt_con = DEFAULT
, alt_bndrs = []
, alt_rhs = e}]
| isUnboxedTupleBndr bndr
= do (rho', ys) <- unariseConArgBinder rho bndr
!e' <- unariseExpr rho' e
return [GenStgAlt (DataAlt (tupleDataCon Unboxed n)) ys e']
unariseAlts rho (MultiValAlt n) bndr [GenStgAlt{ alt_con = DataAlt _
, alt_bndrs = ys
, alt_rhs = e}]
| isUnboxedTupleBndr bndr
= do (rho', ys1) <- unariseConArgBinders rho ys
massert (ys1 `lengthIs` n)
let rho'' = extendRho rho' bndr (MultiVal (map StgVarArg ys1))
!e' <- unariseExpr rho'' e
return [GenStgAlt (DataAlt (tupleDataCon Unboxed n)) ys1 e']
unariseAlts _ (MultiValAlt _) bndr alts
| isUnboxedTupleBndr bndr
= pprPanic "unariseExpr: strange multi val alts" (pprPanicAlts alts)
-- In this case we don't need to scrutinize the tag bit
unariseAlts rho (MultiValAlt _) bndr [GenStgAlt{ alt_con = DEFAULT
, alt_bndrs = []
, alt_rhs = rhs}]
| isUnboxedSumBndr bndr
= do (rho_sum_bndrs, sum_bndrs) <- unariseConArgBinder rho bndr
rhs' <- unariseExpr rho_sum_bndrs rhs
return [GenStgAlt (DataAlt (tupleDataCon Unboxed (length sum_bndrs))) sum_bndrs rhs']
unariseAlts rho (MultiValAlt _) bndr alts
| isUnboxedSumBndr bndr
= do (rho_sum_bndrs, scrt_bndrs@(tag_bndr : real_bndrs)) <- unariseConArgBinder rho bndr
alts' <- unariseSumAlts rho_sum_bndrs (map StgVarArg real_bndrs) alts
let inner_case = StgCase (StgApp tag_bndr []) tag_bndr tagAltTy alts'
return [GenStgAlt{ alt_con = DataAlt (tupleDataCon Unboxed (length scrt_bndrs))
, alt_bndrs = scrt_bndrs
, alt_rhs = inner_case
}]
unariseAlts rho _ _ alts
= mapM (\alt -> unariseAlt rho alt) alts
unariseAlt :: UnariseEnv -> StgAlt -> UniqSM StgAlt
unariseAlt rho alt@GenStgAlt{alt_con=_,alt_bndrs=xs,alt_rhs=e}
= do (rho', xs') <- unariseConArgBinders rho xs
!e' <- unariseExpr rho' e
return $! alt {alt_bndrs = xs', alt_rhs = e'}
--------------------------------------------------------------------------------
-- | Make alternatives that match on the tag of a sum
-- (i.e. generate LitAlts for the tag)
unariseSumAlts :: UnariseEnv
-> [StgArg] -- sum components _excluding_ the tag bit.
-> [StgAlt] -- original alternative with sum LHS
-> UniqSM [StgAlt]
unariseSumAlts env args alts
= do alts' <- mapM (unariseSumAlt env args) alts
return (mkDefaultLitAlt alts')
unariseSumAlt :: UnariseEnv
-> [StgArg] -- sum components _excluding_ the tag bit.
-> StgAlt -- original alternative with sum LHS
-> UniqSM StgAlt
unariseSumAlt rho _ GenStgAlt{alt_con=DEFAULT,alt_bndrs=_,alt_rhs=e}
= GenStgAlt DEFAULT mempty <$> unariseExpr rho e
unariseSumAlt rho args alt@GenStgAlt{ alt_con = DataAlt sumCon
, alt_bndrs = bs
, alt_rhs = e
}
= do (rho',e') <- case bs of
[b] -> mapSumIdBinders b args e rho
-- Sums must have one binder
_ -> pprPanic "unariseSumAlt2" (ppr args $$ pprPanicAlt alt)
let lit_case = LitAlt (LitNumber LitNumInt (fromIntegral (dataConTag sumCon)))
GenStgAlt lit_case mempty <$> unariseExpr rho' e'
unariseSumAlt _ scrt alt
= pprPanic "unariseSumAlt3" (ppr scrt $$ pprPanicAlt alt)
--------------------------------------------------------------------------------
-- Mapping binders when matching und a unboxed sum/tuple
mapTupleIdBinders
:: [InId] -- Un-processed binders of a tuple alternative.
