1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RecordWildCards #-}
{-# OPTIONS_GHC -fprof-auto-top #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | GHC.StgToByteCode: Generate bytecode from STG
module GHC.StgToByteCode ( UnlinkedBCO, byteCodeGen, stgExprToBCOs ) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Driver.Session
import GHC.Driver.Env
import GHC.ByteCode.Instr
import GHC.ByteCode.Asm
import GHC.ByteCode.Types
import GHC.Cmm.CallConv
import GHC.Cmm.Expr
import GHC.Cmm.Node
import GHC.Cmm.Utils
import GHC.Platform
import GHC.Platform.Profile
import GHC.Runtime.Interpreter
import GHCi.FFI
import GHCi.RemoteTypes
import GHC.Types.Basic
import GHC.Utils.Outputable
import GHC.Types.Name
import GHC.Types.Id.Make
import GHC.Types.Id
import GHC.Types.ForeignCall
import GHC.Core
import GHC.Types.Literal
import GHC.Builtin.PrimOps
import GHC.Core.Type
import GHC.Types.RepType
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Utils.Misc
import GHC.Utils.Logger
import GHC.Types.Var.Set
import GHC.Builtin.Types ( unboxedUnitTy )
import GHC.Builtin.Types.Prim
import GHC.Core.TyCo.Ppr ( pprType )
import GHC.Utils.Error
import GHC.Types.Unique
import GHC.Builtin.Uniques
import GHC.Builtin.Utils ( primOpId )
import GHC.Data.FastString
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Exception (evaluate)
import GHC.StgToCmm.Closure ( NonVoid(..), fromNonVoid, nonVoidIds )
import GHC.StgToCmm.Layout
import GHC.Runtime.Heap.Layout hiding (WordOff, ByteOff, wordsToBytes)
import GHC.Data.Bitmap
import GHC.Data.OrdList
import GHC.Data.Maybe
import GHC.Types.Var.Env
import GHC.Types.Tickish
import Data.List ( genericReplicate, genericLength, intersperse
, partition, scanl', sort, sortBy, zip4, zip6, nub )
import Foreign hiding (shiftL, shiftR)
import Control.Monad
import Data.Char
import GHC.Types.Unique.Supply
import GHC.Unit.Module
import Data.Array
import Data.Coerce (coerce)
import Data.ByteString (ByteString)
import Data.Map (Map)
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import qualified GHC.Data.FiniteMap as Map
import Data.Ord
import GHC.Stack.CCS
import Data.Either ( partitionEithers )
import qualified GHC.Types.CostCentre as CC
import GHC.Stg.Syntax
import GHC.Stg.FVs
-- -----------------------------------------------------------------------------
-- Generating byte code for a complete module
byteCodeGen :: HscEnv
-> Module
-> [StgTopBinding]
-> [TyCon]
-> Maybe ModBreaks
-> IO CompiledByteCode
byteCodeGen hsc_env this_mod binds tycs mb_modBreaks
= withTiming logger dflags
(text "GHC.StgToByteCode"<+>brackets (ppr this_mod))
(const ()) $ do
-- Split top-level binds into strings and others.
-- See Note [generating code for top-level string literal bindings].
let (strings, lifted_binds) = partitionEithers $ do -- list monad
bnd <- binds
case bnd of
StgTopLifted bnd -> [Right bnd]
StgTopStringLit b str -> [Left (b, str)]
flattenBind (StgNonRec b e) = [(b,e)]
flattenBind (StgRec bs) = bs
stringPtrs <- allocateTopStrings interp strings
us <- mkSplitUniqSupply 'y'
(BcM_State{..}, proto_bcos) <-
runBc hsc_env us this_mod mb_modBreaks (mkVarEnv stringPtrs) $ do
prepd_binds <- mapM bcPrepBind lifted_binds
let flattened_binds =
concatMap (flattenBind . annBindingFreeVars) (reverse prepd_binds)
mapM schemeTopBind flattened_binds
when (notNull ffis)
(panic "GHC.StgToByteCode.byteCodeGen: missing final emitBc?")
dumpIfSet_dyn logger dflags Opt_D_dump_BCOs
"Proto-BCOs" FormatByteCode
(vcat (intersperse (char ' ') (map ppr proto_bcos)))
cbc <- assembleBCOs interp profile proto_bcos tycs (map snd stringPtrs)
(case modBreaks of
Nothing -> Nothing
Just mb -> Just mb{ modBreaks_breakInfo = breakInfo })
-- Squash space leaks in the CompiledByteCode. This is really
-- important, because when loading a set of modules into GHCi
-- we don't touch the CompiledByteCode until the end when we
-- do linking. Forcing out the thunks here reduces space
-- usage by more than 50% when loading a large number of
-- modules.
evaluate (seqCompiledByteCode cbc)
return cbc
where dflags = hsc_dflags hsc_env
logger = hsc_logger hsc_env
interp = hscInterp hsc_env
profile = targetProfile dflags
allocateTopStrings
:: Interp
-> [(Id, ByteString)]
-> IO [(Var, RemotePtr ())]
allocateTopStrings interp topStrings = do
let !(bndrs, strings) = unzip topStrings
ptrs <- interpCmd interp $ MallocStrings strings
return $ zip bndrs ptrs
{-
Note [generating code for top-level string literal bindings]
Here is a summary on how the byte code generator deals with top-level string
literals:
1. Top-level string literal bindings are separated from the rest of the module.
2. The strings are allocated via interpCmd, in allocateTopStrings
3. The mapping from binders to allocated strings (topStrings) are maintained in
BcM and used when generating code for variable references.
-}
-- -----------------------------------------------------------------------------
-- Generating byte code for an expression
-- Returns: the root BCO for this expression
stgExprToBCOs :: HscEnv
-> Module
-> Type
-> StgRhs
-> IO UnlinkedBCO
stgExprToBCOs hsc_env this_mod expr_ty expr
= withTiming logger dflags
(text "GHC.StgToByteCode"<+>brackets (ppr this_mod))
(const ()) $ do
-- the uniques are needed to generate fresh variables when we introduce new
-- let bindings for ticked expressions
us <- mkSplitUniqSupply 'y'
(BcM_State _dflags _us _this_mod _final_ctr mallocd _ _ _, proto_bco)
<- runBc hsc_env us this_mod Nothing emptyVarEnv $ do
prepd_expr <- annBindingFreeVars <$>
bcPrepBind (StgNonRec dummy_id expr)
case prepd_expr of
(StgNonRec _ cg_expr) -> schemeR [] (idName dummy_id, cg_expr)
_ ->
panic "GHC.StgByteCode.stgExprToBCOs"
when (notNull mallocd)
(panic "GHC.StgToByteCode.stgExprToBCOs: missing final emitBc?")
dumpIfSet_dyn logger dflags Opt_D_dump_BCOs "Proto-BCOs" FormatByteCode
(ppr proto_bco)
assembleOneBCO interp profile proto_bco
where dflags = hsc_dflags hsc_env
logger = hsc_logger hsc_env
profile = targetProfile dflags
interp = hscInterp hsc_env
-- we need an otherwise unused Id for bytecode generation
dummy_id = mkSysLocal (fsLit "BCO_toplevel")
(mkPseudoUniqueE 0)
Many
expr_ty
{-
Prepare the STG for bytecode generation:
- Ensure that all breakpoints are directly under
a let-binding, introducing a new binding for
those that aren't already.
- Protect Not-necessarily lifted join points, see
Note [Not-necessarily-lifted join points]
-}
bcPrepRHS :: StgRhs -> BcM StgRhs
-- explicitly match all constructors so we get a warning if we miss any
bcPrepRHS (StgRhsClosure fvs cc upd args (StgTick bp@Breakpoint{} expr)) = do
{- If we have a breakpoint directly under an StgRhsClosure we don't
need to introduce a new binding for it.
-}
expr' <- bcPrepExpr expr
pure (StgRhsClosure fvs cc upd args (StgTick bp expr'))
bcPrepRHS (StgRhsClosure fvs cc upd args expr) =
StgRhsClosure fvs cc upd args <$> bcPrepExpr expr
bcPrepRHS con@StgRhsCon{} = pure con
bcPrepExpr :: StgExpr -> BcM StgExpr
-- explicitly match all constructors so we get a warning if we miss any
bcPrepExpr (StgTick bp@(Breakpoint tick_ty _ _) rhs)
| isLiftedTypeKind (typeKind tick_ty) = do
id <- newId tick_ty
rhs' <- bcPrepExpr rhs
let expr' = StgTick bp rhs'
bnd = StgNonRec id (StgRhsClosure noExtFieldSilent
CC.dontCareCCS
ReEntrant
[]
expr'
)
letExp = StgLet noExtFieldSilent bnd (StgApp id [])
pure letExp
| otherwise = do
id <- newId (mkVisFunTyMany realWorldStatePrimTy tick_ty)
st <- newId realWorldStatePrimTy
rhs' <- bcPrepExpr rhs
let expr' = StgTick bp rhs'
bnd = StgNonRec id (StgRhsClosure noExtFieldSilent
CC.dontCareCCS
ReEntrant
[voidArgId]
expr'
)
pure $ StgLet noExtFieldSilent bnd (StgApp id [StgVarArg st])
bcPrepExpr (StgTick tick rhs) =
StgTick tick <$> bcPrepExpr rhs
bcPrepExpr (StgLet xlet bnds expr) =
StgLet xlet <$> bcPrepBind bnds
<*> bcPrepExpr expr
bcPrepExpr (StgLetNoEscape xlne bnds expr) =
StgLet xlne <$> bcPrepBind bnds
<*> bcPrepExpr expr
bcPrepExpr (StgCase expr bndr alt_type alts) =
StgCase <$> bcPrepExpr expr
<*> pure bndr
<*> pure alt_type
<*> mapM bcPrepAlt alts
bcPrepExpr lit@StgLit{} = pure lit
-- See Note [Not-necessarily-lifted join points], step 3.
bcPrepExpr (StgApp x [])
| isNNLJoinPoint x = pure $
StgApp (protectNNLJoinPointId x) [StgVarArg voidPrimId]
bcPrepExpr app@StgApp{} = pure app
bcPrepExpr app@StgConApp{} = pure app
bcPrepExpr app@StgOpApp{} = pure app
bcPrepAlt :: StgAlt -> BcM StgAlt
bcPrepAlt (ac, bndrs, expr) = (,,) ac bndrs <$> bcPrepExpr expr
bcPrepBind :: StgBinding -> BcM StgBinding
-- explicitly match all constructors so we get a warning if we miss any
bcPrepBind (StgNonRec bndr rhs) =
let (bndr', rhs') = bcPrepSingleBind (bndr, rhs)
in StgNonRec bndr' <$> bcPrepRHS rhs'
bcPrepBind (StgRec bnds) =
StgRec <$> mapM ((\(b,r) -> (,) b <$> bcPrepRHS r) . bcPrepSingleBind)
bnds
bcPrepSingleBind :: (Id, StgRhs) -> (Id, StgRhs)
-- If necessary, modify this Id and body to protect not-necessarily-lifted join points.
