1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
|
-----------------------------------------------------------------------------
--
-- Stg to C--: heap management functions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.StgToCmm.Heap (
getVirtHp, setVirtHp, setRealHp,
getHpRelOffset,
entryHeapCheck, altHeapCheck, noEscapeHeapCheck, altHeapCheckReturnsTo,
heapStackCheckGen,
entryHeapCheck',
mkStaticClosureFields, mkStaticClosure,
allocDynClosure, allocDynClosureCmm, allocHeapClosure,
emitSetDynHdr
) where
import GHC.Prelude hiding ((<*>))
import GHC.Stg.Syntax
import GHC.Cmm.CLabel
import GHC.StgToCmm.Layout
import GHC.StgToCmm.Utils
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Prof (profDynAlloc, dynProfHdr, staticProfHdr)
import GHC.StgToCmm.Ticky
import GHC.StgToCmm.Closure
import GHC.Cmm.Graph
import GHC.Cmm.Dataflow.Label
import GHC.Runtime.Heap.Layout
import GHC.Cmm.BlockId
import GHC.Cmm
import GHC.Cmm.Utils
import GHC.Types.CostCentre
import GHC.Types.Id.Info( CafInfo(..), mayHaveCafRefs )
import GHC.Types.Id ( Id )
import GHC.Unit
import GHC.Driver.Session
import GHC.Platform
import GHC.Platform.Profile
import GHC.Data.FastString( mkFastString, fsLit )
import GHC.Utils.Panic( sorry )
import Control.Monad (when)
import Data.Maybe (isJust)
-----------------------------------------------------------
-- Initialise dynamic heap objects
-----------------------------------------------------------
allocDynClosure
:: Maybe Id
-> CmmInfoTable
-> LambdaFormInfo
-> CmmExpr -- Cost Centre to stick in the object
-> CmmExpr -- Cost Centre to blame for this alloc
-- (usually the same; sometimes "OVERHEAD")
-> [(NonVoid StgArg, VirtualHpOffset)] -- Offsets from start of object
-- ie Info ptr has offset zero.
-- No void args in here
-> FCode CmmExpr -- returns Hp+n
allocDynClosureCmm
:: Maybe Id -> CmmInfoTable -> LambdaFormInfo -> CmmExpr -> CmmExpr
-> [(CmmExpr, ByteOff)]
-> FCode CmmExpr -- returns Hp+n
-- allocDynClosure allocates the thing in the heap,
-- and modifies the virtual Hp to account for this.
-- The second return value is the graph that sets the value of the
-- returned LocalReg, which should point to the closure after executing
-- the graph.
-- allocDynClosure returns an (Hp+8) CmmExpr, and hence the result is
-- only valid until Hp is changed. The caller should assign the
-- result to a LocalReg if it is required to remain live.
--
-- The reason we don't assign it to a LocalReg here is that the caller
-- is often about to call regIdInfo, which immediately assigns the
-- result of allocDynClosure to a new temp in order to add the tag.
-- So by not generating a LocalReg here we avoid a common source of
-- new temporaries and save some compile time. This can be quite
-- significant - see test T4801.
allocDynClosure mb_id info_tbl lf_info use_cc _blame_cc args_w_offsets = do
let (args, offsets) = unzip args_w_offsets
cmm_args <- mapM getArgAmode args -- No void args
allocDynClosureCmm mb_id info_tbl lf_info
use_cc _blame_cc (zip cmm_args offsets)
allocDynClosureCmm mb_id info_tbl lf_info use_cc _blame_cc amodes_w_offsets = do
-- SAY WHAT WE ARE ABOUT TO DO
let rep = cit_rep info_tbl
tickyDynAlloc mb_id rep lf_info
let info_ptr = CmmLit (CmmLabel (cit_lbl info_tbl))
allocHeapClosure rep info_ptr use_cc amodes_w_offsets
-- | Low-level heap object allocation.
allocHeapClosure
:: SMRep -- ^ representation of the object
-> CmmExpr -- ^ info pointer
-> CmmExpr -- ^ cost centre
-> [(CmmExpr,ByteOff)] -- ^ payload
-> FCode CmmExpr -- ^ returns the address of the object
allocHeapClosure rep info_ptr use_cc payload = do
profDynAlloc rep use_cc
virt_hp <- getVirtHp
-- Find the offset of the info-ptr word
let info_offset = virt_hp + 1
-- info_offset is the VirtualHpOffset of the first
-- word of the new object
-- Remember, virtHp points to last allocated word,
-- ie 1 *before* the info-ptr word of new object.
