1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-2012
Note [Unarisation]
~~~~~~~~~~~~~~~~~~
The idea of this pass is to translate away *all* unboxed-tuple and unboxed-sum
binders. So for example:
f (x :: (# Int, Bool #)) = f x + f (# 1, True #)
==>
f (x1 :: Int) (x2 :: Bool) = f x1 x2 + f 1 True
It is important that we do this at the STG level and NOT at the Core level
because it would be very hard to make this pass Core-type-preserving. In this
example the type of 'f' changes, for example.
STG fed to the code generators *must* be unarised because the code generators do
not support unboxed tuple and unboxed sum binders natively.
In more detail: (see next note for unboxed sums)
Suppose that a variable x : (# t1, t2 #).
* At the binding site for x, make up fresh vars x1:t1, x2:t2
* Extend the UnariseEnv x :-> MultiVal [x1,x2]
* Replace the binding with a curried binding for x1,x2
Lambda: \x.e ==> \x1 x2. e
Case alt: MkT a b x c d -> e ==> MkT a b x1 x2 c d -> e
* Replace argument occurrences with a sequence of args via a lookup in
UnariseEnv
f a b x c d ==> f a b x1 x2 c d
* Replace tail-call occurrences with an unboxed tuple via a lookup in
UnariseEnv
x ==> (# x1, x2 #)
So, for example
f x = x ==> f x1 x2 = (# x1, x2 #)
* We /always/ eliminate a case expression when
- It scrutinises an unboxed tuple or unboxed sum
- The scrutinee is a variable (or when it is an explicit tuple, but the
simplifier eliminates those)
The case alternative (there can be only one) can be one of these two
things:
- An unboxed tuple pattern. e.g.
case v of x { (# x1, x2, x3 #) -> ... }
Scrutinee has to be in form `(# t1, t2, t3 #)` so we just extend the
environment with
x :-> MultiVal [t1,t2,t3]
x1 :-> UnaryVal t1, x2 :-> UnaryVal t2, x3 :-> UnaryVal t3
- A DEFAULT alternative. Just the same, without the bindings for x1,x2,x3
By the end of this pass, we only have unboxed tuples in return positions.
Unboxed sums are completely eliminated, see next note.
Note [Translating unboxed sums to unboxed tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unarise also eliminates unboxed sum binders, and translates unboxed sums in
return positions to unboxed tuples. We want to overlap fields of a sum when
translating it to a tuple to have efficient memory layout. When translating a
sum pattern to a tuple pattern, we need to translate it so that binders of sum
alternatives will be mapped to right arguments after the term translation. So
translation of sum DataCon applications to tuple DataCon applications and
translation of sum patterns to tuple patterns need to be in sync.
These translations work like this. Suppose we have
(# x1 | | ... #) :: (# t1 | t2 | ... #)
remember that t1, t2 ... can be sums and tuples too. So we first generate
layouts of those. Then we "merge" layouts of each alternative, which gives us a
sum layout with best overlapping possible.
Layout of a flat type 'ty1' is just [ty1].
Layout of a tuple is just concatenation of layouts of its fields.
For layout of a sum type,
- We first get layouts of all alternatives.
- We sort these layouts based on their "slot types".
- We merge all the alternatives.
For example, say we have (# (# Int#, Char #) | (# Int#, Int# #) | Int# #)
- Layouts of alternatives: [ [Word, Ptr], [Word, Word], [Word] ]
- Sorted: [ [Ptr, Word], [Word, Word], [Word] ]
- Merge all alternatives together: [ Ptr, Word, Word ]
We add a slot for the tag to the first position. So our tuple type is
(# Tag#, Any, Word#, Word# #)
(we use Any for pointer slots)
Now, any term of this sum type needs to generate a tuple of this type instead.
The translation works by simply putting arguments to first slots that they fit
in. Suppose we had
(# (# 42#, 'c' #) | | #)
42# fits in Word#, 'c' fits in Any, so we generate this application:
(# 1#, 'c', 42#, rubbish #)
Another example using the same type: (# | (# 2#, 3# #) | #). 2# fits in Word#,
3# fits in Word #, so we get:
(# 2#, rubbish, 2#, 3# #).