-- See Note [Not-necessarily-lifted join points], step 2.
bcPrepSingleBind (x, StgRhsClosure ext cc upd_flag args body)
| isNNLJoinPoint x
= ( protectNNLJoinPointId x
, StgRhsClosure ext cc upd_flag (args ++ [voidArgId]) body)
bcPrepSingleBind bnd = bnd
-- -----------------------------------------------------------------------------
-- Compilation schema for the bytecode generator
type BCInstrList = OrdList BCInstr
wordsToBytes :: Platform -> WordOff -> ByteOff
wordsToBytes platform = fromIntegral . (* platformWordSizeInBytes platform) . fromIntegral
-- Used when we know we have a whole number of words
bytesToWords :: Platform -> ByteOff -> WordOff
bytesToWords platform (ByteOff bytes) =
let (q, r) = bytes `quotRem` (platformWordSizeInBytes platform)
in if r == 0
then fromIntegral q
else pprPanic "GHC.StgToByteCode.bytesToWords"
(text "bytes=" <> ppr bytes)
wordSize :: Platform -> ByteOff
wordSize platform = ByteOff (platformWordSizeInBytes platform)
type Sequel = ByteOff -- back off to this depth before ENTER
type StackDepth = ByteOff
-- | Maps Ids to their stack depth. This allows us to avoid having to mess with
-- it after each push/pop.
type BCEnv = Map Id StackDepth -- To find vars on the stack
{-
ppBCEnv :: BCEnv -> SDoc
ppBCEnv p
= text "begin-env"
$$ nest 4 (vcat (map pp_one (sortBy cmp_snd (Map.toList p))))
$$ text "end-env"
where
pp_one (var, ByteOff offset) = int offset <> colon <+> ppr var <+> ppr (bcIdArgReps var)
cmp_snd x y = compare (snd x) (snd y)
-}
-- Create a BCO and do a spot of peephole optimisation on the insns
-- at the same time.
mkProtoBCO
:: Platform
-> name
-> BCInstrList
-> Either [CgStgAlt] (CgStgRhs)
-- ^ original expression; for debugging only
-> Int
-> Word16
-> [StgWord]
-> Bool -- True <=> is a return point, rather than a function
-> [FFIInfo]
-> ProtoBCO name
mkProtoBCO platform nm instrs_ordlist origin arity bitmap_size bitmap is_ret ffis
= ProtoBCO {
protoBCOName = nm,
protoBCOInstrs = maybe_with_stack_check,
protoBCOBitmap = bitmap,
protoBCOBitmapSize = bitmap_size,
protoBCOArity = arity,
protoBCOExpr = origin,
protoBCOFFIs = ffis
}
where
-- Overestimate the stack usage (in words) of this BCO,
-- and if >= iNTERP_STACK_CHECK_THRESH, add an explicit
-- stack check. (The interpreter always does a stack check
-- for iNTERP_STACK_CHECK_THRESH words at the start of each
-- BCO anyway, so we only need to add an explicit one in the
-- (hopefully rare) cases when the (overestimated) stack use
-- exceeds iNTERP_STACK_CHECK_THRESH.
maybe_with_stack_check
| is_ret && stack_usage < fromIntegral (pc_AP_STACK_SPLIM (platformConstants platform)) = peep_d
-- don't do stack checks at return points,
-- everything is aggregated up to the top BCO
-- (which must be a function).
-- That is, unless the stack usage is >= AP_STACK_SPLIM,
-- see bug #1466.
| stack_usage >= fromIntegral iNTERP_STACK_CHECK_THRESH
= STKCHECK stack_usage : peep_d
| otherwise
= peep_d -- the supposedly common case
-- We assume that this sum doesn't wrap
stack_usage = sum (map bciStackUse peep_d)
-- Merge local pushes
peep_d = peep (fromOL instrs_ordlist)
peep (PUSH_L off1 : PUSH_L off2 : PUSH_L off3 : rest)
= PUSH_LLL off1 (off2-1) (off3-2) : peep rest
peep (PUSH_L off1 : PUSH_L off2 : rest)
= PUSH_LL off1 (off2-1) : peep rest
peep (i:rest)
= i : peep rest
peep []
= []
argBits :: Platform -> [ArgRep] -> [Bool]
argBits _ [] = []
argBits platform (rep : args)
| isFollowableArg rep = False : argBits platform args
| otherwise = take (argRepSizeW platform rep) (repeat True) ++ argBits platform args
non_void :: [ArgRep] -> [ArgRep]
non_void = filter nv
where nv V = False
nv _ = True
-- -----------------------------------------------------------------------------
-- schemeTopBind
-- Compile code for the right-hand side of a top-level binding
schemeTopBind :: (Id, CgStgRhs) -> BcM (ProtoBCO Name)
schemeTopBind (id, rhs)
| Just data_con <- isDataConWorkId_maybe id,
isNullaryRepDataCon data_con = do
platform <- profilePlatform <$> getProfile
-- Special case for the worker of a nullary data con.
-- It'll look like this: Nil = /\a -> Nil a
-- If we feed it into schemeR, we'll get
-- Nil = Nil
-- because mkConAppCode treats nullary constructor applications
-- by just re-using the single top-level definition. So
-- for the worker itself, we must allocate it directly.
-- ioToBc (putStrLn $ "top level BCO")
emitBc (mkProtoBCO platform (getName id) (toOL [PACK data_con 0, ENTER])
(Right rhs) 0 0 [{-no bitmap-}] False{-not alts-})
| otherwise
= schemeR [{- No free variables -}] (getName id, rhs)
-- -----------------------------------------------------------------------------
-- schemeR
-- Compile code for a right-hand side, to give a BCO that,
-- when executed with the free variables and arguments on top of the stack,
-- will return with a pointer to the result on top of the stack, after
-- removing the free variables and arguments.
--
-- Park the resulting BCO in the monad. Also requires the
-- name of the variable to which this value was bound,
-- so as to give the resulting BCO a name.
schemeR :: [Id] -- Free vars of the RHS, ordered as they
-- will appear in the thunk. Empty for
-- top-level things, which have no free vars.
-> (Name, CgStgRhs)
-> BcM (ProtoBCO Name)
schemeR fvs (nm, rhs)
= schemeR_wrk fvs nm rhs (collect rhs)
-- If an expression is a lambda, return the
-- list of arguments to the lambda (in R-to-L order) and the
-- underlying expression
collect :: CgStgRhs -> ([Var], CgStgExpr)
collect (StgRhsClosure _ _ _ args body) = (args, body)
collect (StgRhsCon _cc dc cnum _ticks args) = ([], StgConApp dc cnum args [])
schemeR_wrk
:: [Id]
-> Name
-> CgStgRhs -- expression e, for debugging only
-> ([Var], CgStgExpr) -- result of collect on e
-> BcM (ProtoBCO Name)
schemeR_wrk fvs nm original_body (args, body)
= do
profile <- getProfile
let
platform = profilePlatform profile
all_args = reverse args ++ fvs
arity = length all_args
-- all_args are the args in reverse order. We're compiling a function
-- \fv1..fvn x1..xn -> e
-- i.e. the fvs come first
-- Stack arguments always take a whole number of words, we never pack
-- them unlike constructor fields.
szsb_args = map (wordsToBytes platform . idSizeW platform) all_args
sum_szsb_args = sum szsb_args
p_init = Map.fromList (zip all_args (mkStackOffsets 0 szsb_args))
-- make the arg bitmap
bits = argBits platform (reverse (map (bcIdArgRep platform) all_args))
bitmap_size = genericLength bits
bitmap = mkBitmap platform bits
body_code <- schemeER_wrk sum_szsb_args p_init body
emitBc (mkProtoBCO platform nm body_code (Right original_body)
arity bitmap_size bitmap False{-not alts-})
-- introduce break instructions for ticked expressions
schemeER_wrk :: StackDepth -> BCEnv -> CgStgExpr -> BcM BCInstrList
schemeER_wrk d p (StgTick (Breakpoint tick_ty tick_no fvs) rhs)
= do code <- schemeE d 0 p rhs
cc_arr <- getCCArray
this_mod <- moduleName <$> getCurrentModule
platform <- profilePlatform <$> getProfile
let idOffSets = getVarOffSets platform d p fvs
let breakInfo = CgBreakInfo
{ cgb_vars = idOffSets
, cgb_resty = tick_ty
}
newBreakInfo tick_no breakInfo
hsc_env <- getHscEnv
let cc | Just interp <- hsc_interp hsc_env
, interpreterProfiled interp
= cc_arr ! tick_no
| otherwise = toRemotePtr nullPtr
let breakInstr = BRK_FUN (fromIntegral tick_no) (getUnique this_mod) cc
return $ breakInstr `consOL` code
schemeER_wrk d p rhs = schemeE d 0 p rhs
getVarOffSets :: Platform -> StackDepth -> BCEnv -> [Id] -> [Maybe (Id, Word16)]
getVarOffSets platform depth env = map getOffSet
where
getOffSet id = case lookupBCEnv_maybe id env of
Nothing -> Nothing
Just offset ->
-- michalt: I'm not entirely sure why we need the stack
-- adjustment by 2 here. I initially thought that there's
-- something off with getIdValFromApStack (the only user of this
-- value), but it looks ok to me. My current hypothesis is that
-- this "adjustment" is needed due to stack manipulation for
-- BRK_FUN in Interpreter.c In any case, this is used only when
-- we trigger a breakpoint.
let !var_depth_ws =
trunc16W $ bytesToWords platform (depth - offset) + 2
in Just (id, var_depth_ws)
truncIntegral16 :: Integral a => a -> Word16
truncIntegral16 w
| w > fromIntegral (maxBound :: Word16)
= panic "stack depth overflow"
| otherwise
= fromIntegral w
trunc16B :: ByteOff -> Word16
trunc16B = truncIntegral16
trunc16W :: WordOff -> Word16
trunc16W = truncIntegral16
fvsToEnv :: BCEnv -> CgStgRhs -> [Id]
-- Takes the free variables of a right-hand side, and
-- delivers an ordered list of the local variables that will
-- be captured in the thunk for the RHS
-- The BCEnv argument tells which variables are in the local
-- environment: these are the ones that should be captured
--
-- The code that constructs the thunk, and the code that executes
-- it, have to agree about this layout
fvsToEnv p (StgRhsClosure fvs _ _ _ _) =
[v | v <- dVarSetElems fvs,
v `Map.member` p]
fvsToEnv _ _ = []
-- -----------------------------------------------------------------------------
-- schemeE
-- Returning an unlifted value.