base <- getHpRelOffset info_offset
emitComment $ mkFastString "allocHeapClosure"
emitSetDynHdr base info_ptr use_cc
-- Fill in the fields
hpStore base payload
-- Bump the virtual heap pointer
profile <- getProfile
setVirtHp (virt_hp + heapClosureSizeW profile rep)
return base
emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
emitSetDynHdr base info_ptr ccs
= do profile <- getProfile
hpStore base (zip (header profile) [0, profileWordSizeInBytes profile ..])
where
header :: Profile -> [CmmExpr]
header profile = [info_ptr] ++ dynProfHdr profile ccs
-- ToDo: Parallel stuff
-- No ticky header
-- Store the item (expr,off) in base[off]
hpStore :: CmmExpr -> [(CmmExpr, ByteOff)] -> FCode ()
hpStore base vals = do
platform <- getPlatform
sequence_ $
[ emitStore (cmmOffsetB platform base off) val | (val,off) <- vals ]
-----------------------------------------------------------
-- Layout of static closures
-----------------------------------------------------------
-- Make a static closure, adding on any extra padding needed for CAFs,
-- and adding a static link field if necessary.
mkStaticClosureFields
:: Profile
-> CmmInfoTable
-> CostCentreStack
-> CafInfo
-> [CmmLit] -- Payload
-> [CmmLit] -- The full closure
mkStaticClosureFields profile info_tbl ccs caf_refs payload
= mkStaticClosure profile info_lbl ccs payload padding
static_link_field saved_info_field
where
platform = profilePlatform profile
info_lbl = cit_lbl info_tbl
-- CAFs must have consistent layout, regardless of whether they
-- are actually updatable or not. The layout of a CAF is:
--
-- 3 saved_info
-- 2 static_link
-- 1 indirectee
-- 0 info ptr
--
-- the static_link and saved_info fields must always be in the
-- same place. So we use isThunkRep rather than closureUpdReqd
-- here:
is_caf = isThunkRep (cit_rep info_tbl)
padding
| is_caf && null payload = [mkIntCLit platform 0]
| otherwise = []
static_link_field
| is_caf
= [mkIntCLit platform 0]
| staticClosureNeedsLink (mayHaveCafRefs caf_refs) info_tbl
= [static_link_value]
| otherwise
= []
saved_info_field
| is_caf = [mkIntCLit platform 0]
| otherwise = []
-- For a static constructor which has NoCafRefs, we set the
-- static link field to a non-zero value so the garbage
-- collector will ignore it.
static_link_value
| mayHaveCafRefs caf_refs = mkIntCLit platform 0
| otherwise = mkIntCLit platform 3 -- No CAF refs
-- See Note [STATIC_LINK fields]
-- in rts/sm/Storage.h
mkStaticClosure :: Profile -> CLabel -> CostCentreStack -> [CmmLit]
-> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
mkStaticClosure profile info_lbl ccs payload padding static_link_field saved_info_field
= [CmmLabel info_lbl]
++ staticProfHdr profile ccs
++ payload
++ padding
++ static_link_field
++ saved_info_field
-----------------------------------------------------------
-- Heap overflow checking
-----------------------------------------------------------
{- Note [Heap checks]
~~~~~~~~~~~~~~~~~~
Heap checks come in various forms. We provide the following entry
points to the runtime system, all of which use the native C-- entry
convention.
* gc() performs garbage collection and returns
nothing to its caller
* A series of canned entry points like
r = gc_1p( r )
where r is a pointer. This performs gc, and
then returns its argument r to its caller.
* A series of canned entry points like
gcfun_2p( f, x, y )
where f is a function closure of arity 2
This performs garbage collection, keeping alive the
three argument ptrs, and then tail-calls f(x,y)
These are used in the following circumstances
* entryHeapCheck: Function entry
(a) With a canned GC entry sequence
f( f_clo, x:ptr, y:ptr ) {
Hp = Hp+8
if Hp > HpLim goto L
...
