1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
|
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
-----------------------------------------------------------------------------
--
-- Stg to C-- code generation: expressions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module GHC.StgToCmm.Expr ( cgExpr, cgLit ) where
import GHC.Prelude hiding ((<*>))
import {-# SOURCE #-} GHC.StgToCmm.Bind ( cgBind )
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Heap
import GHC.StgToCmm.Env
import GHC.StgToCmm.DataCon
import GHC.StgToCmm.Prof (saveCurrentCostCentre, restoreCurrentCostCentre, emitSetCCC)
import GHC.StgToCmm.Layout
import GHC.StgToCmm.Lit
import GHC.StgToCmm.Prim
import GHC.StgToCmm.Hpc
import GHC.StgToCmm.TagCheck
import GHC.StgToCmm.Ticky
import GHC.StgToCmm.Utils
import GHC.StgToCmm.Closure
import GHC.Stg.Syntax
import GHC.Cmm.Graph
import GHC.Cmm.BlockId
import GHC.Cmm hiding ( succ )
import GHC.Cmm.Info
import GHC.Cmm.Utils ( zeroExpr, cmmTagMask, mkWordCLit, mAX_PTR_TAG )
import GHC.Cmm.Ppr
import GHC.Core
import GHC.Core.DataCon
import GHC.Types.ForeignCall
import GHC.Types.Id
import GHC.Builtin.PrimOps
import GHC.Core.TyCon
import GHC.Core.Type ( isUnliftedType )
import GHC.Types.RepType ( isZeroBitTy, countConRepArgs )
import GHC.Types.CostCentre ( CostCentreStack, currentCCS )
import GHC.Types.Tickish
import GHC.Data.Maybe
import GHC.Utils.Misc
import GHC.Data.FastString
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad ( unless, void )
import Control.Arrow ( first )
import Data.List ( partition )
import GHC.Stg.InferTags.TagSig (isTaggedSig)
------------------------------------------------------------------------
-- cgExpr: the main function
------------------------------------------------------------------------
cgExpr :: CgStgExpr -> FCode ReturnKind
cgExpr (StgApp fun args) = cgIdApp fun args
-- seq# a s ==> a
-- See Note [seq# magic] in GHC.Core.Opt.ConstantFold
cgExpr (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _res_ty) =
cgIdApp a []
-- dataToTag# :: a -> Int#
-- See Note [dataToTag# magic] in GHC.Core.Opt.ConstantFold
cgExpr (StgOpApp (StgPrimOp DataToTagOp) [StgVarArg a] _res_ty) = do
platform <- getPlatform
emitComment (mkFastString "dataToTag#")
info <- getCgIdInfo a
let amode = idInfoToAmode info
tag_reg <- assignTemp $ cmmConstrTag1 platform amode
result_reg <- newTemp (bWord platform)
let tag = CmmReg $ CmmLocal tag_reg
is_tagged = cmmNeWord platform tag (zeroExpr platform)
is_too_big_tag = cmmEqWord platform tag (cmmTagMask platform)
-- Here we will first check the tag bits of the pointer we were given;
-- if this doesn't work then enter the closure and use the info table
-- to determine the constructor. Note that all tag bits set means that
-- the constructor index is too large to fit in the pointer and therefore
-- we must look in the info table. See Note [Tagging big families].
slow_path <- getCode $ do
tmp <- newTemp (bWord platform)
_ <- withSequel (AssignTo [tmp] False) (cgIdApp a [])
profile <- getProfile
align_check <- stgToCmmAlignCheck <$> getStgToCmmConfig
emitAssign (CmmLocal result_reg)
$ getConstrTag profile align_check (cmmUntag platform (CmmReg (CmmLocal tmp)))
fast_path <- getCode $ do
-- Return the constructor index from the pointer tag
return_ptr_tag <- getCode $ do
emitAssign (CmmLocal result_reg)
$ cmmSubWord platform tag (CmmLit $ mkWordCLit platform 1)
-- Return the constructor index recorded in the info table
return_info_tag <- getCode $ do
profile <- getProfile
align_check <- stgToCmmAlignCheck <$> getStgToCmmConfig
emitAssign (CmmLocal result_reg)
$ getConstrTag profile align_check (cmmUntag platform amode)
emit =<< mkCmmIfThenElse' is_too_big_tag return_info_tag return_ptr_tag (Just False)
emit =<< mkCmmIfThenElse' is_tagged fast_path slow_path (Just True)
emitReturn [CmmReg $ CmmLocal result_reg]
cgExpr (StgOpApp op args ty) = cgOpApp op args ty
cgExpr (StgConApp con mn args _) = cgConApp con mn args
cgExpr (StgTick t e) = cgTick t >> cgExpr e
cgExpr (StgLit lit) = do cmm_expr <- cgLit lit
emitReturn [cmm_expr]
cgExpr (StgLet _ binds expr) = do { cgBind binds; cgExpr expr }
cgExpr (StgLetNoEscape _ binds expr) =
do { u <- newUnique
; let join_id = mkBlockId u
; cgLneBinds join_id binds
; r <- cgExpr expr
; emitLabel join_id
; return r }
cgExpr (StgCase expr bndr alt_type alts) =
cgCase expr bndr alt_type alts
------------------------------------------------------------------------
-- Let no escape
------------------------------------------------------------------------
{- Generating code for a let-no-escape binding, aka join point is very
very similar to what we do for a case expression. The duality is
between
let-no-escape x = b
in e
and
case e of ... -> b
That is, the RHS of 'x' (ie 'b') will execute *later*, just like
the alternative of the case; it needs to be compiled in an environment
in which all volatile bindings are forgotten, and the free vars are
bound only to stable things like stack locations.. The 'e' part will
execute *next*, just like the scrutinee of a case. -}
-------------------------
cgLneBinds :: BlockId -> CgStgBinding -> FCode ()
cgLneBinds join_id (StgNonRec bndr rhs)
= do { local_cc <- saveCurrentCostCentre
-- See Note [Saving the current cost centre]
; (info, fcode) <- cgLetNoEscapeRhs join_id local_cc bndr rhs
; fcode
; addBindC info }
cgLneBinds join_id (StgRec pairs)
= do { local_cc <- saveCurrentCostCentre
; r <- sequence $ unzipWith (cgLetNoEscapeRhs join_id local_cc) pairs
; let (infos, fcodes) = unzip r
; addBindsC infos
; sequence_ fcodes
}
-------------------------