-- Heave it on the stack, SLIDE, and RETURN.
returnUnboxedAtom
:: StackDepth
-> Sequel
-> BCEnv
-> StgArg
-> BcM BCInstrList
returnUnboxedAtom d s p e = do
let reps = case e of
StgLitArg lit -> typePrimRepArgs (literalType lit)
StgVarArg i -> bcIdPrimReps i
(push, szb) <- pushAtom d p e
ret <- returnUnboxedReps d s szb reps
return (push `appOL` ret)
-- return an unboxed value from the top of the stack
returnUnboxedReps
:: StackDepth
-> Sequel
-> ByteOff -- size of the thing we're returning
-> [PrimRep] -- representations
-> BcM BCInstrList
returnUnboxedReps d s szb reps = do
profile <- getProfile
let platform = profilePlatform profile
non_void VoidRep = False
non_void _ = True
ret <- case filter non_void reps of
-- use RETURN_UBX for unary representations
[] -> return (unitOL $ RETURN_UBX V)
[rep] -> return (unitOL $ RETURN_UBX (toArgRep platform rep))
-- otherwise use RETURN_TUPLE with a tuple descriptor
nv_reps -> do
let (tuple_info, args_offsets) = layoutTuple profile 0 (primRepCmmType platform) nv_reps
args_ptrs = map (\(rep, off) -> (isFollowableArg (toArgRep platform rep), off)) args_offsets
tuple_bco <- emitBc (tupleBCO platform tuple_info args_ptrs)
return $ PUSH_UBX (mkTupleInfoLit platform tuple_info) 1 `consOL`
PUSH_BCO tuple_bco `consOL`
unitOL RETURN_TUPLE
return ( mkSlideB platform szb (d - s) -- clear to sequel
`appOL` ret) -- go
-- construct and return an unboxed tuple
returnUnboxedTuple
:: StackDepth
-> Sequel
-> BCEnv
-> [StgArg]
-> BcM BCInstrList
returnUnboxedTuple d s p es = do
profile <- getProfile
let platform = profilePlatform profile
arg_ty e = primRepCmmType platform (atomPrimRep e)
(tuple_info, tuple_components) = layoutTuple profile d arg_ty es
go _ pushes [] = return (reverse pushes)
go !dd pushes ((a, off):cs) = do (push, szb) <- pushAtom dd p a
massert (off == dd + szb)
go (dd + szb) (push:pushes) cs
pushes <- go d [] tuple_components
ret <- returnUnboxedReps d
s
(wordsToBytes platform $ tupleSize tuple_info)
(map atomPrimRep es)
return (mconcat pushes `appOL` ret)
-- Compile code to apply the given expression to the remaining args
-- on the stack, returning a HNF.
schemeE
:: StackDepth -> Sequel -> BCEnv -> CgStgExpr -> BcM BCInstrList
schemeE d s p (StgLit lit) = returnUnboxedAtom d s p (StgLitArg lit)
schemeE d s p (StgApp x [])
| isUnliftedType (idType x) = returnUnboxedAtom d s p (StgVarArg x)
-- Delegate tail-calls to schemeT.
schemeE d s p e@(StgApp {}) = schemeT d s p e
schemeE d s p e@(StgConApp {}) = schemeT d s p e
schemeE d s p e@(StgOpApp {}) = schemeT d s p e
schemeE d s p (StgLetNoEscape xlet bnd body)
= schemeE d s p (StgLet xlet bnd body)
schemeE d s p (StgLet _xlet
(StgNonRec x (StgRhsCon _cc data_con _cnum _ticks args))
body)
= do -- Special case for a non-recursive let whose RHS is a
-- saturated constructor application.
-- Just allocate the constructor and carry on
alloc_code <- mkConAppCode d s p data_con args
platform <- targetPlatform <$> getDynFlags
let !d2 = d + wordSize platform
body_code <- schemeE d2 s (Map.insert x d2 p) body
return (alloc_code `appOL` body_code)
-- General case for let. Generates correct, if inefficient, code in
-- all situations.
schemeE d s p (StgLet _ext binds body) = do
platform <- targetPlatform <$> getDynFlags
let (xs,rhss) = case binds of StgNonRec x rhs -> ([x],[rhs])
StgRec xs_n_rhss -> unzip xs_n_rhss
n_binds = genericLength xs
fvss = map (fvsToEnv p') rhss
-- Sizes of free vars
size_w = trunc16W . idSizeW platform
sizes = map (\rhs_fvs -> sum (map size_w rhs_fvs)) fvss
-- the arity of each rhs
arities = map (genericLength . fst . collect) rhss
-- This p', d' defn is safe because all the items being pushed
-- are ptrs, so all have size 1 word. d' and p' reflect the stack
-- after the closures have been allocated in the heap (but not
-- filled in), and pointers to them parked on the stack.
offsets = mkStackOffsets d (genericReplicate n_binds (wordSize platform))
p' = Map.insertList (zipE xs offsets) p
d' = d + wordsToBytes platform n_binds
zipE = zipEqual "schemeE"
-- ToDo: don't build thunks for things with no free variables
build_thunk
:: StackDepth
-> [Id]
-> Word16
-> ProtoBCO Name
-> Word16
-> Word16
-> BcM BCInstrList
build_thunk _ [] size bco off arity
= return (PUSH_BCO bco `consOL` unitOL (mkap (off+size) size))
where
mkap | arity == 0 = MKAP
| otherwise = MKPAP
build_thunk dd (fv:fvs) size bco off arity = do
(push_code, pushed_szb) <- pushAtom dd p' (StgVarArg fv)
more_push_code <-
build_thunk (dd + pushed_szb) fvs size bco off arity
return (push_code `appOL` more_push_code)
alloc_code = toOL (zipWith mkAlloc sizes arities)
where mkAlloc sz 0
| is_tick = ALLOC_AP_NOUPD sz
| otherwise = ALLOC_AP sz
mkAlloc sz arity = ALLOC_PAP arity sz
is_tick = case binds of
StgNonRec id _ -> occNameFS (getOccName id) == tickFS
_other -> False
compile_bind d' fvs x (rhs::CgStgRhs) size arity off = do
bco <- schemeR fvs (getName x,rhs)
build_thunk d' fvs size bco off arity
compile_binds =
[ compile_bind d' fvs x rhs size arity (trunc16W n)
| (fvs, x, rhs, size, arity, n) <-
zip6 fvss xs rhss sizes arities [n_binds, n_binds-1 .. 1]
]
body_code <- schemeE d' s p' body
thunk_codes <- sequence compile_binds
return (alloc_code `appOL` concatOL thunk_codes `appOL` body_code)
schemeE _d _s _p (StgTick (Breakpoint _ bp_id _) _rhs)
= panic ("schemeE: Breakpoint without let binding: " ++
show bp_id ++
" forgot to run bcPrep?")
-- ignore other kinds of tick
schemeE d s p (StgTick _ rhs) = schemeE d s p rhs
-- no alts: scrut is guaranteed to diverge
schemeE d s p (StgCase scrut _ _ []) = schemeE d s p scrut
schemeE d s p (StgCase scrut bndr _ alts)
= doCase d s p scrut bndr alts
-- Is this Id a not-necessarily-lifted join point?
-- See Note [Not-necessarily-lifted join points], step 1
isNNLJoinPoint :: Id -> Bool
isNNLJoinPoint x = isJoinId x &&
Just True /= isLiftedType_maybe (idType x)
-- Update an Id's type to take a Void# argument.
-- Precondition: the Id is a not-necessarily-lifted join point.
-- See Note [Not-necessarily-lifted join points]
protectNNLJoinPointId :: Id -> Id
protectNNLJoinPointId x
= assert (isNNLJoinPoint x )
updateIdTypeButNotMult (unboxedUnitTy `mkVisFunTyMany`) x
{-
Ticked Expressions
------------------
The idea is that the "breakpoint<n,fvs> E" is really just an annotation on
the code. When we find such a thing, we pull out the useful information,
and then compile the code as if it was just the expression E.
Note [Not-necessarily-lifted join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A join point variable is essentially a goto-label: it is, for example,
never used as an argument to another function, and it is called only
in tail position. See Note [Join points] and Note [Invariants on join points],
both in GHC.Core. Because join points do not compile to true, red-blooded
variables (with, e.g., registers allocated to them), they are allowed
to be levity-polymorphic. (See invariant #6 in Note [Invariants on join points]
in GHC.Core.)
However, in this byte-code generator, join points *are* treated just as
ordinary variables. There is no check whether a binding is for a join point
or not; they are all treated uniformly. (Perhaps there is a missed optimization
opportunity here, but that is beyond the scope of my (Richard E's) Thursday.)
We thus must have *some* strategy for dealing with levity-polymorphic and
unlifted join points. Levity-polymorphic variables are generally not allowed
(though levity-polymorphic join points *are*; see Note [Invariants on join points]
in GHC.Core, point 6), and we don't wish to evaluate unlifted join points eagerly.
The questionable join points are *not-necessarily-lifted join points*
(NNLJPs). (Not having such a strategy led to #16509, which panicked in the
isUnliftedType check in the AnnVar case of schemeE.) Here is the strategy:
1. Detect NNLJPs. This is done in isNNLJoinPoint.
2. When binding an NNLJP, add a `\ (_ :: (# #)) ->` to its RHS, and modify the
type to tack on a `(# #) ->`.
Note that functions are never levity-polymorphic, so this transformation
changes an NNLJP to a non-levity-polymorphic join point. This is done
in bcPrepSingleBind.
3. At an occurrence of an NNLJP, add an application to void# (called voidPrimId),
being careful to note the new type of the NNLJP. This is done in the AnnVar
case of schemeE, with help from protectNNLJoinPointId.
Here is an example. Suppose we have
f = \(r :: RuntimeRep) (a :: TYPE r) (x :: T).
join j :: a
j = error @r @a "bloop"
in case x of
A -> j
B -> j
C -> error @r @a "blurp"
Our plan is to behave is if the code was
f = \(r :: RuntimeRep) (a :: TYPE r) (x :: T).
let j :: (Void# -> a)
j = \ _ -> error @r @a "bloop"
in case x of
A -> j void#
B -> j void#
C -> error @r @a "blurp"
It's a bit hacky, but it works well in practice and is local. I suspect the
Right Fix is to take advantage of join points as goto-labels.
-}
-- Compile code to do a tail call. Specifically, push the fn,
-- slide the on-stack app back down to the sequel depth,
-- and enter. Four cases:
--
-- 0. (Nasty hack).
-- An application "GHC.Prim.tagToEnum# <type> unboxed-int".
-- The int will be on the stack. Generate a code sequence
-- to convert it to the relevant constructor, SLIDE and ENTER.
--
-- 1. The fn denotes a ccall. Defer to generateCCall.
--
-- 2. An unboxed tuple: push the components on the top of
-- the stack and return.