-- Can have void binders.
-> [OutStgArg] -- Arguments that form the tuple (after unarisation).
-- Can't have void args.
-> UnariseEnv
-> UnariseEnv
mapTupleIdBinders ids args0 rho0
= assert (not (any (isZeroBitTy . stgArgType) args0)) $
let
ids_unarised :: [(Id, [PrimRep])]
ids_unarised = map (\id -> (id, typePrimRep (idType id))) ids
map_ids :: UnariseEnv -> [(Id, [PrimRep])] -> [StgArg] -> UnariseEnv
map_ids rho [] _ = rho
map_ids rho ((x, x_reps) : xs) args =
let
x_arity = length x_reps
(x_args, args') =
assert (args `lengthAtLeast` x_arity)
splitAt x_arity args
rho'
| x_arity == 1
= assert (x_args `lengthIs` 1)
extendRho rho x (UnaryVal (head x_args))
| otherwise
= extendRho rho x (MultiVal x_args)
in
map_ids rho' xs args'
in
map_ids rho0 ids_unarised args0
mapSumIdBinders
:: InId -- Binder (in the case alternative).
-> [OutStgArg] -- Arguments that form the sum (NOT including the tag).
-- Can't have void args.
-> InStgExpr
-> UnariseEnv
-> UniqSM (UnariseEnv, OutStgExpr)
mapSumIdBinders alt_bndr args rhs rho0
= assert (not (any (isZeroBitTy . stgArgType) args)) $ do
uss <- listSplitUniqSupply <$> getUniqueSupplyM
let
fld_reps = typePrimRep (idType alt_bndr)
-- Slots representing the whole sum
arg_slots = map primRepSlot $ concatMap (typePrimRep . stgArgType) args
-- The slots representing the field of the sum we bind.
id_slots = map primRepSlot $ fld_reps
layout1 = layoutUbxSum arg_slots id_slots
-- See Note [Casting slot arguments]
-- Most of the code here is just to make sure our binders are of the
-- right type.
-- Select only the args which contain parts of the current field.
id_arg_exprs = [ args !! i | i <- layout1 ]
id_vars = [v | StgVarArg v <- id_arg_exprs]
-- Output types for the field binders based on their rep
id_tys = map primRepToType fld_reps
typed_id_arg_input = assert (equalLength id_vars id_tys) $
zip3 id_vars id_tys uss
mkCastInput :: (Id,Type,UniqSupply) -> ([(PrimOp,Type,Unique)],Id,Id)
mkCastInput (id,tar_type,bndr_us) =
let (ops,types) = unzip $ getCasts (typePrimRep1 $ idType id) (typePrimRep1 tar_type)
cst_opts = zip3 ops types $ uniqsFromSupply bndr_us
out_id = case cst_opts of
[] -> id
_ -> let (_,ty,uq) = last cst_opts
in mkCastVar uq ty
in (cst_opts,id,out_id)
cast_inputs = map mkCastInput typed_id_arg_input
(rhs_with_casts,typed_ids) = mapAccumL cast_arg (\x->x) cast_inputs
where
cast_arg rhs_in (cast_ops,in_id,out_id) =
let rhs_out = castArgRename cast_ops (StgVarArg in_id)
in (rhs_in . rhs_out, out_id)
typed_id_args = map StgVarArg typed_ids
-- pprTrace "mapSumIdBinders"
-- (text "id_tys" <+> ppr id_tys $$
-- text "id_args" <+> ppr id_arg_exprs $$
-- text "rhs" <+> ppr rhs $$
-- text "rhs_with_casts" <+> ppr rhs_with_casts
-- ) $
if isMultiValBndr alt_bndr
then return (extendRho rho0 alt_bndr (MultiVal typed_id_args), rhs_with_casts rhs)
else assert (typed_id_args `lengthIs` 1) $
return (extendRho rho0 alt_bndr (UnaryVal (head typed_id_args)), rhs_with_casts rhs)
-- Convert the argument to the given type, and wrap the conversion
-- around the given expression. Use the given Id as a name for the
-- converted value.
castArgRename :: [(PrimOp,Type,Unique)] -> StgArg -> StgExpr -> StgExpr
castArgRename ops in_arg rhs =
case ops of
[] -> rhs
((op,ty,uq):rest_ops) ->
let out_id' = mkCastVar uq ty -- out_name `setIdUnique` uq `setIdType` ty
sub_cast = castArgRename rest_ops (StgVarArg out_id')
in mkCast in_arg op out_id' ty $ sub_cast rhs
-- Construct a case binder used when casting sums, of a given type and unique.