Note [Types in StgConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have this unboxed sum term:
(# 123 | #)
What will be the unboxed tuple representation? We can't tell without knowing the
type of this term. For example, these are all valid tuples for this:
(# 1#, 123 #) -- when type is (# Int | String #)
(# 1#, 123, rubbish #) -- when type is (# Int | Float# #)
(# 1#, 123, rubbish, rubbish #)
-- when type is (# Int | (# Int, Int, Int #) #)
So we pass type arguments of the DataCon's TyCon in StgConApp to decide what
layout to use. Note that unlifted values can't be let-bound, so we don't need
types in StgRhsCon.
Note [UnariseEnv can map to literals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To avoid redundant case expressions when unarising unboxed sums, UnariseEnv
needs to map variables to literals too. Suppose we have this Core:
f (# x | #)
==> (CorePrep)
case (# x | #) of y {
_ -> f y
}
==> (MultiVal)
case (# 1#, x #) of [x1, x2] {
_ -> f x1 x2
}
To eliminate this case expression we need to map x1 to 1# in UnariseEnv:
x1 :-> UnaryVal 1#, x2 :-> UnaryVal x
so that `f x1 x2` becomes `f 1# x`.
Note [Unarisation and arity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because of unarisation, the arity that will be recorded in the generated info
table for an Id may be larger than the idArity. Instead we record what we call
the RepArity, which is the Arity taking into account any expanded arguments, and
corresponds to the number of (possibly-void) *registers* arguments will arrive
in.
Note [Post-unarisation invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STG programs after unarisation have these invariants:
* No unboxed sums at all.
* No unboxed tuple binders. Tuples only appear in return position.
* DataCon applications (StgRhsCon and StgConApp) don't have void arguments.
This means that it's safe to wrap `StgArg`s of DataCon applications with
`GHC.StgToCmm.Env.NonVoid`, for example.
* Alt binders (binders in patterns) are always non-void.
* Binders always have zero (for void arguments) or one PrimRep.
-}
{-# LANGUAGE CPP, TupleSections #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Stg.Unarise (unarise) where
#include "HsVersions.h"
import GhcPrelude
import GHC.Types.Basic
import GHC.Core
import GHC.Core.DataCon
import FastString (FastString, mkFastString)
import GHC.Types.Id
import GHC.Types.Literal
import GHC.Core.Make (aBSENT_SUM_FIELD_ERROR_ID)
import GHC.Types.Id.Make (voidPrimId, voidArgId)
import MonadUtils (mapAccumLM)
import Outputable
import GHC.Types.RepType
import GHC.Stg.Syntax
import GHC.Core.Type
import TysPrim (intPrimTy,wordPrimTy,word64PrimTy)
import TysWiredIn
import GHC.Types.Unique.Supply
import Util
import GHC.Types.Var.Env
import Data.Bifunctor (second)
import Data.Maybe (mapMaybe)
import qualified Data.IntMap as IM
--------------------------------------------------------------------------------
-- | A mapping from binders to the Ids they were expanded/renamed to.
--
-- x :-> MultiVal [a,b,c] in rho
--
-- iff x's typePrimRep is not a singleton, or equivalently
-- x's type is an unboxed tuple, sum or void.
--
-- x :-> UnaryVal x'
--
-- iff x's RepType is UnaryRep or equivalently
-- x's type is not unboxed tuple, sum or void.
--
-- So
-- x :-> MultiVal [a] in rho
-- means x is represented by singleton tuple.
--
-- x :-> MultiVal [] in rho
-- means x is void.
--
-- INVARIANT: OutStgArgs in the range only have NvUnaryTypes
-- (i.e. no unboxed tuples, sums or voids)
--
type UnariseEnv = VarEnv UnariseVal
data UnariseVal
= MultiVal [OutStgArg] -- MultiVal to tuple. Can be empty list (void).
| UnaryVal OutStgArg -- See NOTE [Renaming during unarisation].
instance Outputable UnariseVal where
ppr (MultiVal args) = text "MultiVal" <+> ppr args
ppr (UnaryVal arg) = text "UnaryVal" <+> ppr arg
-- | Extend the environment, checking the UnariseEnv invariant.