L: HpAlloc = 8
jump gcfun_2p( f_clo, x, y ) }
Note the tail call to the garbage collector;
it should do no register shuffling
(b) No canned sequence
f( f_clo, x:ptr, y:ptr, ...etc... ) {
T: Hp = Hp+8
if Hp > HpLim goto L
...
L: HpAlloc = 8
call gc() -- Needs an info table
goto T }
* altHeapCheck: Immediately following an eval
Started as
case f x y of r { (p,q) -> rhs }
(a) With a canned sequence for the results of f
(which is the very common case since
all boxed cases return just one pointer
...
r = f( x, y )
K: -- K needs an info table
Hp = Hp+8
if Hp > HpLim goto L
...code for rhs...
L: r = gc_1p( r )
goto K }
Here, the info table needed by the call
to gc_1p should be the *same* as the
one for the call to f; the C-- optimiser
spots this sharing opportunity)
(b) No canned sequence for results of f
Note second info table
...
(r1,r2,r3) = call f( x, y )
K:
Hp = Hp+8
if Hp > HpLim goto L
...code for rhs...
L: call gc() -- Extra info table here
goto K
* generalHeapCheck: Anywhere else
e.g. entry to thunk
case branch *not* following eval,
or let-no-escape
Exactly the same as the previous case:
K: -- K needs an info table
Hp = Hp+8
if Hp > HpLim goto L
...
L: call gc()
goto K
-}
--------------------------------------------------------------
-- A heap/stack check at a function or thunk entry point.
entryHeapCheck :: ClosureInfo
-> Maybe LocalReg -- Function (closure environment)
-> Int -- Arity -- not same as len args b/c of voids
-> [LocalReg] -- Non-void args (empty for thunk)
-> FCode ()
-> FCode ()
entryHeapCheck cl_info nodeSet arity args code = do
platform <- getPlatform
let
node = case nodeSet of
Just r -> CmmReg (CmmLocal r)
Nothing -> CmmLit (CmmLabel $ staticClosureLabel platform cl_info)
is_fastf = case closureFunInfo cl_info of
Just (_, ArgGen _) -> False
_otherwise -> True
entryHeapCheck' is_fastf node arity args code
-- | lower-level version for "GHC.Cmm.Parser"
entryHeapCheck' :: Bool -- is a known function pattern
-> CmmExpr -- expression for the closure pointer
-> Int -- Arity -- not same as len args b/c of voids
-> [LocalReg] -- Non-void args (empty for thunk)
-> FCode ()
-> FCode ()
entryHeapCheck' is_fastf node arity args code
= do profile <- getProfile
let is_thunk = arity == 0
args' = map (CmmReg . CmmLocal) args
stg_gc_fun = CmmReg (CmmGlobal GCFun)
stg_gc_enter1 = CmmReg (CmmGlobal GCEnter1)
{- Thunks: jump stg_gc_enter_1
Function (fast): call (NativeNode) stg_gc_fun(fun, args)
Function (slow): call (slow) stg_gc_fun(fun, args)
-}
gc_call upd
| is_thunk
= mkJump profile NativeNodeCall stg_gc_enter1 [node] upd
| is_fastf
= mkJump profile NativeNodeCall stg_gc_fun (node : args') upd
| otherwise
= mkJump profile Slow stg_gc_fun (node : args') upd
updfr_sz <- getUpdFrameOff
loop_id <- newBlockId
emitLabel loop_id
heapCheck True True (gc_call updfr_sz <*> mkBranch loop_id) code
-- ------------------------------------------------------------
-- A heap/stack check in a case alternative
-- If there are multiple alts and we need to GC, but don't have a
-- continuation already (the scrut was simple), then we should
-- pre-generate the continuation. (if there are multiple alts it is
-- always a canned GC point).