cgLetNoEscapeRhs
:: BlockId -- join point for successor of let-no-escape
-> Maybe LocalReg -- Saved cost centre
-> Id
-> CgStgRhs
-> FCode (CgIdInfo, FCode ())
cgLetNoEscapeRhs join_id local_cc bndr rhs =
do { (info, rhs_code) <- cgLetNoEscapeRhsBody local_cc bndr rhs
; let (bid, _) = expectJust "cgLetNoEscapeRhs" $ maybeLetNoEscape info
; let code = do { (_, body) <- getCodeScoped rhs_code
; emitOutOfLine bid (first (<*> mkBranch join_id) body) }
; return (info, code)
}
cgLetNoEscapeRhsBody
:: Maybe LocalReg -- Saved cost centre
-> Id
-> CgStgRhs
-> FCode (CgIdInfo, FCode ())
cgLetNoEscapeRhsBody local_cc bndr (StgRhsClosure _ cc _upd args body)
= cgLetNoEscapeClosure bndr local_cc cc (nonVoidIds args) body
cgLetNoEscapeRhsBody local_cc bndr (StgRhsCon cc con mn _ts args)
= cgLetNoEscapeClosure bndr local_cc cc []
(StgConApp con mn args (pprPanic "cgLetNoEscapeRhsBody" $
text "StgRhsCon doesn't have type args"))
-- For a constructor RHS we want to generate a single chunk of
-- code which can be jumped to from many places, which will
-- return the constructor. It's easy; just behave as if it
-- was an StgRhsClosure with a ConApp inside!
-------------------------
cgLetNoEscapeClosure
:: Id -- binder
-> Maybe LocalReg -- Slot for saved current cost centre
-> CostCentreStack -- XXX: *** NOT USED *** why not?
-> [NonVoid Id] -- Args (as in \ args -> body)
-> CgStgExpr -- Body (as in above)
-> FCode (CgIdInfo, FCode ())
cgLetNoEscapeClosure bndr cc_slot _unused_cc args body
= do platform <- getPlatform
return ( lneIdInfo platform bndr args, code )
where
code = forkLneBody $ withNewTickyCounterLNE bndr args $ do
{ restoreCurrentCostCentre cc_slot
; arg_regs <- bindArgsToRegs args
; void $ noEscapeHeapCheck arg_regs (tickyEnterLNE >> cgExpr body) }
------------------------------------------------------------------------
-- Case expressions
------------------------------------------------------------------------
{- Note [Compiling case expressions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is quite interesting to decide whether to put a heap-check at the
start of each alternative. Of course we certainly have to do so if
the case forces an evaluation, or if there is a primitive op which can
trigger GC.
A more interesting situation is this (a Plan-B situation)
!P!;
...P...
case x# of
0# -> !Q!; ...Q...
default -> !R!; ...R...
where !x! indicates a possible heap-check point. The heap checks
in the alternatives *can* be omitted, in which case the topmost
heapcheck will take their worst case into account.
In favour of omitting !Q!, !R!:
- *May* save a heap overflow test,
if ...P... allocates anything.
- We can use relative addressing from a single Hp to
get at all the closures so allocated.
- No need to save volatile vars etc across heap checks
in !Q!, !R!
Against omitting !Q!, !R!
- May put a heap-check into the inner loop. Suppose
the main loop is P -> R -> P -> R...
Q is the loop exit, and only it does allocation.
This only hurts us if P does no allocation. If P allocates,
then there is a heap check in the inner loop anyway.
- May do more allocation than reqd. This sometimes bites us
badly. For example, nfib (ha!) allocates about 30\% more space if the
worst-casing is done, because many many calls to nfib are leaf calls
which don't need to allocate anything.
We can un-allocate, but that costs an instruction
Neither problem hurts us if there is only one alternative.
Suppose the inner loop is P->R->P->R etc. Then here is
how many heap checks we get in the *inner loop* under various
conditions
Alloc Heap check in branches (!Q!, !R!)?
P Q R yes no (absorb to !P!)
--------------------------------------
n n n 0 0
n y n 0 1
n . y 1 1
y . y 2 1
y . n 1 1
Best choices: absorb heap checks from Q and R into !P! iff
a) P itself does some allocation
or
b) P does allocation, or there is exactly one alternative
We adopt (b) because that is more likely to put the heap check at the
entry to a function, when not many things are live. After a bunch of
single-branch cases, we may have lots of things live
Hence: Two basic plans for
case e of r { alts }
------ Plan A: the general case ---------
...save current cost centre...
...code for e,
with sequel (SetLocals r)
...restore current cost centre...
...code for alts...
...alts do their own heap checks
When using GcInAlts the return point for heap checks and evaluating
the scrutinee is shared. This does mean we might execute the actual
branching code twice but it's rare enough to not matter.
The huge advantage of this pattern is that we do not require multiple
info tables for returning from gc as they can be shared between all
cases. Reducing code size nicely.
------ Plan B: special case when ---------
(i) e does not allocate or call GC
(ii) either upstream code performs allocation
or there is just one alternative
Then heap allocation in the (single) case branch
is absorbed by the upstream check.
Very common example: primops on unboxed values
...code for e,
with sequel (SetLocals r)...
...code for alts...
...no heap check...
There is a variant B.2 which we use if:
(i) e is already evaluated+tagged
(ii) We have multiple alternatives
(iii) and there is no upstream allocation.
Here we also place one heap check before the `case` which
branches on `e`. Hopefully to be absorbed by an already existing
heap check further up. However the big difference in this case is that
there is no code for e. So we are not guaranteed that the heap
checks of the alts will be combined with an heap check further up.
Very common example: Casing on strict fields.
...heap check...