extendRho :: UnariseEnv -> Id -> UnariseVal -> UnariseEnv
extendRho rho x (MultiVal args)
= ASSERT(all (isNvUnaryType . stgArgType) args)
extendVarEnv rho x (MultiVal args)
extendRho rho x (UnaryVal val)
= ASSERT(isNvUnaryType (stgArgType val))
extendVarEnv rho x (UnaryVal val)
--------------------------------------------------------------------------------
unarise :: UniqSupply -> [StgTopBinding] -> [StgTopBinding]
unarise us binds = initUs_ us (mapM (unariseTopBinding emptyVarEnv) binds)
unariseTopBinding :: UnariseEnv -> StgTopBinding -> UniqSM StgTopBinding
unariseTopBinding rho (StgTopLifted bind)
= StgTopLifted <$> unariseBinding rho bind
unariseTopBinding _ bind@StgTopStringLit{} = return bind
unariseBinding :: UnariseEnv -> StgBinding -> UniqSM StgBinding
unariseBinding rho (StgNonRec x rhs)
= StgNonRec x <$> unariseRhs rho rhs
unariseBinding rho (StgRec xrhss)
= StgRec <$> mapM (\(x, rhs) -> (x,) <$> unariseRhs rho rhs) xrhss
unariseRhs :: UnariseEnv -> StgRhs -> UniqSM StgRhs
unariseRhs rho (StgRhsClosure ext ccs update_flag args expr)
= do (rho', args1) <- unariseFunArgBinders rho args
expr' <- unariseExpr rho' expr
return (StgRhsClosure ext ccs update_flag args1 expr')
unariseRhs rho (StgRhsCon ccs con args)
= ASSERT(not (isUnboxedTupleCon con || isUnboxedSumCon con))
return (StgRhsCon ccs con (unariseConArgs rho args))
--------------------------------------------------------------------------------
unariseExpr :: UnariseEnv -> StgExpr -> UniqSM StgExpr
unariseExpr rho e@(StgApp f [])
= case lookupVarEnv rho f of
Just (MultiVal args) -- Including empty tuples
-> return (mkTuple args)
Just (UnaryVal (StgVarArg f'))
-> return (StgApp f' [])
Just (UnaryVal (StgLitArg f'))
-> return (StgLit f')
Nothing
-> return e
unariseExpr rho e@(StgApp f args)
= return (StgApp f' (unariseFunArgs rho args))
where
f' = case lookupVarEnv rho f of
Just (UnaryVal (StgVarArg f')) -> f'
Nothing -> f
err -> pprPanic "unariseExpr - app2" (ppr e $$ ppr err)
-- Can't happen because 'args' is non-empty, and
-- a tuple or sum cannot be applied to anything
unariseExpr _ (StgLit l)
= return (StgLit l)
unariseExpr rho (StgConApp dc args ty_args)
| Just args' <- unariseMulti_maybe rho dc args ty_args
= return (mkTuple args')
| otherwise
, let args' = unariseConArgs rho args
= return (StgConApp dc args' (map stgArgType args'))
unariseExpr rho (StgOpApp op args ty)
= return (StgOpApp op (unariseFunArgs rho args) ty)
unariseExpr _ e@StgLam{}
= pprPanic "unariseExpr: found lambda" (ppr e)
unariseExpr rho (StgCase scrut bndr alt_ty alts)
-- tuple/sum binders in the scrutinee can always be eliminated
| StgApp v [] <- scrut
, Just (MultiVal xs) <- lookupVarEnv rho v
= elimCase rho xs bndr alt_ty alts
-- Handle strict lets for tuples and sums:
-- case (# a,b #) of r -> rhs
-- and analogously for sums
| StgConApp dc args ty_args <- scrut
, Just args' <- unariseMulti_maybe rho dc args ty_args
= elimCase rho args' bndr alt_ty alts
-- general case
| otherwise
= do scrut' <- unariseExpr rho scrut
alts' <- unariseAlts rho alt_ty bndr alts
return (StgCase scrut' bndr alt_ty alts')
-- bndr may have a unboxed sum/tuple type but it will be
-- dead after unarise (checked in GHC.Stg.Lint)
unariseExpr rho (StgLet ext bind e)
= StgLet ext <$> unariseBinding rho bind <*> unariseExpr rho e
unariseExpr rho (StgLetNoEscape ext bind e)
= StgLetNoEscape ext <$> unariseBinding rho bind <*> unariseExpr rho e
unariseExpr rho (StgTick tick e)
= StgTick tick <$> unariseExpr rho e
-- Doesn't return void args.