-- altHeapCheck:
-- If we have a return continuation,
-- then if it is a canned GC pattern,
-- then we do mkJumpReturnsTo
-- else we do a normal call to stg_gc_noregs
-- else if it is a canned GC pattern,
-- then generate the continuation and do mkCallReturnsTo
-- else we do a normal call to stg_gc_noregs
altHeapCheck :: [LocalReg] -> FCode a -> FCode a
altHeapCheck regs code = altOrNoEscapeHeapCheck False regs code
altOrNoEscapeHeapCheck :: Bool -> [LocalReg] -> FCode a -> FCode a
altOrNoEscapeHeapCheck checkYield regs code = do
profile <- getProfile
platform <- getPlatform
case cannedGCEntryPoint platform regs of
Nothing -> genericGC checkYield code
Just gc -> do
lret <- newBlockId
let (off, _, copyin) = copyInOflow profile NativeReturn (Young lret) regs []
lcont <- newBlockId
tscope <- getTickScope
emitOutOfLine lret (copyin <*> mkBranch lcont, tscope)
emitLabel lcont
cannedGCReturnsTo checkYield False gc regs lret off code
altHeapCheckReturnsTo :: [LocalReg] -> Label -> ByteOff -> FCode a -> FCode a
altHeapCheckReturnsTo regs lret off code
= do platform <- getPlatform
case cannedGCEntryPoint platform regs of
Nothing -> genericGC False code
Just gc -> cannedGCReturnsTo False True gc regs lret off code
-- noEscapeHeapCheck is implemented identically to altHeapCheck (which
-- is more efficient), but cannot be optimized away in the non-allocating
-- case because it may occur in a loop
noEscapeHeapCheck :: [LocalReg] -> FCode a -> FCode a
noEscapeHeapCheck regs code = altOrNoEscapeHeapCheck True regs code
cannedGCReturnsTo :: Bool -> Bool -> CmmExpr -> [LocalReg] -> Label -> ByteOff
-> FCode a
-> FCode a
cannedGCReturnsTo checkYield cont_on_stack gc regs lret off code
= do profile <- getProfile
updfr_sz <- getUpdFrameOff
heapCheck False checkYield (gc_call profile gc updfr_sz) code
where
reg_exprs = map (CmmReg . CmmLocal) regs
-- Note [stg_gc arguments]
-- NB. we use the NativeReturn convention for passing arguments
-- to the canned heap-check routines, because we are in a case
-- alternative and hence the [LocalReg] was passed to us in the
-- NativeReturn convention.
gc_call profile label sp
| cont_on_stack
= mkJumpReturnsTo profile label NativeReturn reg_exprs lret off sp
| otherwise
= mkCallReturnsTo profile label NativeReturn reg_exprs lret off sp []
genericGC :: Bool -> FCode a -> FCode a
genericGC checkYield code
= do updfr_sz <- getUpdFrameOff
lretry <- newBlockId
emitLabel lretry
call <- mkCall generic_gc (GC, GC) [] [] updfr_sz []
heapCheck False checkYield (call <*> mkBranch lretry) code
cannedGCEntryPoint :: Platform -> [LocalReg] -> Maybe CmmExpr
cannedGCEntryPoint platform regs
= case map localRegType regs of
[] -> Just (mkGcLabel "stg_gc_noregs")
[ty]
| isGcPtrType ty -> Just (mkGcLabel "stg_gc_unpt_r1")
| isFloatType ty -> case width of
W32 -> Just (mkGcLabel "stg_gc_f1")
W64 -> Just (mkGcLabel "stg_gc_d1")
_ -> Nothing
| width == wordWidth platform -> Just (mkGcLabel "stg_gc_unbx_r1")
| width == W64 -> Just (mkGcLabel "stg_gc_l1")
| otherwise -> Nothing
where
width = typeWidth ty
[ty1,ty2]
| isGcPtrType ty1
&& isGcPtrType ty2 -> Just (mkGcLabel "stg_gc_pp")
[ty1,ty2,ty3]
| isGcPtrType ty1
&& isGcPtrType ty2
&& isGcPtrType ty3 -> Just (mkGcLabel "stg_gc_ppp")
[ty1,ty2,ty3,ty4]
| isGcPtrType ty1
&& isGcPtrType ty2
&& isGcPtrType ty3
&& isGcPtrType ty4 -> Just (mkGcLabel "stg_gc_pppp")
_otherwise -> Nothing
-- Note [stg_gc arguments]
-- It might seem that we could avoid passing the arguments to the
-- stg_gc function, because they are already in the right registers.
-- While this is usually the case, it isn't always. Sometimes the
-- code generator has cleverly avoided the eval in a case, e.g. in
-- ffi/should_run/4221.hs we found
--
-- case a_r1mb of z
-- FunPtr x y -> ...