mkCastVar :: Unique -> Type -> Id
mkCastVar uq ty = mkSysLocal (fsLit "cst_sum") uq ManyTy ty
mkCast :: StgArg -> PrimOp -> OutId -> Type -> StgExpr -> StgExpr
mkCast arg_in cast_op out_id out_ty in_rhs =
let r2 = typePrimRep1 out_ty
scrut = StgOpApp (StgPrimOp cast_op) [arg_in] out_ty
alt = GenStgAlt { alt_con = DEFAULT, alt_bndrs = [], alt_rhs = in_rhs}
alt_ty = PrimAlt r2
in (StgCase scrut out_id alt_ty [alt])
-- | Build a unboxed sum term from arguments of an alternative.
--
-- Example, for (# x | #) :: (# (# #) | Int #) we call
--
-- mkUbxSum (# _ | #) [ (# #), Int ] [ voidPrimId ]
--
-- which returns
--
-- [ 1#, rubbish ]
--
mkUbxSum
:: HasDebugCallStack
=> DataCon -- Sum data con
-> [Type] -- Type arguments of the sum data con
-> [OutStgArg] -- Actual arguments of the alternative.
-> UniqSupply
-> ([OutStgArg] -- Final tuple arguments
,(StgExpr->StgExpr) -- We might need to cast the args first
)
mkUbxSum dc ty_args args0 us
= let
_ :| sum_slots = ubxSumRepType (map typePrimRep ty_args)
-- drop tag slot
field_slots = (mapMaybe (typeSlotTy . stgArgType) args0)
tag = dataConTag dc
layout' = layoutUbxSum sum_slots field_slots
tag_arg = StgLitArg (LitNumber LitNumInt (fromIntegral tag))
arg_idxs = IM.fromList (zipEqual "mkUbxSum" layout' args0)
((_idx,_idx_map,_us,wrapper),slot_args)
= assert (length arg_idxs <= length sum_slots ) $
mapAccumL mkTupArg (0,arg_idxs,us,id) sum_slots
mkTupArg :: (Int, IM.IntMap StgArg,UniqSupply,StgExpr->StgExpr)
-> SlotTy
-> ((Int,IM.IntMap StgArg,UniqSupply,StgExpr->StgExpr), StgArg)
mkTupArg (arg_idx, arg_map, us, wrapper) slot
| Just stg_arg <- IM.lookup arg_idx arg_map
= case castArg us slot stg_arg of
-- Slot and arg type missmatched, do a cast
Just (casted_arg,us',wrapper') ->
( (arg_idx+1, arg_map, us', wrapper . wrapper')
, casted_arg)
-- Use the arg as-is
Nothing ->
( (arg_idx+1, arg_map, us, wrapper)
, stg_arg)
-- Garbage slot, fill with rubbish
| otherwise
= ( (arg_idx+1, arg_map, us, wrapper)
, ubxSumRubbishArg slot)
castArg :: UniqSupply -> SlotTy -> StgArg -> Maybe (StgArg,UniqSupply,StgExpr -> StgExpr)
castArg us slot_ty arg
-- Cast the argument to the type of the slot if required
| slotPrimRep slot_ty /= typePrimRep1 (stgArgType arg)
, out_ty <- primRepToType $ slotPrimRep slot_ty
, (ops,types) <- unzip $ getCasts (typePrimRep1 $ stgArgType arg) $ typePrimRep1 out_ty
, not . null $ ops
= let (us1,us2) = splitUniqSupply us
cast_uqs = uniqsFromSupply us1
cast_opts = zip3 ops types cast_uqs
(_op,out_ty,out_uq) = last cast_opts
casts = castArgRename cast_opts arg :: StgExpr -> StgExpr
in Just (StgVarArg (mkCastVar out_uq out_ty),us2,casts)
-- No need for casting
| otherwise = Nothing
tup_args = tag_arg : slot_args
in
-- pprTrace "mkUbxSum" (
-- text "ty_args (slots)" <+> ppr ty_args $$
-- text "args0" <+> ppr args0 $$
-- text "wrapper" <+>
-- (ppr $ wrapper $ StgLit $ LitChar '_'))
(tup_args, wrapper)
-- | Return a rubbish value for the given slot type.