unariseMulti_maybe :: UnariseEnv -> DataCon -> [InStgArg] -> [Type] -> Maybe [OutStgArg]
unariseMulti_maybe rho dc args ty_args
| isUnboxedTupleCon dc
= Just (unariseConArgs rho args)
| isUnboxedSumCon dc
, let args1 = ASSERT(isSingleton args) (unariseConArgs rho args)
= Just (mkUbxSum dc ty_args args1)
| otherwise
= Nothing
--------------------------------------------------------------------------------
elimCase :: UnariseEnv
-> [OutStgArg] -- non-void args
-> InId -> AltType -> [InStgAlt] -> UniqSM OutStgExpr
elimCase rho args bndr (MultiValAlt _) [(_, bndrs, rhs)]
= do let rho1 = extendRho rho bndr (MultiVal args)
rho2
| isUnboxedTupleBndr bndr
= mapTupleIdBinders bndrs args rho1
| otherwise
= ASSERT(isUnboxedSumBndr bndr)
if null bndrs then rho1
else mapSumIdBinders bndrs args rho1
unariseExpr rho2 rhs
elimCase rho args bndr (MultiValAlt _) alts
| isUnboxedSumBndr bndr
= do let (tag_arg : real_args) = args
tag_bndr <- mkId (mkFastString "tag") tagTy
-- this won't be used but we need a binder anyway
let rho1 = extendRho rho bndr (MultiVal args)
scrut' = case tag_arg of
StgVarArg v -> StgApp v []
StgLitArg l -> StgLit l
alts' <- unariseSumAlts rho1 real_args alts
return (StgCase scrut' tag_bndr tagAltTy alts')
elimCase _ args bndr alt_ty alts
= pprPanic "elimCase - unhandled case"
(ppr args <+> ppr bndr <+> ppr alt_ty $$ ppr alts)
--------------------------------------------------------------------------------
unariseAlts :: UnariseEnv -> AltType -> InId -> [StgAlt] -> UniqSM [StgAlt]
unariseAlts rho (MultiValAlt n) bndr [(DEFAULT, [], e)]
| isUnboxedTupleBndr bndr
= do (rho', ys) <- unariseConArgBinder rho bndr
e' <- unariseExpr rho' e
return [(DataAlt (tupleDataCon Unboxed n), ys, e')]
unariseAlts rho (MultiValAlt n) bndr [(DataAlt _, ys, e)]
| isUnboxedTupleBndr bndr
= do (rho', ys1) <- unariseConArgBinders rho ys
MASSERT(ys1 `lengthIs` n)
let rho'' = extendRho rho' bndr (MultiVal (map StgVarArg ys1))
e' <- unariseExpr rho'' e
return [(DataAlt (tupleDataCon Unboxed n), ys1, e')]
unariseAlts _ (MultiValAlt _) bndr alts
| isUnboxedTupleBndr bndr
= pprPanic "unariseExpr: strange multi val alts" (ppr alts)
-- In this case we don't need to scrutinize the tag bit
unariseAlts rho (MultiValAlt _) bndr [(DEFAULT, _, rhs)]
| isUnboxedSumBndr bndr
= do (rho_sum_bndrs, sum_bndrs) <- unariseConArgBinder rho bndr
rhs' <- unariseExpr rho_sum_bndrs rhs
return [(DataAlt (tupleDataCon Unboxed (length sum_bndrs)), sum_bndrs, rhs')]
unariseAlts rho (MultiValAlt _) bndr alts
| isUnboxedSumBndr bndr
= do (rho_sum_bndrs, scrt_bndrs@(tag_bndr : real_bndrs)) <- unariseConArgBinder rho bndr
alts' <- unariseSumAlts rho_sum_bndrs (map StgVarArg real_bndrs) alts
let inner_case = StgCase (StgApp tag_bndr []) tag_bndr tagAltTy alts'
return [ (DataAlt (tupleDataCon Unboxed (length scrt_bndrs)),
scrt_bndrs,
inner_case) ]
unariseAlts rho _ _ alts
= mapM (\alt -> unariseAlt rho alt) alts
unariseAlt :: UnariseEnv -> StgAlt -> UniqSM StgAlt
unariseAlt rho (con, xs, e)
= do (rho', xs') <- unariseConArgBinders rho xs
(con, xs',) <$> unariseExpr rho' e
--------------------------------------------------------------------------------
-- | Make alternatives that match on the tag of a sum
-- (i.e. generate LitAlts for the tag)
unariseSumAlts :: UnariseEnv
-> [StgArg] -- sum components _excluding_ the tag bit.