--
-- where a_r1mb is bound a top-level constructor, and is known to be
-- evaluated. The codegen just assigns x, y and z, and continues;
-- R1 is never assigned.
--
-- So we'll have to rely on optimisations to eliminatethese
-- assignments where possible.
-- | The generic GC procedure; no params, no results
generic_gc :: CmmExpr
generic_gc = mkGcLabel "stg_gc_noregs"
-- | Create a CLabel for calling a garbage collector entry point
mkGcLabel :: String -> CmmExpr
mkGcLabel s = CmmLit (CmmLabel (mkCmmCodeLabel rtsUnitId (fsLit s)))
-------------------------------
heapCheck :: Bool -> Bool -> CmmAGraph -> FCode a -> FCode a
heapCheck checkStack checkYield do_gc code
= getHeapUsage $ \ hpHw ->
-- Emit heap checks, but be sure to do it lazily so
-- that the conditionals on hpHw don't cause a black hole
do { platform <- getPlatform
; let mb_alloc_bytes
| hpHw > mBLOCK_SIZE = sorry $ unlines
[" Trying to allocate more than "++show mBLOCK_SIZE++" bytes.",
"",
"This is currently not possible due to a limitation of GHC's code generator.",
"See https://gitlab.haskell.org/ghc/ghc/issues/4505 for details.",
"Suggestion: read data from a file instead of having large static data",
"structures in code."]
| hpHw > 0 = Just (mkIntExpr platform (hpHw * (platformWordSizeInBytes platform)))
| otherwise = Nothing
where
constants = platformConstants platform
bLOCK_SIZE_W = pc_BLOCK_SIZE (platformConstants platform) `quot` platformWordSizeInBytes platform
mBLOCK_SIZE = pc_BLOCKS_PER_MBLOCK constants * bLOCK_SIZE_W
stk_hwm | checkStack = Just (CmmLit CmmHighStackMark)
| otherwise = Nothing
; codeOnly $ do_checks stk_hwm checkYield mb_alloc_bytes do_gc
; tickyAllocHeap True hpHw
; setRealHp hpHw
; code }
heapStackCheckGen :: Maybe CmmExpr -> Maybe CmmExpr -> FCode ()
heapStackCheckGen stk_hwm mb_bytes
= do updfr_sz <- getUpdFrameOff
lretry <- newBlockId
emitLabel lretry
call <- mkCall generic_gc (GC, GC) [] [] updfr_sz []
do_checks stk_hwm False mb_bytes (call <*> mkBranch lretry)
-- Note [Single stack check]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~
-- When compiling a function we can determine how much stack space it
-- will use. We therefore need to perform only a single stack check at
-- the beginning of a function to see if we have enough stack space.
--
-- The check boils down to comparing Sp-N with SpLim, where N is the
-- amount of stack space needed (see Note [Stack usage] below). *BUT*
-- at this stage of the pipeline we are not supposed to refer to Sp
-- itself, because the stack is not yet manifest, so we don't quite
-- know where Sp pointing.
-- So instead of referring directly to Sp - as we used to do in the
-- past - the code generator uses (old + 0) in the stack check. That
-- is the address of the first word of the old area, so if we add N
-- we'll get the address of highest used word.
--
-- This makes the check robust. For example, while we need to perform
-- only one stack check for each function, we could in theory place
-- more stack checks later in the function. They would be redundant,
-- but not incorrect (in a sense that they should not change program
-- behaviour). We need to make sure however that a stack check
-- inserted after incrementing the stack pointer checks for a
-- respectively smaller stack space. This would not be the case if the
-- code generator produced direct references to Sp. By referencing
-- (old + 0) we make sure that we always check for a correct amount of
-- stack: when converting (old + 0) to Sp the stack layout phase takes
-- into account changes already made to stack pointer. The idea for
-- this change came from observations made while debugging #8275.
-- Note [Stack usage]
-- ~~~~~~~~~~~~~~~~~~
-- At the moment we convert from STG to Cmm we don't know N, the
-- number of bytes of stack that the function will use, so we use a
-- special late-bound CmmLit, namely
-- CmmHighStackMark
-- to stand for the number of bytes needed. When the stack is made
-- manifest, the number of bytes needed is calculated, and used to
-- replace occurrences of CmmHighStackMark
--
-- The (Maybe CmmExpr) passed to do_checks is usually
-- Just (CmmLit CmmHighStackMark)
-- but can also (in certain hand-written RTS functions)
-- Just (CmmLit 8) or some other fixed valuet
-- If it is Nothing, we don't generate a stack check at all.
do_checks :: Maybe CmmExpr -- Should we check the stack?