...assign bindings...
...code for alts...
...no heap check...
-- Reasoning for Plan B.2:
Since the scrutinee is already evaluated there is no evaluation
call which would force a info table that we can use as a shared
return point.
This means currently if we were to do GcInAlts like in Plan A then
we would end up with one info table per alternative.
To avoid this we unconditionally do gc outside of the alts with all
the pros and cons described in Note [Compiling case expressions].
Rewriting the logic to generate a shared return point before the case
expression while keeping the heap checks in the alternatives would be
possible. But it's unclear to me that this would actually be an improvement.
This means if we have code along these lines:
g x y = case x of
True -> Left $ (y + 1,y,y-1)
False -> Right $! y - (2 :: Int)
We get these potential heap check placements:
f = ...
!max(L,R)!; -- Might be absorbed upstream.
case x of
True -> !L!; ...L...
False -> !R!; ...R...
And we place a heap check at !max(L,R)!
The downsides of using !max(L,R)! are:
* If f is recursive, and the hot loop wouldn't allocate, but the exit branch does then we do
a redundant heap check.
* We use one more instruction to de-allocate the unused heap in the branch using less heap. (Neglible)
* A small risk of running gc slightly more often than needed especially if one branch allocates a lot.
The upsides are:
* May save a heap overflow test if there is an upstream check already.
* If the heap check is absorbed upstream we can also eliminate its info table.
* We generate at most one heap check (versus one per alt otherwise).
* No need to save volatile vars etc across heap checks in !L!, !R!
* We can use relative addressing from a single Hp to get at all the closures so allocated. (seems neglible)
* It fits neatly in the logic we already have for handling A/B
For containers:Data/Sequence/Internal/Sorting.o the difference is
about 10% in terms of code size compared to using Plan A for this case.
The main downside is we might put heap checks into loops, even if we
could avoid it (See Note [Compiling case expressions]).
Potential improvement: Investigate if heap checks in alts would be an
improvement if we generate and use a shared return point that is placed
in the common path for all alts.
-}
-------------------------------------
data GcPlan
= GcInAlts -- Put a GC check at the start the case alternatives,
[LocalReg] -- which binds these registers
| NoGcInAlts -- The scrutinee is a primitive value, or a call to a
-- primitive op which does no GC. Absorb the allocation
-- of the case alternative(s) into the upstream check
-------------------------------------
cgCase :: CgStgExpr -> Id -> AltType -> [CgStgAlt] -> FCode ReturnKind
{-
Note [Scrutinising VoidRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have this STG code:
f = \[s : State# RealWorld] ->
case s of _ -> blah
This is very odd. Why are we scrutinising a state token? But it
can arise with bizarre NOINLINE pragmas (#9964)
crash :: IO ()
crash = IO (\s -> let {-# NOINLINE s' #-}
s' = s
in (# s', () #))
Now the trouble is that 's' has VoidRep, and we do not bind void
arguments in the environment; they don't live anywhere. See the
calls to nonVoidIds in various places. So we must not look up
's' in the environment. Instead, just evaluate the RHS! Simple.
Note [Dead-binder optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A case-binder, or data-constructor argument, may be marked as dead,
because we preserve occurrence-info on binders in GHC.Core.Tidy (see
GHC.Core.Tidy.tidyIdBndr).
If the binder is dead, we can sometimes eliminate a load. While
CmmSink will eliminate that load, it's very easy to kill it at source
(giving CmmSink less work to do), and in any case CmmSink only runs
with -O. Since the majority of case binders are dead, this
optimisation probably still has a great benefit-cost ratio and we want
to keep it for -O0. See also Phab:D5358.
This probably also was the reason for occurrence hack in Phab:D5339 to
exist, perhaps because the occurrence information preserved by
'GHC.Core.Tidy.tidyIdBndr' was insufficient. But now that CmmSink does the
job we deleted the hacks.
-}
cgCase (StgApp v []) _ (PrimAlt _) alts
| isVoidRep (idPrimRep v) -- See Note [Scrutinising VoidRep]
, [(DEFAULT, _, rhs)] <- alts
= cgExpr rhs
{- Note [Dodgy unsafeCoerce 1]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
case (x :: HValue) |> co of (y :: MutVar# Int)
DEFAULT -> ...
We want to generate an assignment
y := x
We want to allow this assignment to be generated in the case when the
types are compatible, because this allows some slightly-dodgy but
occasionally-useful casts to be used, such as in GHC.Runtime.Heap.Inspect
where we cast an HValue to a MutVar# so we can print out the contents
of the MutVar#. If instead we generate code that enters the HValue,
then we'll get a runtime panic, because the HValue really is a
MutVar#. The types are compatible though, so we can just generate an
assignment.
-}
cgCase (StgApp v []) bndr alt_type@(PrimAlt _) alts
| isUnliftedType (idType v) -- Note [Dodgy unsafeCoerce 1]
= -- assignment suffices for unlifted types
do { platform <- getPlatform
; unless (reps_compatible platform) $
pprPanic "cgCase: reps do not match, perhaps a dodgy unsafeCoerce?"
(pp_bndr v $$ pp_bndr bndr)
; v_info <- getCgIdInfo v
; emitAssign (CmmLocal (idToReg platform (NonVoid bndr)))
(idInfoToAmode v_info)
-- Add bndr to the environment
; _ <- bindArgToReg (NonVoid bndr)
; cgAlts (NoGcInAlts,AssignedDirectly) (NonVoid bndr) alt_type alts }
where
reps_compatible platform = primRepCompatible platform (idPrimRep v) (idPrimRep bndr)
pp_bndr id = ppr id <+> dcolon <+> ppr (idType id) <+> parens (ppr (idPrimRep id))
{- Note [Dodgy unsafeCoerce 2, #3132]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In all other cases of a lifted Id being cast to an unlifted type, the
Id should be bound to bottom, otherwise this is an unsafe use of
unsafeCoerce. We can generate code to enter the Id and assume that
it will never return. Hence, we emit the usual enter/return code, and
because bottom must be untagged, it will be entered. The Sequel is a
type-correct assignment, albeit bogus. The (dead) continuation loops;
it would be better to invoke some kind of panic function here.