-> [StgAlt] -- original alternative with sum LHS
-> UniqSM [StgAlt]
unariseSumAlts env args alts
= do alts' <- mapM (unariseSumAlt env args) alts
return (mkDefaultLitAlt alts')
unariseSumAlt :: UnariseEnv
-> [StgArg] -- sum components _excluding_ the tag bit.
-> StgAlt -- original alternative with sum LHS
-> UniqSM StgAlt
unariseSumAlt rho _ (DEFAULT, _, e)
= ( DEFAULT, [], ) <$> unariseExpr rho e
unariseSumAlt rho args (DataAlt sumCon, bs, e)
= do let rho' = mapSumIdBinders bs args rho
e' <- unariseExpr rho' e
return ( LitAlt (LitNumber LitNumInt (fromIntegral (dataConTag sumCon)) intPrimTy), [], e' )
unariseSumAlt _ scrt alt
= pprPanic "unariseSumAlt" (ppr scrt $$ ppr alt)
--------------------------------------------------------------------------------
mapTupleIdBinders
:: [InId] -- Un-processed binders of a tuple alternative.
-- Can have void binders.
-> [OutStgArg] -- Arguments that form the tuple (after unarisation).
-- Can't have void args.
-> UnariseEnv
-> UnariseEnv
mapTupleIdBinders ids args0 rho0
= ASSERT(not (any (isVoidTy . stgArgType) args0))
let
ids_unarised :: [(Id, [PrimRep])]
ids_unarised = map (\id -> (id, typePrimRep (idType id))) ids
map_ids :: UnariseEnv -> [(Id, [PrimRep])] -> [StgArg] -> UnariseEnv
map_ids rho [] _ = rho
map_ids rho ((x, x_reps) : xs) args =
let
x_arity = length x_reps
(x_args, args') =
ASSERT(args `lengthAtLeast` x_arity)
splitAt x_arity args
rho'
| x_arity == 1
= ASSERT(x_args `lengthIs` 1)
extendRho rho x (UnaryVal (head x_args))
| otherwise
= extendRho rho x (MultiVal x_args)
in
map_ids rho' xs args'
in
map_ids rho0 ids_unarised args0
mapSumIdBinders
:: [InId] -- Binder of a sum alternative (remember that sum patterns
-- only have one binder, so this list should be a singleton)
-> [OutStgArg] -- Arguments that form the sum (NOT including the tag).
-- Can't have void args.
-> UnariseEnv
-> UnariseEnv
mapSumIdBinders [id] args rho0
= ASSERT(not (any (isVoidTy . stgArgType) args))
let
arg_slots = map primRepSlot $ concatMap (typePrimRep . stgArgType) args
id_slots = map primRepSlot $ typePrimRep (idType id)
layout1 = layoutUbxSum arg_slots id_slots
in
if isMultiValBndr id
then extendRho rho0 id (MultiVal [ args !! i | i <- layout1 ])
else ASSERT(layout1 `lengthIs` 1)
extendRho rho0 id (UnaryVal (args !! head layout1))
mapSumIdBinders ids sum_args _
= pprPanic "mapSumIdBinders" (ppr ids $$ ppr sum_args)
-- | Build a unboxed sum term from arguments of an alternative.
--
-- Example, for (# x | #) :: (# (# #) | Int #) we call
--
-- mkUbxSum (# _ | #) [ (# #), Int ] [ voidPrimId ]
--
-- which returns
--
-- [ 1#, rubbish ]
--
mkUbxSum
:: DataCon -- Sum data con
-> [Type] -- Type arguments of the sum data con
-> [OutStgArg] -- Actual arguments of the alternative.