--
-- 3. Application of a constructor, by defn saturated.
-- Split the args into ptrs and non-ptrs, and push the nonptrs,
-- then the ptrs, and then do PACK and RETURN.
--
-- 4. Otherwise, it must be a function call. Push the args
-- right to left, SLIDE and ENTER.
schemeT :: StackDepth -- Stack depth
-> Sequel -- Sequel depth
-> BCEnv -- stack env
-> CgStgExpr
-> BcM BCInstrList
-- Case 0
schemeT d s p app
| Just (arg, constr_names) <- maybe_is_tagToEnum_call app
= implement_tagToId d s p arg constr_names
-- Case 1
schemeT d s p (StgOpApp (StgFCallOp (CCall ccall_spec) _ty) args result_ty)
= if isSupportedCConv ccall_spec
then generateCCall d s p ccall_spec result_ty (reverse args)
else unsupportedCConvException
schemeT d s p (StgOpApp (StgPrimOp op) args _ty)
= doTailCall d s p (primOpId op) (reverse args)
schemeT _d _s _p (StgOpApp StgPrimCallOp{} _args _ty)
= unsupportedCConvException
-- Case 2: Unboxed tuple
schemeT d s p (StgConApp con _ext args _tys)
| isUnboxedTupleDataCon con || isUnboxedSumDataCon con
= returnUnboxedTuple d s p args
-- Case 3: Ordinary data constructor
| otherwise
= do alloc_con <- mkConAppCode d s p con args
platform <- profilePlatform <$> getProfile
return (alloc_con `appOL`
mkSlideW 1 (bytesToWords platform $ d - s) `snocOL`
ENTER)
-- Case 4: Tail call of function
schemeT d s p (StgApp fn args)
= doTailCall d s p fn (reverse args)
schemeT _ _ _ e = pprPanic "GHC.StgToByteCode.schemeT"
(pprStgExpr shortStgPprOpts e)
-- -----------------------------------------------------------------------------
-- Generate code to build a constructor application,
-- leaving it on top of the stack
mkConAppCode
:: StackDepth
-> Sequel
-> BCEnv
-> DataCon -- The data constructor
-> [StgArg] -- Args, in *reverse* order
-> BcM BCInstrList
mkConAppCode orig_d _ p con args = app_code
where
app_code = do
profile <- getProfile
let platform = profilePlatform profile
non_voids =
[ NonVoid (prim_rep, arg)
| arg <- args
, let prim_rep = atomPrimRep arg
, not (isVoidRep prim_rep)
]
(_, _, args_offsets) =
mkVirtHeapOffsetsWithPadding profile StdHeader non_voids
do_pushery !d (arg : args) = do
(push, arg_bytes) <- case arg of
(Padding l _) -> return $! pushPadding (ByteOff l)
(FieldOff a _) -> pushConstrAtom d p (fromNonVoid a)
more_push_code <- do_pushery (d + arg_bytes) args
return (push `appOL` more_push_code)
do_pushery !d [] = do
let !n_arg_words = trunc16W $ bytesToWords platform (d - orig_d)
return (unitOL (PACK con n_arg_words))
-- Push on the stack in the reverse order.
do_pushery orig_d (reverse args_offsets)
-- -----------------------------------------------------------------------------
-- Generate code for a tail-call
doTailCall
:: StackDepth
-> Sequel
-> BCEnv
-> Id
-> [StgArg]
-> BcM BCInstrList
doTailCall init_d s p fn args = do
platform <- profilePlatform <$> getProfile
do_pushes init_d args (map (atomRep platform) args)
where
do_pushes !d [] reps = do
assert (null reps ) return ()
(push_fn, sz) <- pushAtom d p (StgVarArg fn)
platform <- profilePlatform <$> getProfile
assert (sz == wordSize platform ) return ()
let slide = mkSlideB platform (d - init_d + wordSize platform) (init_d - s)
return (push_fn `appOL` (slide `appOL` unitOL ENTER))
do_pushes !d args reps = do
let (push_apply, n, rest_of_reps) = findPushSeq reps
(these_args, rest_of_args) = splitAt n args
(next_d, push_code) <- push_seq d these_args
platform <- profilePlatform <$> getProfile
instrs <- do_pushes (next_d + wordSize platform) rest_of_args rest_of_reps
-- ^^^ for the PUSH_APPLY_ instruction
return (push_code `appOL` (push_apply `consOL` instrs))
push_seq d [] = return (d, nilOL)
push_seq d (arg:args) = do
(push_code, sz) <- pushAtom d p arg
(final_d, more_push_code) <- push_seq (d + sz) args
return (final_d, push_code `appOL` more_push_code)
-- v. similar to CgStackery.findMatch, ToDo: merge
findPushSeq :: [ArgRep] -> (BCInstr, Int, [ArgRep])
findPushSeq (P: P: P: P: P: P: rest)
= (PUSH_APPLY_PPPPPP, 6, rest)
findPushSeq (P: P: P: P: P: rest)
= (PUSH_APPLY_PPPPP, 5, rest)
findPushSeq (P: P: P: P: rest)
= (PUSH_APPLY_PPPP, 4, rest)
findPushSeq (P: P: P: rest)
= (PUSH_APPLY_PPP, 3, rest)
findPushSeq (P: P: rest)
= (PUSH_APPLY_PP, 2, rest)
findPushSeq (P: rest)
= (PUSH_APPLY_P, 1, rest)
findPushSeq (V: rest)
= (PUSH_APPLY_V, 1, rest)
findPushSeq (N: rest)
= (PUSH_APPLY_N, 1, rest)
findPushSeq (F: rest)
= (PUSH_APPLY_F, 1, rest)
findPushSeq (D: rest)
= (PUSH_APPLY_D, 1, rest)
findPushSeq (L: rest)
= (PUSH_APPLY_L, 1, rest)
findPushSeq _
= panic "GHC.StgToByteCode.findPushSeq"
-- -----------------------------------------------------------------------------
-- Case expressions
doCase
:: StackDepth
-> Sequel
-> BCEnv
-> CgStgExpr
-> Id
-> [CgStgAlt]
-> BcM BCInstrList
doCase d s p scrut bndr alts
= do
profile <- getProfile
hsc_env <- getHscEnv
let
platform = profilePlatform profile
-- Are we dealing with an unboxed tuple with a tuple return frame?
--
-- 'Simple' tuples with at most one non-void component,
-- like (# Word# #) or (# Int#, State# RealWorld# #) do not have a
-- tuple return frame. This is because (# foo #) and (# foo, Void# #)
-- have the same runtime rep. We have more efficient specialized
-- return frames for the situations with one non-void element.
ubx_tuple_frame =
(isUnboxedTupleType bndr_ty || isUnboxedSumType bndr_ty) &&
length non_void_arg_reps > 1
non_void_arg_reps = non_void (typeArgReps platform bndr_ty)
profiling
| Just interp <- hsc_interp hsc_env
= interpreterProfiled interp
| otherwise = False
-- Top of stack is the return itbl, as usual.
-- underneath it is the pointer to the alt_code BCO.
-- When an alt is entered, it assumes the returned value is
-- on top of the itbl.
ret_frame_size_b :: StackDepth
ret_frame_size_b | ubx_tuple_frame =
(if profiling then 5 else 4) * wordSize platform
| otherwise = 2 * wordSize platform
-- The stack space used to save/restore the CCCS when profiling
save_ccs_size_b | profiling &&
not ubx_tuple_frame = 2 * wordSize platform
| otherwise = 0
-- An unlifted value gets an extra info table pushed on top
-- when it is returned.
unlifted_itbl_size_b :: StackDepth
unlifted_itbl_size_b | isAlgCase = 0
| ubx_tuple_frame = 3 * wordSize platform
| otherwise = wordSize platform
(bndr_size, tuple_info, args_offsets)
| ubx_tuple_frame =
let bndr_ty = primRepCmmType platform
bndr_reps = filter (not.isVoidRep) (bcIdPrimReps bndr)
(tuple_info, args_offsets) =
layoutTuple profile 0 bndr_ty bndr_reps
in ( wordsToBytes platform (tupleSize tuple_info)
, tuple_info
, args_offsets
)
| otherwise = ( wordsToBytes platform (idSizeW platform bndr)
, voidTupleInfo
, []
)
-- depth of stack after the return value has been pushed
d_bndr =
d + ret_frame_size_b + bndr_size
-- depth of stack after the extra info table for an unboxed return
-- has been pushed, if any. This is the stack depth at the
-- continuation.
d_alts = d + ret_frame_size_b + bndr_size + unlifted_itbl_size_b
-- Env in which to compile the alts, not including
-- any vars bound by the alts themselves
p_alts = Map.insert bndr d_bndr p
bndr_ty = idType bndr
isAlgCase = not (isUnliftedType bndr_ty)
-- given an alt, return a discr and code for it.
codeAlt (DEFAULT, _, rhs)
= do rhs_code <- schemeE d_alts s p_alts rhs
return (NoDiscr, rhs_code)
codeAlt alt@(_, bndrs, rhs)
-- primitive or nullary constructor alt: no need to UNPACK
| null real_bndrs = do
rhs_code <- schemeE d_alts s p_alts rhs
return (my_discr alt, rhs_code)
| isUnboxedTupleType bndr_ty || isUnboxedSumType bndr_ty =
let bndr_ty = primRepCmmType platform . bcIdPrimRep
tuple_start = d_bndr
(tuple_info, args_offsets) =
layoutTuple profile
0
bndr_ty
bndrs
stack_bot = d_alts
p' = Map.insertList
[ (arg, tuple_start -
wordsToBytes platform (tupleSize tuple_info) +
offset)
| (arg, offset) <- args_offsets
, not (isVoidRep $ bcIdPrimRep arg)]
p_alts
in do
rhs_code <- schemeE stack_bot s p' rhs
return (NoDiscr, rhs_code)
-- algebraic alt with some binders
| otherwise =
let (tot_wds, _ptrs_wds, args_offsets) =
mkVirtHeapOffsets profile NoHeader
[ NonVoid (bcIdPrimRep id, id)
| NonVoid id <- nonVoidIds real_bndrs
]
size = WordOff tot_wds
stack_bot = d_alts + wordsToBytes platform size
-- convert offsets from Sp into offsets into the virtual stack
p' = Map.insertList
[ (arg, stack_bot - ByteOff offset)
| (NonVoid arg, offset) <- args_offsets ]
p_alts
in do
massert isAlgCase
rhs_code <- schemeE stack_bot s p' rhs
return (my_discr alt,
unitOL (UNPACK (trunc16W size)) `appOL` rhs_code)
where
real_bndrs = filterOut isTyVar bndrs
my_discr (DEFAULT, _, _) = NoDiscr {-shouldn't really happen-}
my_discr (DataAlt dc, _, _)
| isUnboxedTupleDataCon dc || isUnboxedSumDataCon dc
= NoDiscr
| otherwise
= DiscrP (fromIntegral (dataConTag dc - fIRST_TAG))
my_discr (LitAlt l, _, _)
= case l of LitNumber LitNumInt i -> DiscrI (fromInteger i)
LitNumber LitNumWord w -> DiscrW (fromInteger w)
LitFloat r -> DiscrF (fromRational r)
LitDouble r -> DiscrD (fromRational r)
LitChar i -> DiscrI (ord i)
_ -> pprPanic "schemeE(StgCase).my_discr" (ppr l)
maybe_ncons
| not isAlgCase = Nothing
| otherwise
= case [dc | (DataAlt dc, _, _) <- alts] of
[] -> Nothing
(dc:_) -> Just (tyConFamilySize (dataConTyCon dc))
-- the bitmap is relative to stack depth d, i.e. before the
-- BCO, info table and return value are pushed on.