-}
cgCase scrut@(StgApp v []) _ (PrimAlt _) _
= do { platform <- getPlatform
; mb_cc <- maybeSaveCostCentre True
; _ <- withSequel
(AssignTo [idToReg platform (NonVoid v)] False) (cgExpr scrut)
; restoreCurrentCostCentre mb_cc
; emitComment $ mkFastString "should be unreachable code"
; l <- newBlockId
; emitLabel l
; emit (mkBranch l) -- an infinite loop
; return AssignedDirectly
}
{- Note [Handle seq#]
~~~~~~~~~~~~~~~~~~~~~
See Note [seq# magic] in GHC.Core.Opt.ConstantFold.
The special case for seq# in cgCase does this:
case seq# a s of v
(# s', a' #) -> e
==>
case a of v
(# s', a' #) -> e
(taking advantage of the fact that the return convention for (# State#, a #)
is the same as the return convention for just 'a')
-}
cgCase (StgOpApp (StgPrimOp SeqOp) [StgVarArg a, _] _) bndr alt_type alts
= -- Note [Handle seq#]
-- And see Note [seq# magic] in GHC.Core.Opt.ConstantFold
-- Use the same return convention as vanilla 'a'.
cgCase (StgApp a []) bndr alt_type alts
cgCase scrut bndr alt_type alts
= -- the general case
do { platform <- getPlatform
; up_hp_usg <- getVirtHp -- Upstream heap usage
; let ret_bndrs = chooseReturnBndrs bndr alt_type alts
alt_regs = map (idToReg platform) ret_bndrs
; simple_scrut <- isSimpleScrut scrut alt_type
; let do_gc | is_cmp_op scrut = False -- See Note [GC for conditionals]
| not simple_scrut = True
| isSingleton alts = False
| up_hp_usg > 0 = False
| evaluatedScrut = False
| otherwise = True
-- cf Note [Compiling case expressions]
gc_plan = if do_gc then GcInAlts alt_regs else NoGcInAlts
; mb_cc <- maybeSaveCostCentre simple_scrut
; let sequel = AssignTo alt_regs do_gc{- Note [scrut sequel] -}
; ret_kind <- withSequel sequel (cgExpr scrut)
; restoreCurrentCostCentre mb_cc
; _ <- bindArgsToRegs ret_bndrs
; cgAlts (gc_plan,ret_kind) (NonVoid bndr) alt_type alts
}
where
is_cmp_op (StgOpApp (StgPrimOp op) _ _) = isComparisonPrimOp op
is_cmp_op _ = False
evaluatedScrut
| (StgApp v []) <- scrut
, Just sig <- idTagSig_maybe v
, isTaggedSig sig = True
| otherwise = False
{- Note [GC for conditionals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For boolean conditionals it seems that we have always done NoGcInAlts.
That is, we have always done the GC check before the conditional.
This is enshrined in the special case for
case tagToEnum# (a>b) of ...
See Note [case on bool]
It's odd, and it's flagrantly inconsistent with the rules described
Note [Compiling case expressions]. However, after eliminating the
tagToEnum# (#13397) we will have:
case (a>b) of ...
Rather than make it behave quite differently, I am testing for a
comparison operator here in the general case as well.
ToDo: figure out what the Right Rule should be.
Note [scrut sequel]
~~~~~~~~~~~~~~~~~~~
The job of the scrutinee is to assign its value(s) to alt_regs.
Additionally, if we plan to do a heap-check in the alternatives (see
Note [Compiling case expressions]), then we *must* retreat Hp to
recover any unused heap before passing control to the sequel. If we
don't do this, then any unused heap will become slop because the heap
check will reset the heap usage. Slop in the heap breaks LDV profiling
(+RTS -hb) which needs to do a linear sweep through the nursery.
Note [Inlining out-of-line primops and heap checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If shouldInlinePrimOp returns True when called from GHC.StgToCmm.Expr for the
purpose of heap check placement, we *must* inline the primop later in
GHC.StgToCmm.Prim. If we don't things will go wrong.
-}
-----------------
maybeSaveCostCentre :: Bool -> FCode (Maybe LocalReg)
maybeSaveCostCentre simple_scrut
| simple_scrut = return Nothing
| otherwise = saveCurrentCostCentre
-----------------
isSimpleScrut :: CgStgExpr -> AltType -> FCode Bool
-- Simple scrutinee, does not block or allocate; hence safe to amalgamate
-- heap usage from alternatives into the stuff before the case
-- NB: if you get this wrong, and claim that the expression doesn't allocate
-- when it does, you'll deeply mess up allocation
isSimpleScrut (StgOpApp op args _) _ = isSimpleOp op args
isSimpleScrut (StgLit _) _ = return True -- case 1# of { 0# -> ..; ... }
isSimpleScrut (StgApp _ []) (PrimAlt _) = return True -- case x# of { 0# -> ..; ... }
isSimpleScrut (StgApp f []) _
| Just sig <- idTagSig_maybe f
= return $! isTaggedSig sig -- case !x of { ... }
isSimpleScrut _ _ = return False
isSimpleOp :: StgOp -> [StgArg] -> FCode Bool
-- True iff the op cannot block or allocate
isSimpleOp (StgFCallOp (CCall (CCallSpec _ _ safe)) _) _ = return $! not (playSafe safe)
-- dataToTag# evaluates its argument, see Note [dataToTag# magic] in GHC.Core.Opt.ConstantFold
isSimpleOp (StgPrimOp DataToTagOp) _ = return False
isSimpleOp (StgPrimOp op) stg_args = do
arg_exprs <- getNonVoidArgAmodes stg_args
cfg <- getStgToCmmConfig
-- See Note [Inlining out-of-line primops and heap checks]
return $! shouldInlinePrimOp cfg op arg_exprs
isSimpleOp (StgPrimCallOp _) _ = return False
-----------------
chooseReturnBndrs :: Id -> AltType -> [CgStgAlt] -> [NonVoid Id]
-- These are the binders of a case that are assigned by the evaluation of the
-- scrutinee.