--
-- We use the following rubbish values:
-- * Literals: 0 or 0.0
-- * Pointers: `ghc-prim:GHC.Prim.Panic.absentSumFieldError`
--
-- See Note [aBSENT_SUM_FIELD_ERROR_ID] in "GHC.Core.Make"
--
ubxSumRubbishArg :: SlotTy -> StgArg
ubxSumRubbishArg PtrLiftedSlot = StgVarArg aBSENT_SUM_FIELD_ERROR_ID
ubxSumRubbishArg PtrUnliftedSlot = StgVarArg aBSENT_SUM_FIELD_ERROR_ID
ubxSumRubbishArg WordSlot = StgLitArg (LitNumber LitNumWord 0)
ubxSumRubbishArg Word64Slot = StgLitArg (LitNumber LitNumWord64 0)
ubxSumRubbishArg FloatSlot = StgLitArg (LitFloat 0)
ubxSumRubbishArg DoubleSlot = StgLitArg (LitDouble 0)
ubxSumRubbishArg (VecSlot n e) = StgLitArg (LitRubbish TypeLike vec_rep)
where vec_rep = primRepToRuntimeRep (VecRep n e)
--------------------------------------------------------------------------------
{-
For arguments (StgArg) and binders (Id) we have two kind of unarisation:
- When unarising function arg binders and arguments, we don't want to remove
void binders and arguments. For example,
f :: (# (# #), (# #) #) -> Void# -> RealWorld# -> ...
f x y z = <body>
Here after unarise we should still get a function with arity 3. Similarly
in the call site we shouldn't remove void arguments:
f (# (# #), (# #) #) void# rw
When unarising <body>, we extend the environment with these binders:
x :-> MultiVal [], y :-> MultiVal [], z :-> MultiVal []
Because their rep types are `MultiRep []` (aka. void). This means that when
we see `x` in a function argument position, we actually replace it with a
void argument. When we see it in a DataCon argument position, we just get
rid of it, because DataCon applications in STG are always saturated.
- When unarising case alternative binders we remove void binders, but we
still update the environment the same way, because those binders may be
used in the RHS. Example:
case x of y {
(# x1, x2, x3 #) -> <RHS>
}
We know that y can't be void, because we don't scrutinize voids, so x will
be unarised to some number of arguments, and those arguments will have at
least one non-void thing. So in the rho we will have something like:
x :-> MultiVal [xu1, xu2]
Now, after we eliminate void binders in the pattern, we get exactly the same
number of binders, and extend rho again with these:
x1 :-> UnaryVal xu1
x2 :-> MultiVal [] -- x2 is void
x3 :-> UnaryVal xu2
Now when we see x2 in a function argument position or in return position, we
generate void#. In constructor argument position, we just remove it.
So in short, when we have a void id,
- We keep it if it's a lambda argument binder or
in argument position of an application.
- We remove it if it's a DataCon field binder or
in argument position of a DataCon application.
-}
unariseArgBinder
:: Bool -- data con arg?
-> UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseArgBinder is_con_arg rho x =
case typePrimRep (idType x) of
[]
| is_con_arg
-> return (extendRho rho x (MultiVal []), [])
| otherwise -- fun arg, do not remove void binders
-> return (extendRho rho x (MultiVal []), [voidArgId])
[rep]
-- Arg represented as single variable, but original type may still be an
-- unboxed sum/tuple, e.g. (# Void# | Void# #).
--
-- While not unarising the binder in this case does not break any programs
-- (because it unarises to a single variable), it triggers StgLint as we
-- break the post-unarisation invariant that says unboxed tuple/sum
-- binders should vanish. See Note [Post-unarisation invariants].
| isUnboxedSumType (idType x) || isUnboxedTupleType (idType x)
-> do x' <- mkId (mkFastString "us") (primRepToType rep)
return (extendRho rho x (MultiVal [StgVarArg x']), [x'])
| otherwise
-> return (extendRhoWithoutValue rho x, [x])
reps -> do
xs <- mkIds (mkFastString "us") (map primRepToType reps)
return (extendRho rho x (MultiVal (map StgVarArg xs)), xs)
--------------------------------------------------------------------------------
-- | MultiVal a function argument. Never returns an empty list.