-- This bit of code is v. similar to buildLivenessMask in CgBindery,
-- except that here we build the bitmap from the known bindings of
-- things that are pointers, whereas in CgBindery the code builds the
-- bitmap from the free slots and unboxed bindings.
-- (ToDo: merge?)
--
-- NOTE [7/12/2006] bug #1013, testcase ghci/should_run/ghci002.
-- The bitmap must cover the portion of the stack up to the sequel only.
-- Previously we were building a bitmap for the whole depth (d), but we
-- really want a bitmap up to depth (d-s). This affects compilation of
-- case-of-case expressions, which is the only time we can be compiling a
-- case expression with s /= 0.
-- unboxed tuples get two more words, the second is a pointer (tuple_bco)
(extra_pointers, extra_slots)
| ubx_tuple_frame && profiling = ([1], 3) -- tuple_info, tuple_BCO, CCCS
| ubx_tuple_frame = ([1], 2) -- tuple_info, tuple_BCO
| otherwise = ([], 0)
bitmap_size = trunc16W $ fromIntegral extra_slots +
bytesToWords platform (d - s)
bitmap_size' :: Int
bitmap_size' = fromIntegral bitmap_size
pointers =
extra_pointers ++
sort (filter (< bitmap_size') (map (+extra_slots) rel_slots))
where
binds = Map.toList p
-- NB: unboxed tuple cases bind the scrut binder to the same offset
-- as one of the alt binders, so we have to remove any duplicates here:
rel_slots = nub $ map fromIntegral $ concatMap spread binds
spread (id, offset) | isUnboxedTupleType (idType id) ||
isUnboxedSumType (idType id) = []
| isFollowableArg (bcIdArgRep platform id) = [ rel_offset ]
| otherwise = []
where rel_offset = trunc16W $ bytesToWords platform (d - offset)
bitmap = intsToReverseBitmap platform bitmap_size'{-size-} pointers
alt_stuff <- mapM codeAlt alts
alt_final <- mkMultiBranch maybe_ncons alt_stuff
let
alt_bco_name = getName bndr
alt_bco = mkProtoBCO platform alt_bco_name alt_final (Left alts)
0{-no arity-} bitmap_size bitmap True{-is alts-}
scrut_code <- schemeE (d + ret_frame_size_b + save_ccs_size_b)
(d + ret_frame_size_b + save_ccs_size_b)
p scrut
alt_bco' <- emitBc alt_bco
if ubx_tuple_frame
then do
let args_ptrs =
map (\(rep, off) -> (isFollowableArg (toArgRep platform rep), off))
args_offsets
tuple_bco <- emitBc (tupleBCO platform tuple_info args_ptrs)
return (PUSH_ALTS_TUPLE alt_bco' tuple_info tuple_bco
`consOL` scrut_code)
else let push_alts
| isAlgCase
= PUSH_ALTS alt_bco'
| otherwise
= let unlifted_rep =
case non_void_arg_reps of
[] -> V
[rep] -> rep
_ -> panic "schemeE(StgCase).push_alts"
in PUSH_ALTS_UNLIFTED alt_bco' unlifted_rep
in return (push_alts `consOL` scrut_code)
-- -----------------------------------------------------------------------------
-- Deal with tuples
-- The native calling convention uses registers for tuples, but in the
-- bytecode interpreter, all values live on the stack.
layoutTuple :: Profile
-> ByteOff
-> (a -> CmmType)
-> [a]
-> ( TupleInfo -- See Note [GHCi TupleInfo]
, [(a, ByteOff)] -- argument, offset on stack
)
layoutTuple profile start_off arg_ty reps =
let platform = profilePlatform profile
(orig_stk_bytes, pos) = assignArgumentsPos profile
0
NativeReturn
arg_ty
reps
-- keep the stack parameters in the same place
orig_stk_params = [(x, fromIntegral off) | (x, StackParam off) <- pos]
-- sort the register parameters by register and add them to the stack
(regs, reg_params)
= unzip $ sortBy (comparing fst)
[(reg, x) | (x, RegisterParam reg) <- pos]
(new_stk_bytes, new_stk_params) = assignStack platform
orig_stk_bytes
arg_ty
reg_params
-- make live register bitmaps
bmp_reg r ~(v, f, d, l)
= case r of VanillaReg n _ -> (a v n, f, d, l )
FloatReg n -> (v, a f n, d, l )
DoubleReg n -> (v, f, a d n, l )
LongReg n -> (v, f, d, a l n)
_ ->
pprPanic "GHC.StgToByteCode.layoutTuple unsupported register type"
(ppr r)
where a bmp n = bmp .|. (1 `shiftL` (n-1))
(vanilla_regs, float_regs, double_regs, long_regs)
= foldr bmp_reg (0, 0, 0, 0) regs
get_byte_off (x, StackParam y) = (x, fromIntegral y)
get_byte_off _ =
panic "GHC.StgToByteCode.layoutTuple get_byte_off"
in ( TupleInfo
{ tupleSize = bytesToWords platform (ByteOff new_stk_bytes)
, tupleVanillaRegs = vanilla_regs
, tupleLongRegs = long_regs
, tupleFloatRegs = float_regs
, tupleDoubleRegs = double_regs
, tupleNativeStackSize = bytesToWords platform
(ByteOff orig_stk_bytes)
}
, sortBy (comparing snd) $
map (\(x, o) -> (x, o + start_off))
(orig_stk_params ++ map get_byte_off new_stk_params)
)
{- Note [unboxed tuple bytecodes and tuple_BCO]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have the bytecode instructions RETURN_TUPLE and PUSH_ALTS_TUPLE to
return and receive arbitrary unboxed tuples, respectively. These
instructions use the helper data tuple_BCO and tuple_info.
The helper data is used to convert tuples between GHCs native calling
convention (object code), which uses stack and registers, and the bytecode
calling convention, which only uses the stack. See Note [GHCi TupleInfo]
for more details.
Returning a tuple
=================
Bytecode that returns a tuple first pushes all the tuple fields followed
by the appropriate tuple_info and tuple_BCO onto the stack. It then
executes the RETURN_TUPLE instruction, which causes the interpreter
to push stg_ret_t_info to the top of the stack. The stack (growing down)
then looks as follows:
...
next_frame
tuple_field_1
tuple_field_2
...
tuple_field_n
tuple_info
tuple_BCO
stg_ret_t_info <- Sp
If next_frame is bytecode, the interpreter will start executing it. If
it's object code, the interpreter jumps back to the scheduler, which in
turn jumps to stg_ret_t. stg_ret_t converts the tuple to the native
calling convention using the description in tuple_info, and then jumps
to next_frame.
Receiving a tuple
=================
Bytecode that receives a tuple uses the PUSH_ALTS_TUPLE instruction to
push a continuation, followed by jumping to the code that produces the
tuple. The PUSH_ALTS_TUPLE instuction contains three pieces of data:
* cont_BCO: the continuation that receives the tuple
* tuple_info: see below
* tuple_BCO: see below
The interpreter pushes these onto the stack when the PUSH_ALTS_TUPLE
instruction is executed, followed by stg_ctoi_tN_info, with N depending
on the number of stack words used by the tuple in the GHC native calling
convention. N is derived from tuple_info.
For example if we expect a tuple with three words on the stack, the stack
looks as follows after PUSH_ALTS_TUPLE:
...
next_frame
cont_free_var_1
cont_free_var_2
...
cont_free_var_n
tuple_info
tuple_BCO
cont_BCO
stg_ctoi_t3_info <- Sp
If the tuple is returned by object code, stg_ctoi_t3 will deal with
adjusting the stack pointer and converting the tuple to the bytecode
calling convention. See Note [GHCi unboxed tuples stack spills] for more
details.
The tuple_BCO
=============
The tuple_BCO is a helper bytecode object. Its main purpose is describing
the contents of the stack frame containing the tuple for the storage
manager. It contains only instructions to immediately return the tuple
that is already on the stack.
The tuple_info word
===================
The tuple_info word describes the stack and STG register (e.g. R1..R6,
D1..D6) usage for the tuple. tuple_info contains enough information to
convert the tuple between the stack-only bytecode and stack+registers
GHC native calling conventions.
See Note [GHCi tuple layout] for more details of how the data is packed
in a single word.
-}
tupleBCO :: Platform -> TupleInfo -> [(Bool, ByteOff)] -> [FFIInfo] -> ProtoBCO Name
tupleBCO platform info pointers =
mkProtoBCO platform invented_name body_code (Left [])
0{-no arity-} bitmap_size bitmap False{-is alts-}
where
{-
The tuple BCO is never referred to by name, so we can get away
with using a fake name here. We will need to change this if we want
to save some memory by sharing the BCO between places that have
the same tuple shape
-}
invented_name = mkSystemVarName (mkPseudoUniqueE 0) (fsLit "tuple")
-- the first word in the frame is the tuple_info word,
-- which is not a pointer
bitmap_size = trunc16W $ 1 + tupleSize info
bitmap = intsToReverseBitmap platform (fromIntegral bitmap_size) $
map ((+1) . fromIntegral . bytesToWords platform . snd)
(filter fst pointers)
body_code = mkSlideW 0 1 -- pop frame header
`snocOL` RETURN_TUPLE -- and add it again
-- -----------------------------------------------------------------------------
-- Deal with a CCall.