-- They're non-void, see Note [Post-unarisation invariants] in GHC.Stg.Unarise.
chooseReturnBndrs bndr (PrimAlt _) _alts
= assertNonVoidIds [bndr]
chooseReturnBndrs _bndr (MultiValAlt n) [(_, ids, _)]
= assertPpr (ids `lengthIs` n) (ppr n $$ ppr ids $$ ppr _bndr) $
assertNonVoidIds ids -- 'bndr' is not assigned!
chooseReturnBndrs bndr (AlgAlt _) _alts
= assertNonVoidIds [bndr] -- Only 'bndr' is assigned
chooseReturnBndrs bndr PolyAlt _alts
= assertNonVoidIds [bndr] -- Only 'bndr' is assigned
chooseReturnBndrs _ _ _ = panic "chooseReturnBndrs"
-- MultiValAlt has only one alternative
-------------------------------------
cgAlts :: (GcPlan,ReturnKind) -> NonVoid Id -> AltType -> [CgStgAlt]
-> FCode ReturnKind
-- At this point the result of the case are in the binders
cgAlts gc_plan _bndr PolyAlt [(_, _, rhs)]
= maybeAltHeapCheck gc_plan (cgExpr rhs)
cgAlts gc_plan _bndr (MultiValAlt _) [(_, _, rhs)]
= maybeAltHeapCheck gc_plan (cgExpr rhs)
-- Here bndrs are *already* in scope, so don't rebind them
cgAlts gc_plan bndr (PrimAlt _) alts
= do { platform <- getPlatform
; tagged_cmms <- cgAltRhss gc_plan bndr alts
; let bndr_reg = CmmLocal (idToReg platform bndr)
(DEFAULT,deflt) = head tagged_cmms
-- PrimAlts always have a DEFAULT case
-- and it always comes first
tagged_cmms' = [(lit,code)
| (LitAlt lit, code) <- tagged_cmms]
; emitCmmLitSwitch (CmmReg bndr_reg) tagged_cmms' deflt
; return AssignedDirectly }
cgAlts gc_plan bndr (AlgAlt tycon) alts
= do { platform <- getPlatform
; (mb_deflt, branches) <- cgAlgAltRhss gc_plan bndr alts
; let !fam_sz = tyConFamilySize tycon
!bndr_reg = CmmLocal (idToReg platform bndr)
!ptag_expr = cmmConstrTag1 platform (CmmReg bndr_reg)
!branches' = first succ <$> branches
!maxpt = mAX_PTR_TAG platform
(!via_ptr, !via_info) = partition ((< maxpt) . fst) branches'
!small = isSmallFamily platform fam_sz
-- Is the constructor tag in the node reg?
-- See Note [Tagging big families]
; if small || null via_info
then -- Yes, bndr_reg has constructor tag in ls bits
emitSwitch ptag_expr branches' mb_deflt 1
(if small then fam_sz else maxpt)
else -- No, the get exact tag from info table when mAX_PTR_TAG
-- See Note [Double switching for big families]
do
profile <- getProfile
align_check <- stgToCmmAlignCheck <$> getStgToCmmConfig
let !untagged_ptr = cmmUntag platform (CmmReg bndr_reg)
!itag_expr = getConstrTag profile align_check untagged_ptr
!info0 = first pred <$> via_info
if null via_ptr then
emitSwitch itag_expr info0 mb_deflt 0 (fam_sz - 1)
else do
infos_lbl <- newBlockId
infos_scp <- getTickScope
let spillover = (maxpt, (mkBranch infos_lbl, infos_scp))
(mb_shared_deflt, mb_shared_branch) <- case mb_deflt of
(Just (stmts, scp)) ->
do lbl <- newBlockId
return ( Just (mkLabel lbl scp <*> stmts, scp)
, Just (mkBranch lbl, scp))
_ -> return (Nothing, Nothing)
-- Switch on pointer tag
emitSwitch ptag_expr (spillover : via_ptr) mb_shared_deflt 1 maxpt
join_lbl <- newBlockId
emit (mkBranch join_lbl)
-- Switch on info table tag
emitLabel infos_lbl
emitSwitch itag_expr info0 mb_shared_branch
(maxpt - 1) (fam_sz - 1)
emitLabel join_lbl
; return AssignedDirectly }
cgAlts _ _ _ _ = panic "cgAlts"
-- UbxTupAlt and PolyAlt have only one alternative
-- Note [Double switching for big families]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- An algebraic data type can have a n >= 0 summands
-- (or alternatives), which are identified (labeled) by
-- constructors. In memory they are kept apart by tags
-- (see Note [Data constructor dynamic tags] in GHC.StgToCmm.Closure).
-- Due to the characteristics of the platform that
-- contribute to the alignment of memory objects, there
-- is a natural limit of information about constructors
-- that can be encoded in the pointer tag. When the mapping
-- of constructors to the pointer tag range 1..mAX_PTR_TAG
-- is not injective, then we have a "big data type", also
-- called a "big (constructor) family" in the literature.
-- Constructor tags residing in the info table are injective,
-- but considerably more expensive to obtain, due to additional
-- memory access(es).
--
-- When doing case analysis on a value of a "big data type"
-- we need two nested switch statements to make up for the lack
-- of injectivity of pointer tagging, also taking the info
-- table tag into account. The exact mechanism is described next.
--
-- In the general case, switching on big family alternatives
-- is done by two nested switch statements. According to
-- Note [Tagging big families], the outer switch
-- looks at the pointer tag and the inner dereferences the
-- pointer and switches on the info table tag.
--
-- We can handle a simple case first, namely when none
-- of the case alternatives mention a constructor having
-- a pointer tag of 1..mAX_PTR_TAG-1. In this case we
-- simply emit a switch on the info table tag.
-- Note that the other simple case is when all mentioned
-- alternatives lie in 1..mAX_PTR_TAG-1, in which case we can
-- switch on the ptr tag only, just like in the small family case.