-> [OutStgArg] -- Final tuple arguments
mkUbxSum dc ty_args args0
= let
(_ : sum_slots) = ubxSumRepType (map typePrimRep ty_args)
-- drop tag slot
tag = dataConTag dc
layout' = layoutUbxSum sum_slots (mapMaybe (typeSlotTy . stgArgType) args0)
tag_arg = StgLitArg (LitNumber LitNumInt (fromIntegral tag) intPrimTy)
arg_idxs = IM.fromList (zipEqual "mkUbxSum" layout' args0)
mkTupArgs :: Int -> [SlotTy] -> IM.IntMap StgArg -> [StgArg]
mkTupArgs _ [] _
= []
mkTupArgs arg_idx (slot : slots_left) arg_map
| Just stg_arg <- IM.lookup arg_idx arg_map
= stg_arg : mkTupArgs (arg_idx + 1) slots_left arg_map
| otherwise
= slotRubbishArg slot : mkTupArgs (arg_idx + 1) slots_left arg_map
slotRubbishArg :: SlotTy -> StgArg
slotRubbishArg PtrSlot = StgVarArg aBSENT_SUM_FIELD_ERROR_ID
-- See Note [aBSENT_SUM_FIELD_ERROR_ID] in GHC.Core.Make
slotRubbishArg WordSlot = StgLitArg (LitNumber LitNumWord 0 wordPrimTy)
slotRubbishArg Word64Slot = StgLitArg (LitNumber LitNumWord64 0 word64PrimTy)
slotRubbishArg FloatSlot = StgLitArg (LitFloat 0)
slotRubbishArg DoubleSlot = StgLitArg (LitDouble 0)
in
tag_arg : mkTupArgs 0 sum_slots arg_idxs
--------------------------------------------------------------------------------
{-
For arguments (StgArg) and binders (Id) we have two kind of unarisation:
- When unarising function arg binders and arguments, we don't want to remove
void binders and arguments. For example,
f :: (# (# #), (# #) #) -> Void# -> RealWorld# -> ...
f x y z = <body>
Here after unarise we should still get a function with arity 3. Similarly
in the call site we shouldn't remove void arguments:
f (# (# #), (# #) #) voidId rw
When unarising <body>, we extend the environment with these binders:
x :-> MultiVal [], y :-> MultiVal [], z :-> MultiVal []
Because their rep types are `MultiRep []` (aka. void). This means that when
we see `x` in a function argument position, we actually replace it with a
void argument. When we see it in a DataCon argument position, we just get
rid of it, because DataCon applications in STG are always saturated.
- When unarising case alternative binders we remove void binders, but we
still update the environment the same way, because those binders may be
used in the RHS. Example:
case x of y {
(# x1, x2, x3 #) -> <RHS>
}
We know that y can't be void, because we don't scrutinize voids, so x will
be unarised to some number of arguments, and those arguments will have at
least one non-void thing. So in the rho we will have something like:
x :-> MultiVal [xu1, xu2]
Now, after we eliminate void binders in the pattern, we get exactly the same
number of binders, and extend rho again with these:
x1 :-> UnaryVal xu1
x2 :-> MultiVal [] -- x2 is void
x3 :-> UnaryVal xu2
Now when we see x2 in a function argument position or in return position, we
generate void#. In constructor argument position, we just remove it.
So in short, when we have a void id,
- We keep it if it's a lambda argument binder or
in argument position of an application.
- We remove it if it's a DataCon field binder or
in argument position of a DataCon application.
-}
unariseArgBinder
:: Bool -- data con arg?
-> UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseArgBinder is_con_arg rho x =
case typePrimRep (idType x) of
[]
| is_con_arg
-> return (extendRho rho x (MultiVal []), [])
| otherwise -- fun arg, do not remove void binders
-> return (extendRho rho x (MultiVal []), [voidArgId])
[rep]
-- Arg represented as single variable, but original type may still be an
-- unboxed sum/tuple, e.g. (# Void# | Void# #).