-- Taggedly push the args onto the stack R->L,
-- deferencing ForeignObj#s and adjusting addrs to point to
-- payloads in Ptr/Byte arrays. Then, generate the marshalling
-- (machine) code for the ccall, and create bytecodes to call that and
-- then return in the right way.
generateCCall
:: StackDepth
-> Sequel
-> BCEnv
-> CCallSpec -- where to call
-> Type
-> [StgArg] -- args (atoms)
-> BcM BCInstrList
generateCCall d0 s p (CCallSpec target cconv safety) result_ty args_r_to_l
= do
profile <- getProfile
let
platform = profilePlatform profile
-- useful constants
addr_size_b :: ByteOff
addr_size_b = wordSize platform
arrayish_rep_hdr_size :: TyCon -> Maybe Int
arrayish_rep_hdr_size t
| t == arrayPrimTyCon || t == mutableArrayPrimTyCon
= Just (arrPtrsHdrSize profile)
| t == smallArrayPrimTyCon || t == smallMutableArrayPrimTyCon
= Just (smallArrPtrsHdrSize profile)
| t == byteArrayPrimTyCon || t == mutableByteArrayPrimTyCon
= Just (arrWordsHdrSize profile)
| otherwise
= Nothing
-- Get the args on the stack, with tags and suitably
-- dereferenced for the CCall. For each arg, return the
-- depth to the first word of the bits for that arg, and the
-- ArgRep of what was actually pushed.
pargs
:: ByteOff -> [StgArg] -> BcM [(BCInstrList, PrimRep)]
pargs _ [] = return []
pargs d (aa@(StgVarArg a):az)
| Just t <- tyConAppTyCon_maybe (idType a)
, Just hdr_sz <- arrayish_rep_hdr_size t
-- Do magic for Ptr/Byte arrays. Push a ptr to the array on
-- the stack but then advance it over the headers, so as to
-- point to the payload.
= do rest <- pargs (d + addr_size_b) az
(push_fo, _) <- pushAtom d p aa
-- The ptr points at the header. Advance it over the
-- header and then pretend this is an Addr#.
let code = push_fo `snocOL` SWIZZLE 0 (fromIntegral hdr_sz)
return ((code, AddrRep) : rest)
pargs d (aa:az) = do (code_a, sz_a) <- pushAtom d p aa
rest <- pargs (d + sz_a) az
return ((code_a, atomPrimRep aa) : rest)
code_n_reps <- pargs d0 args_r_to_l
let
(pushs_arg, a_reps_pushed_r_to_l) = unzip code_n_reps
a_reps_sizeW = sum (map (repSizeWords platform) a_reps_pushed_r_to_l)
push_args = concatOL pushs_arg
!d_after_args = d0 + wordsToBytes platform a_reps_sizeW
a_reps_pushed_RAW
| null a_reps_pushed_r_to_l || not (isVoidRep (head a_reps_pushed_r_to_l))
= panic "GHC.StgToByteCode.generateCCall: missing or invalid World token?"
| otherwise
= reverse (tail a_reps_pushed_r_to_l)
-- Now: a_reps_pushed_RAW are the reps which are actually on the stack.
-- push_args is the code to do that.
-- d_after_args is the stack depth once the args are on.
-- Get the result rep.
(returns_void, r_rep)
= case maybe_getCCallReturnRep result_ty of
Nothing -> (True, VoidRep)
Just rr -> (False, rr)
{-
Because the Haskell stack grows down, the a_reps refer to
lowest to highest addresses in that order. The args for the call
are on the stack. Now push an unboxed Addr# indicating
the C function to call. Then push a dummy placeholder for the
result. Finally, emit a CCALL insn with an offset pointing to the
Addr# just pushed, and a literal field holding the mallocville
address of the piece of marshalling code we generate.
So, just prior to the CCALL insn, the stack looks like this
(growing down, as usual):
<arg_n>
...
<arg_1>
Addr# address_of_C_fn
<placeholder-for-result#> (must be an unboxed type)
The interpreter then calls the marshall code mentioned
in the CCALL insn, passing it (& <placeholder-for-result#>),
that is, the addr of the topmost word in the stack.
When this returns, the placeholder will have been
filled in. The placeholder is slid down to the sequel
depth, and we RETURN.
This arrangement makes it simple to do f-i-dynamic since the Addr#
value is the first arg anyway.
The marshalling code is generated specifically for this
call site, and so knows exactly the (Haskell) stack
offsets of the args, fn address and placeholder. It
copies the args to the C stack, calls the stacked addr,
and parks the result back in the placeholder. The interpreter
calls it as a normal C call, assuming it has a signature
void marshall_code ( StgWord* ptr_to_top_of_stack )
-}
-- resolve static address
maybe_static_target :: Maybe Literal
maybe_static_target =
case target of
DynamicTarget -> Nothing
StaticTarget _ _ _ False ->
panic "generateCCall: unexpected FFI value import"
StaticTarget _ target _ True ->
Just (LitLabel target mb_size IsFunction)
where
mb_size
| OSMinGW32 <- platformOS platform
, StdCallConv <- cconv
= Just (fromIntegral a_reps_sizeW * platformWordSizeInBytes platform)
| otherwise
= Nothing
let
is_static = isJust maybe_static_target
-- Get the arg reps, zapping the leading Addr# in the dynamic case
a_reps -- | trace (showSDoc (ppr a_reps_pushed_RAW)) False = error "???"
| is_static = a_reps_pushed_RAW
| otherwise = if null a_reps_pushed_RAW
then panic "GHC.StgToByteCode.generateCCall: dyn with no args"
else tail a_reps_pushed_RAW
-- push the Addr#
(push_Addr, d_after_Addr)
| Just machlabel <- maybe_static_target
= (toOL [PUSH_UBX machlabel 1], d_after_args + addr_size_b)
| otherwise -- is already on the stack
= (nilOL, d_after_args)
-- Push the return placeholder. For a call returning nothing,
-- this is a V (tag).
r_sizeW = repSizeWords platform r_rep
d_after_r = d_after_Addr + wordsToBytes platform r_sizeW
push_r =
if returns_void
then nilOL
else unitOL (PUSH_UBX (mkDummyLiteral platform r_rep) (trunc16W r_sizeW))
-- generate the marshalling code we're going to call
-- Offset of the next stack frame down the stack. The CCALL
-- instruction needs to describe the chunk of stack containing
-- the ccall args to the GC, so it needs to know how large it
-- is. See comment in Interpreter.c with the CCALL instruction.
stk_offset = trunc16W $ bytesToWords platform (d_after_r - s)
conv = case cconv of
CCallConv -> FFICCall
StdCallConv -> FFIStdCall
_ -> panic "GHC.StgToByteCode: unexpected calling convention"
-- the only difference in libffi mode is that we prepare a cif
-- describing the call type by calling libffi, and we attach the
-- address of this to the CCALL instruction.
let ffires = primRepToFFIType platform r_rep
ffiargs = map (primRepToFFIType platform) a_reps
interp <- hscInterp <$> getHscEnv
token <- ioToBc $ interpCmd interp (PrepFFI conv ffiargs ffires)
recordFFIBc token
let
-- do the call
do_call = unitOL (CCALL stk_offset token flags)
where flags = case safety of
PlaySafe -> 0x0
PlayInterruptible -> 0x1
PlayRisky -> 0x2
-- slide and return
d_after_r_min_s = bytesToWords platform (d_after_r - s)
wrapup = mkSlideW (trunc16W r_sizeW) (d_after_r_min_s - r_sizeW)
`snocOL` RETURN_UBX (toArgRep platform r_rep)
--trace (show (arg1_offW, args_offW , (map argRepSizeW a_reps) )) $
return (
push_args `appOL`
push_Addr `appOL` push_r `appOL` do_call `appOL` wrapup
)
primRepToFFIType :: Platform -> PrimRep -> FFIType
primRepToFFIType platform r
= case r of
VoidRep -> FFIVoid
IntRep -> signed_word
WordRep -> unsigned_word
Int8Rep -> FFISInt8
Word8Rep -> FFIUInt8
Int16Rep -> FFISInt16
Word16Rep -> FFIUInt16
Int32Rep -> FFISInt32
Word32Rep -> FFIUInt32
Int64Rep -> FFISInt64
Word64Rep -> FFIUInt64
AddrRep -> FFIPointer
FloatRep -> FFIFloat
DoubleRep -> FFIDouble
LiftedRep -> FFIPointer
UnliftedRep -> FFIPointer
_ -> pprPanic "primRepToFFIType" (ppr r)
where
(signed_word, unsigned_word) = case platformWordSize platform of
PW4 -> (FFISInt32, FFIUInt32)
PW8 -> (FFISInt64, FFIUInt64)
-- Make a dummy literal, to be used as a placeholder for FFI return
-- values on the stack.
mkDummyLiteral :: Platform -> PrimRep -> Literal
mkDummyLiteral platform pr
= case pr of
IntRep -> mkLitInt platform 0
WordRep -> mkLitWord platform 0
Int8Rep -> mkLitInt8 0
Word8Rep -> mkLitWord8 0
Int16Rep -> mkLitInt16 0
Word16Rep -> mkLitWord16 0
Int32Rep -> mkLitInt32 0
Word32Rep -> mkLitWord32 0
Int64Rep -> mkLitInt64 0
Word64Rep -> mkLitWord64 0
AddrRep -> LitNullAddr
DoubleRep -> LitDouble 0
FloatRep -> LitFloat 0
LiftedRep -> LitNullAddr
UnliftedRep -> LitNullAddr
_ -> pprPanic "mkDummyLiteral" (ppr pr)
-- Convert (eg)
-- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld
-- -> (# GHC.Prim.State# GHC.Prim.RealWorld, GHC.Prim.Int# #)
--
-- to Just IntRep
-- and check that an unboxed pair is returned wherein the first arg is V'd.
--
-- Alternatively, for call-targets returning nothing, convert
--
-- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld
-- -> (# GHC.Prim.State# GHC.Prim.RealWorld #)
--
-- to Nothing
maybe_getCCallReturnRep :: Type -> Maybe PrimRep
maybe_getCCallReturnRep fn_ty
= let
(_a_tys, r_ty) = splitFunTys (dropForAlls fn_ty)
r_reps = typePrimRepArgs r_ty
blargh :: a -- Used at more than one type
blargh = pprPanic "maybe_getCCallReturn: can't handle:"
(pprType fn_ty)
in
case r_reps of
[] -> panic "empty typePrimRepArgs"
[VoidRep] -> Nothing
[rep] -> Just rep
-- if it was, it would be impossible to create a
-- valid return value placeholder on the stack
_ -> blargh
maybe_is_tagToEnum_call :: CgStgExpr -> Maybe (Id, [Name])
-- Detect and extract relevant info for the tagToEnum kludge.
maybe_is_tagToEnum_call (StgOpApp (StgPrimOp TagToEnumOp) [StgVarArg v] t)
= Just (v, extract_constr_Names t)
where
extract_constr_Names ty
| rep_ty <- unwrapType ty
, Just tyc <- tyConAppTyCon_maybe rep_ty
, isDataTyCon tyc
= map (getName . dataConWorkId) (tyConDataCons tyc)
-- NOTE: use the worker name, not the source name of
-- the DataCon. See "GHC.Core.DataCon" for details.
| otherwise
= pprPanic "maybe_is_tagToEnum_call.extract_constr_Ids" (ppr ty)
maybe_is_tagToEnum_call _ = Nothing
{- -----------------------------------------------------------------------------
Note [Implementing tagToEnum#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(implement_tagToId arg names) compiles code which takes an argument
'arg', (call it i), and enters the i'th closure in the supplied list
as a consequence. The [Name] is a list of the constructors of this
(enumeration) type.