--
-- There is a single intricacy with a nested switch:
-- Both should branch to the same default alternative, and as such
-- avoid duplicate codegen of potentially heavy code. The outer
-- switch generates the actual code with a prepended fresh label,
-- while the inner one only generates a jump to that label.
--
-- For example, let's assume a 64-bit architecture, so that all
-- heap objects are 8-byte aligned, and hence the address of a
-- heap object ends in `000` (three zero bits).
--
-- Then consider the following data type
--
-- > data Big = T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8
-- Ptr tag: 1 2 3 4 5 6 7 7 7
-- As bits: 001 010 011 100 101 110 111 111 111
-- Info pointer tag (zero based):
-- 0 1 2 3 4 5 6 7 8
--
-- Then \case T2 -> True; T8 -> True; _ -> False
-- will result in following code (slightly cleaned-up and
-- commented -ddump-cmm-from-stg):
{-
R1 = _sqI::P64; -- scrutinee
if (R1 & 7 != 0) goto cqO; else goto cqP;
cqP: // global -- enter
call (I64[R1])(R1) returns to cqO, args: 8, res: 8, upd: 8;
cqO: // global -- already WHNF
_sqJ::P64 = R1;
_cqX::P64 = _sqJ::P64 & 7; -- extract pointer tag
switch [1 .. 7] _cqX::P64 {
case 3 : goto cqW;
case 7 : goto cqR;
default: {goto cqS;}
}
cqR: // global
_cr2 = I32[I64[_sqJ::P64 & (-8)] - 4]; -- tag from info pointer
switch [6 .. 8] _cr2::I64 {
case 8 : goto cr1;
default: {goto cr0;}
}
cr1: // global
R1 = GHC.Types.True_closure+2;
call (P64[(old + 8)])(R1) args: 8, res: 0, upd: 8;
cr0: // global -- technically necessary label
goto cqS;
cqW: // global
R1 = GHC.Types.True_closure+2;
call (P64[(old + 8)])(R1) args: 8, res: 0, upd: 8;
cqS: // global
R1 = GHC.Types.False_closure+1;
call (P64[(old + 8)])(R1) args: 8, res: 0, upd: 8;
-}
--
-- For 32-bit systems we only have 2 tag bits in the pointers at our disposal,
-- so the performance win is dubious, especially in face of the increased code
-- size due to double switching. But we can take the viewpoint that 32-bit
-- architectures are not relevant for performance any more, so this can be
-- considered as moot.
-- Note [alg-alt heap check]
--
-- In an algebraic case with more than one alternative, we will have
-- code like
--
-- L0:
-- x = R1
-- goto L1
-- L1:
-- if (x & 7 >= 2) then goto L2 else goto L3
-- L2:
-- Hp = Hp + 16
-- if (Hp > HpLim) then goto L4
-- ...
-- L4:
-- call gc() returns to L5
-- L5:
-- x = R1
-- goto L1
-- Note [Tagging big families]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Both the big and the small constructor families are tagged,
-- that is, greater unions which overflow the tag space of TAG_BITS
-- (i.e. 3 on 32 resp. 7 constructors on 64 bit archs).
--
-- For example, let's assume a 64-bit architecture, so that all
-- heap objects are 8-byte aligned, and hence the address of a
-- heap object ends in `000` (three zero bits). Then consider
-- > data Maybe a = Nothing | Just a
-- > data Day a = Mon | Tue | Wed | Thu | Fri | Sat | Sun
-- > data Grade = G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10
--
-- Since `Grade` has more than 7 constructors, it counts as a
-- "big data type" (also referred to as "big constructor family" in papers).
-- On the other hand, `Maybe` and `Day` have 7 constructors or fewer, so they
-- are "small data types".
--
-- Then
-- * A pointer to an unevaluated thunk of type `Maybe Int`, `Day` or `Grade` will end in `000`
-- * A tagged pointer to a `Nothing`, `Mon` or `G1` will end in `001`
-- * A tagged pointer to a `Just x`, `Tue` or `G2` will end in `010`
-- * A tagged pointer to `Wed` or `G3` will end in `011`
-- ...
-- * A tagged pointer to `Sat` or `G6` will end in `110`
-- * A tagged pointer to `Sun` or `G7` or `G8` or `G9` or `G10` will end in `111`
--
-- For big families we employ a mildly clever way of combining pointer and
-- info-table tagging. We use 1..MAX_PTR_TAG-1 as pointer-resident tags where
-- the tags in the pointer and the info table are in a one-to-one
-- relation, whereas tag MAX_PTR_TAG is used as "spill over", signifying
-- we have to fall back and get the precise constructor tag from the
-- info-table.
--
-- Consequently we now cascade switches, because we have to check
-- the pointer tag first, and when it is MAX_PTR_TAG, fetch the precise
-- tag from the info table, and switch on that. The only technically
-- tricky part is that the default case needs (logical) duplication.
-- To do this we emit an extra label for it and branch to that from
-- the second switch. This avoids duplicated codegen. See Trac #14373.
-- See Note [Double switching for big families] for the mechanics
-- involved.