--
-- While not unarising the binder in this case does not break any programs
-- (because it unarises to a single variable), it triggers StgLint as we
-- break the the post-unarisation invariant that says unboxed tuple/sum
-- binders should vanish. See Note [Post-unarisation invariants].
| isUnboxedSumType (idType x) || isUnboxedTupleType (idType x)
-> do x' <- mkId (mkFastString "us") (primRepToType rep)
return (extendRho rho x (MultiVal [StgVarArg x']), [x'])
| otherwise
-> return (rho, [x])
reps -> do
xs <- mkIds (mkFastString "us") (map primRepToType reps)
return (extendRho rho x (MultiVal (map StgVarArg xs)), xs)
--------------------------------------------------------------------------------
-- | MultiVal a function argument. Never returns an empty list.
unariseFunArg :: UnariseEnv -> StgArg -> [StgArg]
unariseFunArg rho (StgVarArg x) =
case lookupVarEnv rho x of
Just (MultiVal []) -> [voidArg] -- NB: do not remove void args
Just (MultiVal as) -> as
Just (UnaryVal arg) -> [arg]
Nothing -> [StgVarArg x]
unariseFunArg _ arg = [arg]
unariseFunArgs :: UnariseEnv -> [StgArg] -> [StgArg]
unariseFunArgs = concatMap . unariseFunArg
unariseFunArgBinders :: UnariseEnv -> [Id] -> UniqSM (UnariseEnv, [Id])
unariseFunArgBinders rho xs = second concat <$> mapAccumLM unariseFunArgBinder rho xs
-- Result list of binders is never empty
unariseFunArgBinder :: UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseFunArgBinder = unariseArgBinder False
--------------------------------------------------------------------------------
-- | MultiVal a DataCon argument. Returns an empty list when argument is void.
unariseConArg :: UnariseEnv -> InStgArg -> [OutStgArg]
unariseConArg rho (StgVarArg x) =
case lookupVarEnv rho x of
Just (UnaryVal arg) -> [arg]
Just (MultiVal as) -> as -- 'as' can be empty
Nothing
| isVoidTy (idType x) -> [] -- e.g. C realWorld#
-- Here realWorld# is not in the envt, but
-- is a void, and so should be eliminated
| otherwise -> [StgVarArg x]
unariseConArg _ arg@(StgLitArg lit) =
ASSERT(not (isVoidTy (literalType lit))) -- We have no void literals
[arg]
unariseConArgs :: UnariseEnv -> [InStgArg] -> [OutStgArg]
unariseConArgs = concatMap . unariseConArg
unariseConArgBinders :: UnariseEnv -> [Id] -> UniqSM (UnariseEnv, [Id])
unariseConArgBinders rho xs = second concat <$> mapAccumLM unariseConArgBinder rho xs
-- Different from `unariseFunArgBinder`: result list of binders may be empty.
-- See DataCon applications case in Note [Post-unarisation invariants].
unariseConArgBinder :: UnariseEnv -> Id -> UniqSM (UnariseEnv, [Id])
unariseConArgBinder = unariseArgBinder True
--------------------------------------------------------------------------------
mkIds :: FastString -> [UnaryType] -> UniqSM [Id]
mkIds fs tys = mapM (mkId fs) tys
mkId :: FastString -> UnaryType -> UniqSM Id
mkId = mkSysLocalM
isMultiValBndr :: Id -> Bool
isMultiValBndr id
| [_] <- typePrimRep (idType id)
= False
| otherwise
= True
isUnboxedSumBndr :: Id -> Bool
isUnboxedSumBndr = isUnboxedSumType . idType
isUnboxedTupleBndr :: Id -> Bool
isUnboxedTupleBndr = isUnboxedTupleType . idType
mkTuple :: [StgArg] -> StgExpr
mkTuple args = StgConApp (tupleDataCon Unboxed (length args)) args (map stgArgType args)
tagAltTy :: AltType
tagAltTy = PrimAlt IntRep
tagTy :: Type
tagTy = intPrimTy
voidArg :: StgArg
voidArg = StgVarArg voidPrimId
mkDefaultLitAlt :: [StgAlt] -> [StgAlt]
-- We have an exhauseive list of literal alternatives
-- 1# -> e1
-- 2# -> e2
-- Since they are exhaustive, we can replace one with DEFAULT, to avoid
-- generating a final test. Remember, the DEFAULT comes first if it exists.
mkDefaultLitAlt [] = pprPanic "elimUbxSumExpr.mkDefaultAlt" (text "Empty alts")
mkDefaultLitAlt alts@((DEFAULT, _, _) : _) = alts
mkDefaultLitAlt ((LitAlt{}, [], rhs) : alts) = (DEFAULT, [], rhs) : alts
mkDefaultLitAlt alts = pprPanic "mkDefaultLitAlt" (text "Not a lit alt:" <+> ppr alts)
|