unariseFunArg :: UnariseEnv -> StgArg -> [StgArg]
unariseFunArg rho (StgVarArg x) =
case lookupRho rho x of
Just (MultiVal []) -> [voidArg] -- NB: do not remove void args
Just (MultiVal as) -> as
Just (UnaryVal arg) -> [arg]
Nothing -> [StgVarArg x]
unariseFunArg _ arg = [arg]
unariseFunArgs :: UnariseEnv -> [StgArg] -> [StgArg]
unariseFunArgs = concatMap . unariseFunArg
unariseFunArgBinders :: UnariseEnv -> [Id] -> UniqSM (UnariseEnv, [Id])
unariseFunArgBinders rho xs = second concat <$> mapAccumLM unariseFunArgBinder rho xs
-- Result list of binders is never empty
unariseFunArgBinder :: UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseFunArgBinder = unariseArgBinder False
--------------------------------------------------------------------------------
-- | MultiVal a DataCon argument. Returns an empty list when argument is void.
unariseConArg :: UnariseEnv -> InStgArg -> [OutStgArg]
unariseConArg rho (StgVarArg x) =
case lookupRho rho x of
Just (UnaryVal arg) -> [arg]
Just (MultiVal as) -> as -- 'as' can be empty
Nothing
| isZeroBitTy (idType x) -> [] -- e.g. C realWorld#
-- Here realWorld# is not in the envt, but
-- is a void, and so should be eliminated
| otherwise -> [StgVarArg x]
unariseConArg _ arg@(StgLitArg lit)
| Just as <- unariseRubbish_maybe lit
= as
| otherwise
= assert (not (isZeroBitTy (literalType lit))) -- We have no non-rubbish void literals
[arg]
unariseConArgs :: UnariseEnv -> [InStgArg] -> [OutStgArg]
unariseConArgs = concatMap . unariseConArg
unariseConArgBinders :: UnariseEnv -> [Id] -> UniqSM (UnariseEnv, [Id])
unariseConArgBinders rho xs = second concat <$> mapAccumLM unariseConArgBinder rho xs
-- Different from `unariseFunArgBinder`: result list of binders may be empty.
-- See DataCon applications case in Note [Post-unarisation invariants].
unariseConArgBinder :: UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseConArgBinder = unariseArgBinder True
--------------------------------------------------------------------------------
mkIds :: FastString -> [UnaryType] -> UniqSM [Id]
mkIds fs tys = mkUnarisedIds fs tys
mkId :: FastString -> UnaryType -> UniqSM Id
mkId s t = mkUnarisedId s t
isMultiValBndr :: Id -> Bool
isMultiValBndr id
| [_] <- typePrimRep (idType id)
= False
| otherwise
= True
isUnboxedSumBndr :: Id -> Bool
isUnboxedSumBndr = isUnboxedSumType . idType
isUnboxedTupleBndr :: Id -> Bool
isUnboxedTupleBndr = isUnboxedTupleType . idType
mkTuple :: [StgArg] -> StgExpr
mkTuple args = StgConApp (tupleDataCon Unboxed (length args)) NoNumber args (map stgArgType args)
tagAltTy :: AltType
tagAltTy = PrimAlt IntRep
tagTy :: Type
tagTy = intPrimTy
voidArg :: StgArg
voidArg = StgVarArg voidPrimId
mkDefaultLitAlt :: [StgAlt] -> [StgAlt]
-- We have an exhauseive list of literal alternatives
-- 1# -> e1
-- 2# -> e2
-- Since they are exhaustive, we can replace one with DEFAULT, to avoid
-- generating a final test. Remember, the DEFAULT comes first if it exists.
mkDefaultLitAlt [] = pprPanic "elimUbxSumExpr.mkDefaultAlt" (text "Empty alts")
mkDefaultLitAlt alts@(GenStgAlt{alt_con=DEFAULT,alt_bndrs=_,alt_rhs=_} : _) = alts
mkDefaultLitAlt (alt@GenStgAlt{alt_con=LitAlt{}, alt_bndrs=[]} : alts) = alt {alt_con = DEFAULT} : alts
mkDefaultLitAlt alts = pprPanic "mkDefaultLitAlt" (text "Not a lit alt:" <+> pprPanicAlts alts)
pprPanicAlts :: OutputablePass pass => [GenStgAlt pass] -> SDoc
pprPanicAlts alts = ppr (map pprPanicAlt alts)
pprPanicAlt :: OutputablePass pass => GenStgAlt pass -> SDoc
pprPanicAlt GenStgAlt{alt_con=c,alt_bndrs=b,alt_rhs=e} = ppr (c,b,pprStgExpr panicStgPprOpts e)
|