--
-- Also see Note [Data constructor dynamic tags]
-- and the wiki https://gitlab.haskell.org/ghc/ghc/wikis/commentary/rts/haskell-execution/pointer-tagging
--
-------------------
cgAlgAltRhss :: (GcPlan,ReturnKind) -> NonVoid Id -> [CgStgAlt]
-> FCode ( Maybe CmmAGraphScoped
, [(ConTagZ, CmmAGraphScoped)] )
cgAlgAltRhss gc_plan bndr alts
= do { tagged_cmms <- cgAltRhss gc_plan bndr alts
; let { mb_deflt = case tagged_cmms of
((DEFAULT,rhs) : _) -> Just rhs
_other -> Nothing
-- DEFAULT is always first, if present
; branches = [ (dataConTagZ con, cmm)
| (DataAlt con, cmm) <- tagged_cmms ]
}
; return (mb_deflt, branches)
}
-------------------
cgAltRhss :: (GcPlan,ReturnKind) -> NonVoid Id -> [CgStgAlt]
-> FCode [(AltCon, CmmAGraphScoped)]
cgAltRhss gc_plan bndr alts = do
platform <- getPlatform
let
base_reg = idToReg platform bndr
cg_alt :: CgStgAlt -> FCode (AltCon, CmmAGraphScoped)
cg_alt (con, bndrs, rhs)
= getCodeScoped $
maybeAltHeapCheck gc_plan $
do { _ <- bindConArgs con base_reg (assertNonVoidIds bndrs)
-- alt binders are always non-void,
-- see Note [Post-unarisation invariants] in GHC.Stg.Unarise
; _ <- cgExpr rhs
; return con }
forkAlts (map cg_alt alts)
maybeAltHeapCheck :: (GcPlan,ReturnKind) -> FCode a -> FCode a
maybeAltHeapCheck (NoGcInAlts,_) code = code
maybeAltHeapCheck (GcInAlts regs, AssignedDirectly) code =
altHeapCheck regs code
maybeAltHeapCheck (GcInAlts regs, ReturnedTo lret off) code =
altHeapCheckReturnsTo regs lret off code
-----------------------------------------------------------------------------
-- Tail calls
-----------------------------------------------------------------------------
cgConApp :: DataCon -> ConstructorNumber -> [StgArg] -> FCode ReturnKind
cgConApp con mn stg_args
| isUnboxedTupleDataCon con -- Unboxed tuple: assign and return
= do { arg_exprs <- getNonVoidArgAmodes stg_args
; tickyUnboxedTupleReturn (length arg_exprs)
; emitReturn arg_exprs }
| otherwise -- Boxed constructors; allocate and return
= assertPpr (stg_args `lengthIs` countConRepArgs con)
(ppr con <> parens (ppr (countConRepArgs con)) <+> ppr stg_args) $
do { (idinfo, fcode_init) <- buildDynCon (dataConWorkId con) mn False
currentCCS con (assertNonVoidStgArgs stg_args)
-- con args are always non-void,
-- see Note [Post-unarisation invariants] in GHC.Stg.Unarise
-- The first "con" says that the name bound to this
-- closure is "con", which is a bit of a fudge, but
-- it only affects profiling (hence the False)
; emit =<< fcode_init
; tickyReturnNewCon (length stg_args)
; emitReturn [idInfoToAmode idinfo] }
cgIdApp :: Id -> [StgArg] -> FCode ReturnKind
cgIdApp fun_id args = do
platform <- getPlatform
fun_info <- getCgIdInfo fun_id
cfg <- getStgToCmmConfig
self_loop <- getSelfLoop
let profile = stgToCmmProfile cfg
fun_arg = StgVarArg fun_id
fun_name = idName fun_id
fun = idInfoToAmode fun_info
lf_info = cg_lf fun_info
n_args = length args
v_args = length $ filter (isZeroBitTy . stgArgType) args
case getCallMethod cfg fun_name fun_id lf_info n_args v_args (cg_loc fun_info) self_loop of
-- A value in WHNF, so we can just return it.
ReturnIt
| isZeroBitTy (idType fun_id) -> emitReturn []
| otherwise -> emitReturn [fun]
-- A value infered to be in WHNF, so we can just return it.
InferedReturnIt
| isZeroBitTy (idType fun_id) -> trace >> emitReturn []
| otherwise -> trace >> assertTag >>
emitReturn [fun]
where
trace = do
tickyTagged
use_id <- newUnique
_lbl <- emitTickyCounterTag use_id (NonVoid fun_id)
tickyTagSkip use_id fun_id
-- pprTraceM "WHNF:" (ppr fun_id <+> ppr args )
assertTag = whenCheckTags $ do
mod <- getModuleName
emitTagAssertion (showPprUnsafe
(text "TagCheck failed on entry in" <+> ppr mod <+> text "- value:" <> ppr fun_id <+> pprExpr platform fun))
fun
EnterIt -> assert (null args) $ -- Discarding arguments
emitEnter fun
SlowCall -> do -- A slow function call via the RTS apply routines
{ tickySlowCall lf_info args
; emitComment $ mkFastString "slowCall"
; slowCall fun args }
-- A direct function call (possibly with some left-over arguments)
DirectEntry lbl arity -> do
{ tickyDirectCall arity args
; if nodeMustPointToIt profile lf_info
then directCall NativeNodeCall lbl arity (fun_arg:args)
else directCall NativeDirectCall lbl arity args }
-- Let-no-escape call or self-recursive tail-call
JumpToIt blk_id lne_regs -> do
{ adjustHpBackwards -- always do this before a tail-call
; cmm_args <- getNonVoidArgAmodes args
; emitMultiAssign lne_regs cmm_args
; emit (mkBranch blk_id)
; return AssignedDirectly }
-- Note [Self-recursive tail calls]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Self-recursive tail calls can be optimized into a local jump in the same
-- way as let-no-escape bindings (see Note [What is a non-escaping let] in
-- "GHC.CoreToStg"). Consider this:
--
-- foo.info:
-- a = R1 // calling convention
-- b = R2
-- goto L1
-- L1: ...
-- ...
-- ...
-- L2: R1 = x
-- R2 = y
-- call foo(R1,R2)
--
-- Instead of putting x and y into registers (or other locations required by the
-- calling convention) and performing a call we can put them into local
-- variables a and b and perform jump to L1:
--
-- foo.info:
-- a = R1
-- b = R2
-- goto L1
-- L1: ...
-- ...
-- ...
-- L2: a = x
-- b = y
-- goto L1
--
-- This can be done only when function is calling itself in a tail position
-- and only if the call passes number of parameters equal to function's arity.
-- Note that this cannot be performed if a function calls itself with a
-- continuation.
--
-- This in fact implements optimization known as "loopification". It was
-- described in "Low-level code optimizations in the Glasgow Haskell Compiler"
-- by Krzysztof Woś, though we use different approach. Krzysztof performed his
-- optimization at the Cmm level, whereas we perform ours during code generation
-- (Stg-to-Cmm pass) essentially making sure that optimized Cmm code is
-- generated in the first place.