-- See Note [Stack usage]
-> Bool -- Should we check for preemption?
-> Maybe CmmExpr -- Heap headroom (bytes)
-> CmmAGraph -- What to do on failure
-> FCode ()
do_checks mb_stk_hwm checkYield mb_alloc_lit do_gc = do
dflags <- getDynFlags
platform <- getPlatform
gc_id <- newBlockId
let
Just alloc_lit = mb_alloc_lit
bump_hp = cmmOffsetExprB platform hpExpr alloc_lit
-- Sp overflow if ((old + 0) - CmmHighStack < SpLim)
-- At the beginning of a function old + 0 = Sp
-- See Note [Single stack check]
sp_oflo sp_hwm =
CmmMachOp (mo_wordULt platform)
[CmmMachOp (MO_Sub (typeWidth (cmmRegType platform spReg)))
[CmmStackSlot Old 0, sp_hwm],
CmmReg spLimReg]
-- Hp overflow if (Hp > HpLim)
-- (Hp has been incremented by now)
-- HpLim points to the LAST WORD of valid allocation space.
hp_oflo = CmmMachOp (mo_wordUGt platform) [hpExpr, hpLimExpr]
alloc_n = mkAssign hpAllocReg alloc_lit
case mb_stk_hwm of
Nothing -> return ()
Just stk_hwm -> tickyStackCheck
>> (emit =<< mkCmmIfGoto' (sp_oflo stk_hwm) gc_id (Just False) )
-- Emit new label that might potentially be a header
-- of a self-recursive tail call.
-- See Note [Self-recursive loop header].
self_loop_info <- getSelfLoop
case self_loop_info of
Just (_, loop_header_id, _)
| checkYield && isJust mb_stk_hwm -> emitLabel loop_header_id
_otherwise -> return ()
if (isJust mb_alloc_lit)
then do
tickyHeapCheck
emitAssign hpReg bump_hp
emit =<< mkCmmIfThen' hp_oflo (alloc_n <*> mkBranch gc_id) (Just False)
else
when (checkYield && not (gopt Opt_OmitYields dflags)) $ do
-- Yielding if HpLim == 0
let yielding = CmmMachOp (mo_wordEq platform)
[CmmReg hpLimReg,
CmmLit (zeroCLit platform)]
emit =<< mkCmmIfGoto' yielding gc_id (Just False)
tscope <- getTickScope
emitOutOfLine gc_id
(do_gc, tscope) -- this is expected to jump back somewhere
-- Test for stack pointer exhaustion, then
-- bump heap pointer, and test for heap exhaustion
-- Note that we don't move the heap pointer unless the
-- stack check succeeds. Otherwise we might end up
-- with slop at the end of the current block, which can
-- confuse the LDV profiler.
-- Note [Self-recursive loop header]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Self-recursive loop header is required by loopification optimization (See
-- Note [Self-recursive tail calls] in GHC.StgToCmm.Expr). We emit it if:
--
-- 1. There is information about self-loop in the FCode environment. We don't
-- check the binder (first component of the self_loop_info) because we are
-- certain that if the self-loop info is present then we are compiling the
-- binder body. Reason: the only possible way to get here with the
-- self_loop_info present is from closureCodeBody.
--
-- 2. checkYield && isJust mb_stk_hwm. checkYield tells us that it is possible
-- to preempt the heap check (see #367 for motivation behind this check). It
-- is True for heap checks placed at the entry to a function and
-- let-no-escape heap checks but false for other heap checks (eg. in case
-- alternatives or created from hand-written high-level Cmm). The second
-- check (isJust mb_stk_hwm) is true for heap checks at the entry to a
-- function and some heap checks created in hand-written Cmm. Otherwise it
-- is Nothing. In other words the only situation when both conditions are
-- true is when compiling stack and heap checks at the entry to a
-- function. This is the only situation when we want to emit a self-loop
-- label.
|