The code we generate is this:
push arg
push bogus-word
TESTEQ_I 0 L1
PUSH_G <lbl for first data con>
JMP L_Exit
L1: TESTEQ_I 1 L2
PUSH_G <lbl for second data con>
JMP L_Exit
...etc...
Ln: TESTEQ_I n L_fail
PUSH_G <lbl for last data con>
JMP L_Exit
L_fail: CASEFAIL
L_exit: SLIDE 1 n
ENTER
The 'bogus-word' push is because TESTEQ_I expects the top of the stack
to have an info-table, and the next word to have the value to be
tested. This is very weird, but it's the way it is right now. See
Interpreter.c. We don't actually need an info-table here; we just
need to have the argument to be one-from-top on the stack, hence pushing
a 1-word null. See #8383.
-}
implement_tagToId
:: StackDepth
-> Sequel
-> BCEnv
-> Id
-> [Name]
-> BcM BCInstrList
-- See Note [Implementing tagToEnum#]
implement_tagToId d s p arg names
= assert (notNull names) $
do (push_arg, arg_bytes) <- pushAtom d p (StgVarArg arg)
labels <- getLabelsBc (genericLength names)
label_fail <- getLabelBc
label_exit <- getLabelBc
dflags <- getDynFlags
let infos = zip4 labels (tail labels ++ [label_fail])
[0 ..] names
platform = targetPlatform dflags
steps = map (mkStep label_exit) infos
slide_ws = bytesToWords platform (d - s + arg_bytes)
return (push_arg
`appOL` unitOL (PUSH_UBX LitNullAddr 1)
-- Push bogus word (see Note [Implementing tagToEnum#])
`appOL` concatOL steps
`appOL` toOL [ LABEL label_fail, CASEFAIL,
LABEL label_exit ]
`appOL` mkSlideW 1 (slide_ws + 1)
-- "+1" to account for bogus word
-- (see Note [Implementing tagToEnum#])
`appOL` unitOL ENTER)
where
mkStep l_exit (my_label, next_label, n, name_for_n)
= toOL [LABEL my_label,
TESTEQ_I n next_label,
PUSH_G name_for_n,
JMP l_exit]
-- -----------------------------------------------------------------------------
-- pushAtom
-- Push an atom onto the stack, returning suitable code & number of
-- stack words used.
--
-- The env p must map each variable to the highest- numbered stack
-- slot for it. For example, if the stack has depth 4 and we
-- tagged-ly push (v :: Int#) on it, the value will be in stack[4],
-- the tag in stack[5], the stack will have depth 6, and p must map v
-- to 5 and not to 4. Stack locations are numbered from zero, so a
-- depth 6 stack has valid words 0 .. 5.
pushAtom
:: StackDepth -> BCEnv -> StgArg -> BcM (BCInstrList, ByteOff)
-- See Note [Empty case alternatives] in GHC.Core
-- and Note [Bottoming expressions] in GHC.Core.Utils:
-- The scrutinee of an empty case evaluates to bottom
pushAtom d p (StgVarArg var)
| [] <- typePrimRep (idType var)
= return (nilOL, 0)
| isFCallId var
= pprPanic "pushAtom: shouldn't get an FCallId here" (ppr var)
| Just primop <- isPrimOpId_maybe var
= do
platform <- targetPlatform <$> getDynFlags
return (unitOL (PUSH_PRIMOP primop), wordSize platform)
| Just d_v <- lookupBCEnv_maybe var p -- var is a local variable
= do platform <- targetPlatform <$> getDynFlags
let !szb = idSizeCon platform var
with_instr instr = do
let !off_b = trunc16B $ d - d_v
return (unitOL (instr off_b), wordSize platform)
case szb of
1 -> with_instr PUSH8_W
2 -> with_instr PUSH16_W
4 -> with_instr PUSH32_W
_ -> do
let !szw = bytesToWords platform szb
!off_w = trunc16W $ bytesToWords platform (d - d_v) + szw - 1
return (toOL (genericReplicate szw (PUSH_L off_w)),
wordsToBytes platform szw)
-- d - d_v offset from TOS to the first slot of the object
--
-- d - d_v + sz - 1 offset from the TOS of the last slot of the object
--
-- Having found the last slot, we proceed to copy the right number of
-- slots on to the top of the stack.
| otherwise -- var must be a global variable
= do topStrings <- getTopStrings
platform <- targetPlatform <$> getDynFlags
case lookupVarEnv topStrings var of
Just ptr -> pushAtom d p $ StgLitArg $ mkLitWord platform $
fromIntegral $ ptrToWordPtr $ fromRemotePtr ptr
Nothing -> do
let sz = idSizeCon platform var
massert (sz == wordSize platform)
return (unitOL (PUSH_G (getName var)), sz)
pushAtom _ _ (StgLitArg lit) = pushLiteral True lit
pushLiteral :: Bool -> Literal -> BcM (BCInstrList, ByteOff)
pushLiteral padded lit =
do
platform <- targetPlatform <$> getDynFlags
let code :: PrimRep -> BcM (BCInstrList, ByteOff)
code rep =
return (padding_instr `snocOL` instr, size_bytes + padding_bytes)
where
size_bytes = ByteOff $ primRepSizeB platform rep
-- Here we handle the non-word-width cases specifically since we
-- must emit different bytecode for them.
round_to_words (ByteOff bytes) =
ByteOff (roundUpToWords platform bytes)
padding_bytes
| padded = round_to_words size_bytes - size_bytes
| otherwise = 0
(padding_instr, _) = pushPadding padding_bytes
instr =
case size_bytes of
1 -> PUSH_UBX8 lit
2 -> PUSH_UBX16 lit
4 -> PUSH_UBX32 lit
_ -> PUSH_UBX lit (trunc16W $ bytesToWords platform size_bytes)
case lit of
LitLabel {} -> code AddrRep
LitFloat {} -> code FloatRep
LitDouble {} -> code DoubleRep
LitChar {} -> code WordRep
LitNullAddr -> code AddrRep
LitString {} -> code AddrRep
LitRubbish {} -> code WordRep
LitNumber nt _ -> case nt of
LitNumInt -> code IntRep
LitNumWord -> code WordRep
LitNumInt8 -> code Int8Rep
LitNumWord8 -> code Word8Rep
LitNumInt16 -> code Int16Rep
LitNumWord16 -> code Word16Rep
LitNumInt32 -> code Int32Rep
LitNumWord32 -> code Word32Rep
LitNumInt64 -> code Int64Rep
LitNumWord64 -> code Word64Rep
-- No LitInteger's or LitNatural's should be left by the time this is
-- called. CorePrep should have converted them all to a real core
-- representation.
LitNumInteger -> panic "pushAtom: LitInteger"
LitNumNatural -> panic "pushAtom: LitNatural"
-- | Push an atom for constructor (i.e., PACK instruction) onto the stack.
-- This is slightly different to @pushAtom@ due to the fact that we allow
-- packing constructor fields. See also @mkConAppCode@ and @pushPadding@.
pushConstrAtom
:: StackDepth -> BCEnv -> StgArg -> BcM (BCInstrList, ByteOff)
pushConstrAtom _ _ (StgLitArg lit) = pushLiteral False lit
pushConstrAtom d p va@(StgVarArg v)
| Just d_v <- lookupBCEnv_maybe v p = do -- v is a local variable
platform <- targetPlatform <$> getDynFlags
let !szb = idSizeCon platform v
done instr = do
let !off = trunc16B $ d - d_v
return (unitOL (instr off), szb)
case szb of
1 -> done PUSH8
2 -> done PUSH16
4 -> done PUSH32
_ -> pushAtom d p va
pushConstrAtom d p expr = pushAtom d p expr
pushPadding :: ByteOff -> (BCInstrList, ByteOff)
pushPadding (ByteOff n) = go n (nilOL, 0)
where
go n acc@(!instrs, !off) = case n of
0 -> acc
1 -> (instrs `mappend` unitOL PUSH_PAD8, off + 1)
2 -> (instrs `mappend` unitOL PUSH_PAD16, off + 2)
3 -> go 1 (go 2 acc)
4 -> (instrs `mappend` unitOL PUSH_PAD32, off + 4)
_ -> go (n - 4) (go 4 acc)
-- -----------------------------------------------------------------------------
-- Given a bunch of alts code and their discrs, do the donkey work
-- of making a multiway branch using a switch tree.
-- What a load of hassle!
mkMultiBranch :: Maybe Int -- # datacons in tycon, if alg alt
-- a hint; generates better code
-- Nothing is always safe
-> [(Discr, BCInstrList)]
-> BcM BCInstrList
mkMultiBranch maybe_ncons raw_ways = do
lbl_default <- getLabelBc
let
mkTree :: [(Discr, BCInstrList)] -> Discr -> Discr -> BcM BCInstrList
mkTree [] _range_lo _range_hi = return (unitOL (JMP lbl_default))
-- shouldn't happen?
mkTree [val] range_lo range_hi
| range_lo == range_hi
= return (snd val)
| null defaults -- Note [CASEFAIL]
= do lbl <- getLabelBc
return (testEQ (fst val) lbl
`consOL` (snd val
`appOL` (LABEL lbl `consOL` unitOL CASEFAIL)))
| otherwise
= return (testEQ (fst val) lbl_default `consOL` snd val)
-- Note [CASEFAIL] It may be that this case has no default
-- branch, but the alternatives are not exhaustive - this
-- happens for GADT cases for example, where the types
-- prove that certain branches are impossible. We could
-- just assume that the other cases won't occur, but if
-- this assumption was wrong (because of a bug in GHC)
-- then the result would be a segfault. So instead we
-- emit an explicit test and a CASEFAIL instruction that
-- causes the interpreter to barf() if it is ever
-- executed.