--
-- Implementation is spread across a couple of places in the code:
--
-- * FCode monad stores additional information in its reader environment
-- (stgToCmmSelfLoop field). This information tells us which function can
-- tail call itself in an optimized way (it is the function currently
-- being compiled), what is the label of a loop header (L1 in example above)
-- and information about local registers in which we should arguments
-- before making a call (this would be a and b in example above).
--
-- * Whenever we are compiling a function, we set that information to reflect
-- the fact that function currently being compiled can be jumped to, instead
-- of called. This is done in closureCodyBody in GHC.StgToCmm.Bind.
--
-- * We also have to emit a label to which we will be jumping. We make sure
-- that the label is placed after a stack check but before the heap
-- check. The reason is that making a recursive tail-call does not increase
-- the stack so we only need to check once. But it may grow the heap, so we
-- have to repeat the heap check in every self-call. This is done in
-- do_checks in GHC.StgToCmm.Heap.
--
-- * When we begin compilation of another closure we remove the additional
-- information from the environment. This is done by forkClosureBody
-- in GHC.StgToCmm.Monad. Other functions that duplicate the environment -
-- forkLneBody, forkAlts, codeOnly - duplicate that information. In other
-- words, we only need to clean the environment of the self-loop information
-- when compiling right hand side of a closure (binding).
--
-- * When compiling a call (cgIdApp) we use getCallMethod to decide what kind
-- of call will be generated. getCallMethod decides to generate a self
-- recursive tail call when (a) environment stores information about
-- possible self tail-call; (b) that tail call is to a function currently
-- being compiled; (c) number of passed non-void arguments is equal to
-- function's arity. (d) loopification is turned on via -floopification
-- command-line option.
--
-- * Command line option to turn loopification on and off is implemented in
-- DynFlags, then passed to StgToCmmConfig for this phase.
--
--
-- Note [Void arguments in self-recursive tail calls]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- State# tokens can get in the way of the loopification optimization as seen in
-- #11372. Consider this:
--
-- foo :: [a]
-- -> (a -> State# s -> (# State s, Bool #))
-- -> State# s
-- -> (# State# s, Maybe a #)
-- foo [] f s = (# s, Nothing #)
-- foo (x:xs) f s = case f x s of
-- (# s', b #) -> case b of
-- True -> (# s', Just x #)
-- False -> foo xs f s'
--
-- We would like to compile the call to foo as a local jump instead of a call
-- (see Note [Self-recursive tail calls]). However, the generated function has
-- an arity of 2 while we apply it to 3 arguments, one of them being of void
-- type. Thus, we mustn't count arguments of void type when checking whether
-- we can turn a call into a self-recursive jump.
--
emitEnter :: CmmExpr -> FCode ReturnKind
emitEnter fun = do
{ platform <- getPlatform
; profile <- getProfile
; adjustHpBackwards
; sequel <- getSequel
; updfr_off <- getUpdFrameOff
; align_check <- stgToCmmAlignCheck <$> getStgToCmmConfig
; case sequel of
-- For a return, we have the option of generating a tag-test or
-- not. If the value is tagged, we can return directly, which
-- is quicker than entering the value. This is a code
-- size/speed trade-off: when optimising for speed rather than
-- size we could generate the tag test.
--
-- Right now, we do what the old codegen did, and omit the tag
-- test, just generating an enter.
Return -> do
{ let entry = entryCode platform
$ closureInfoPtr platform align_check
$ CmmReg nodeReg
; emit $ mkJump profile NativeNodeCall entry
[cmmUntag platform fun] updfr_off
; return AssignedDirectly
}
-- The result will be scrutinised in the sequel. This is where
-- we generate a tag-test to avoid entering the closure if
-- possible.
--
-- The generated code will be something like this:
--
-- R1 = fun -- copyout
-- if (fun & 7 != 0) goto Lret else goto Lcall
-- Lcall:
-- call [fun] returns to Lret
-- Lret:
-- fun' = R1 -- copyin
-- ...
--
-- Note in particular that the label Lret is used as a
-- destination by both the tag-test and the call. This is
-- because Lret will necessarily be a proc-point, and we want to
-- ensure that we generate only one proc-point for this
-- sequence.
--
-- Furthermore, we tell the caller that we generated a native
-- return continuation by returning (ReturnedTo Lret off), so
-- that the continuation can be reused by the heap-check failure
-- code in the enclosing case expression.
--
AssignTo res_regs _ -> do
{ lret <- newBlockId
; lcall <- newBlockId
; updfr_off <- getUpdFrameOff
; align_check <- stgToCmmAlignCheck <$> getStgToCmmConfig
; let (off, _, copyin) = copyInOflow profile NativeReturn (Young lret) res_regs []
; let area = Young lret
; let (outArgs, regs, copyout) = copyOutOflow profile NativeNodeCall Call area
[fun] updfr_off []
-- refer to fun via nodeReg after the copyout, to avoid having
-- both live simultaneously; this sometimes enables fun to be
-- inlined in the RHS of the R1 assignment.
; let entry = entryCode platform (closureInfoPtr platform align_check (CmmReg nodeReg))
the_call = toCall entry (Just lret) updfr_off off outArgs regs
; tscope <- getTickScope
; emit $
copyout <*>
mkCbranch (cmmIsTagged platform (CmmReg nodeReg))
lret lcall Nothing <*>
outOfLine lcall (the_call,tscope) <*>
mkLabel lret tscope <*>
copyin
; return (ReturnedTo lret off)
}
}
------------------------------------------------------------------------
-- Ticks
------------------------------------------------------------------------
-- | Generate Cmm code for a tick. Depending on the type of Tickish,
-- this will either generate actual Cmm instrumentation code, or
-- simply pass on the annotation as a @CmmTickish@.
cgTick :: StgTickish -> FCode ()
cgTick tick
= do { platform <- getPlatform
; case tick of
ProfNote cc t p -> emitSetCCC cc t p
HpcTick m n -> emit (mkTickBox platform m n)
SourceNote s n -> emitTick $ SourceNote s n
_other -> return () -- ignore
}
|