mkTree vals range_lo range_hi
= let n = length vals `div` 2
vals_lo = take n vals
vals_hi = drop n vals
v_mid = fst (head vals_hi)
in do
label_geq <- getLabelBc
code_lo <- mkTree vals_lo range_lo (dec v_mid)
code_hi <- mkTree vals_hi v_mid range_hi
return (testLT v_mid label_geq
`consOL` (code_lo
`appOL` unitOL (LABEL label_geq)
`appOL` code_hi))
the_default
= case defaults of
[] -> nilOL
[(_, def)] -> LABEL lbl_default `consOL` def
_ -> panic "mkMultiBranch/the_default"
instrs <- mkTree notd_ways init_lo init_hi
return (instrs `appOL` the_default)
where
(defaults, not_defaults) = partition (isNoDiscr.fst) raw_ways
notd_ways = sortBy (comparing fst) not_defaults
testLT (DiscrI i) fail_label = TESTLT_I i fail_label
testLT (DiscrW i) fail_label = TESTLT_W i fail_label
testLT (DiscrF i) fail_label = TESTLT_F i fail_label
testLT (DiscrD i) fail_label = TESTLT_D i fail_label
testLT (DiscrP i) fail_label = TESTLT_P i fail_label
testLT NoDiscr _ = panic "mkMultiBranch NoDiscr"
testEQ (DiscrI i) fail_label = TESTEQ_I i fail_label
testEQ (DiscrW i) fail_label = TESTEQ_W i fail_label
testEQ (DiscrF i) fail_label = TESTEQ_F i fail_label
testEQ (DiscrD i) fail_label = TESTEQ_D i fail_label
testEQ (DiscrP i) fail_label = TESTEQ_P i fail_label
testEQ NoDiscr _ = panic "mkMultiBranch NoDiscr"
-- None of these will be needed if there are no non-default alts
(init_lo, init_hi)
| null notd_ways
= panic "mkMultiBranch: awesome foursome"
| otherwise
= case fst (head notd_ways) of
DiscrI _ -> ( DiscrI minBound, DiscrI maxBound )
DiscrW _ -> ( DiscrW minBound, DiscrW maxBound )
DiscrF _ -> ( DiscrF minF, DiscrF maxF )
DiscrD _ -> ( DiscrD minD, DiscrD maxD )
DiscrP _ -> ( DiscrP algMinBound, DiscrP algMaxBound )
NoDiscr -> panic "mkMultiBranch NoDiscr"
(algMinBound, algMaxBound)
= case maybe_ncons of
-- XXX What happens when n == 0?
Just n -> (0, fromIntegral n - 1)
Nothing -> (minBound, maxBound)
isNoDiscr NoDiscr = True
isNoDiscr _ = False
dec (DiscrI i) = DiscrI (i-1)
dec (DiscrW w) = DiscrW (w-1)
dec (DiscrP i) = DiscrP (i-1)
dec other = other -- not really right, but if you
-- do cases on floating values, you'll get what you deserve
-- same snotty comment applies to the following
minF, maxF :: Float
minD, maxD :: Double
minF = -1.0e37
maxF = 1.0e37
minD = -1.0e308
maxD = 1.0e308
-- -----------------------------------------------------------------------------
-- Supporting junk for the compilation schemes
-- Describes case alts
data Discr
= DiscrI Int
| DiscrW Word
| DiscrF Float
| DiscrD Double
| DiscrP Word16
| NoDiscr
deriving (Eq, Ord)
instance Outputable Discr where
ppr (DiscrI i) = int i
ppr (DiscrW w) = text (show w)
ppr (DiscrF f) = text (show f)
ppr (DiscrD d) = text (show d)
ppr (DiscrP i) = ppr i
ppr NoDiscr = text "DEF"
lookupBCEnv_maybe :: Id -> BCEnv -> Maybe ByteOff
lookupBCEnv_maybe = Map.lookup
idSizeW :: Platform -> Id -> WordOff
idSizeW platform = WordOff . argRepSizeW platform . bcIdArgRep platform
idSizeCon :: Platform -> Id -> ByteOff
idSizeCon platform var
-- unboxed tuple components are padded to word size
| isUnboxedTupleType (idType var) ||
isUnboxedSumType (idType var) =
wordsToBytes platform .
WordOff . sum . map (argRepSizeW platform . toArgRep platform) .
bcIdPrimReps $ var
| otherwise = ByteOff (primRepSizeB platform (bcIdPrimRep var))
bcIdArgRep :: Platform -> Id -> ArgRep
bcIdArgRep platform = toArgRep platform . bcIdPrimRep
bcIdPrimRep :: Id -> PrimRep
bcIdPrimRep id
| [rep] <- typePrimRepArgs (idType id)
= rep
| otherwise
= pprPanic "bcIdPrimRep" (ppr id <+> dcolon <+> ppr (idType id))
bcIdPrimReps :: Id -> [PrimRep]
bcIdPrimReps id = typePrimRepArgs (idType id)
repSizeWords :: Platform -> PrimRep -> WordOff
repSizeWords platform rep = WordOff $ argRepSizeW platform (toArgRep platform rep)
isFollowableArg :: ArgRep -> Bool
isFollowableArg P = True
isFollowableArg _ = False
-- | Indicate if the calling convention is supported
isSupportedCConv :: CCallSpec -> Bool
isSupportedCConv (CCallSpec _ cconv _) = case cconv of
CCallConv -> True -- we explicitly pattern match on every
StdCallConv -> True -- convention to ensure that a warning
PrimCallConv -> False -- is triggered when a new one is added
JavaScriptCallConv -> False
CApiConv -> False
-- See bug #10462
unsupportedCConvException :: a
unsupportedCConvException = throwGhcException (ProgramError
("Error: bytecode compiler can't handle some foreign calling conventions\n"++
" Workaround: use -fobject-code, or compile this module to .o separately."))
mkSlideB :: Platform -> ByteOff -> ByteOff -> OrdList BCInstr
mkSlideB platform !nb !db = mkSlideW n d
where
!n = trunc16W $ bytesToWords platform nb
!d = bytesToWords platform db
mkSlideW :: Word16 -> WordOff -> OrdList BCInstr
mkSlideW !n !ws
| ws > fromIntegral limit
-- If the amount to slide doesn't fit in a Word16, generate multiple slide
-- instructions
= SLIDE n limit `consOL` mkSlideW n (ws - fromIntegral limit)
| ws == 0
= nilOL
| otherwise
= unitOL (SLIDE n $ fromIntegral ws)
where
limit :: Word16
limit = maxBound
atomPrimRep :: StgArg -> PrimRep
atomPrimRep (StgVarArg v) = bcIdPrimRep v
atomPrimRep (StgLitArg l) = typePrimRep1 (literalType l)
atomRep :: Platform -> StgArg -> ArgRep
atomRep platform e = toArgRep platform (atomPrimRep e)
-- | Let szsw be the sizes in bytes of some items pushed onto the stack, which
-- has initial depth @original_depth@. Return the values which the stack
-- environment should map these items to.
mkStackOffsets :: ByteOff -> [ByteOff] -> [ByteOff]
mkStackOffsets original_depth szsb = tail (scanl' (+) original_depth szsb)
typeArgReps :: Platform -> Type -> [ArgRep]
typeArgReps platform = map (toArgRep platform) . typePrimRepArgs
-- -----------------------------------------------------------------------------
-- The bytecode generator's monad
data BcM_State
= BcM_State
{ bcm_hsc_env :: HscEnv
, uniqSupply :: UniqSupply -- for generating fresh variable names
, thisModule :: Module -- current module (for breakpoints)
, nextlabel :: Word32 -- for generating local labels
, ffis :: [FFIInfo] -- ffi info blocks, to free later
-- Should be free()d when it is GCd
, modBreaks :: Maybe ModBreaks -- info about breakpoints
, breakInfo :: IntMap CgBreakInfo
, topStrings :: IdEnv (RemotePtr ()) -- top-level string literals
-- See Note [generating code for top-level string literal bindings].
}
newtype BcM r = BcM (BcM_State -> IO (BcM_State, r)) deriving (Functor)
ioToBc :: IO a -> BcM a
ioToBc io = BcM $ \st -> do
x <- io
return (st, x)
runBc :: HscEnv -> UniqSupply -> Module -> Maybe ModBreaks
-> IdEnv (RemotePtr ())
-> BcM r
-> IO (BcM_State, r)
runBc hsc_env us this_mod modBreaks topStrings (BcM m)
= m (BcM_State hsc_env us this_mod 0 [] modBreaks IntMap.empty topStrings)
thenBc :: BcM a -> (a -> BcM b) -> BcM b
thenBc (BcM expr) cont = BcM $ \st0 -> do
(st1, q) <- expr st0
let BcM k = cont q
(st2, r) <- k st1
return (st2, r)
thenBc_ :: BcM a -> BcM b -> BcM b
thenBc_ (BcM expr) (BcM cont) = BcM $ \st0 -> do
(st1, _) <- expr st0
(st2, r) <- cont st1
return (st2, r)
returnBc :: a -> BcM a
returnBc result = BcM $ \st -> (return (st, result))
instance Applicative BcM where
pure = returnBc
(<*>) = ap
(*>) = thenBc_
instance Monad BcM where
(>>=) = thenBc
(>>) = (*>)
instance HasDynFlags BcM where
getDynFlags = BcM $ \st -> return (st, hsc_dflags (bcm_hsc_env st))
getHscEnv :: BcM HscEnv
getHscEnv = BcM $ \st -> return (st, bcm_hsc_env st)
getProfile :: BcM Profile
getProfile = targetProfile <$> getDynFlags
emitBc :: ([FFIInfo] -> ProtoBCO Name) -> BcM (ProtoBCO Name)
emitBc bco
= BcM $ \st -> return (st{ffis=[]}, bco (ffis st))
recordFFIBc :: RemotePtr C_ffi_cif -> BcM ()
recordFFIBc a
= BcM $ \st -> return (st{ffis = FFIInfo a : ffis st}, ())
getLabelBc :: BcM LocalLabel
getLabelBc
= BcM $ \st -> do let nl = nextlabel st
when (nl == maxBound) $
panic "getLabelBc: Ran out of labels"
return (st{nextlabel = nl + 1}, LocalLabel nl)
getLabelsBc :: Word32 -> BcM [LocalLabel]
getLabelsBc n
= BcM $ \st -> let ctr = nextlabel st
in return (st{nextlabel = ctr+n}, coerce [ctr .. ctr+n-1])
getCCArray :: BcM (Array BreakIndex (RemotePtr CostCentre))
getCCArray = BcM $ \st ->
let breaks = expectJust "GHC.StgToByteCode.getCCArray" $ modBreaks st in
return (st, modBreaks_ccs breaks)
newBreakInfo :: BreakIndex -> CgBreakInfo -> BcM ()
newBreakInfo ix info = BcM $ \st ->
return (st{breakInfo = IntMap.insert ix info (breakInfo st)}, ())
newUnique :: BcM Unique
newUnique = BcM $
\st -> case takeUniqFromSupply (uniqSupply st) of
(uniq, us) -> let newState = st { uniqSupply = us }
in return (newState, uniq)
getCurrentModule :: BcM Module
getCurrentModule = BcM $ \st -> return (st, thisModule st)
getTopStrings :: BcM (IdEnv (RemotePtr ()))
getTopStrings = BcM $ \st -> return (st, topStrings st)
newId :: Type -> BcM Id
newId ty = do
uniq <- newUnique
return $ mkSysLocal tickFS uniq Many ty
tickFS :: FastString
tickFS = fsLit "ticked"
|