1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
-----------------------------------------------------------------------------
--
-- Code generator utilities; mostly monadic
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
module GHC.StgToCmm.Utils (
cgLit, mkSimpleLit,
emitDataLits, emitRODataLits,
emitDataCon,
emitRtsCall, emitRtsCallWithResult, emitRtsCallGen,
assignTemp, newTemp,
newUnboxedTupleRegs,
emitMultiAssign, emitCmmLitSwitch, emitSwitch,
tagToClosure, mkTaggedObjectLoad,
callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr,
callerSaveGlobalReg, callerRestoreGlobalReg,
cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
cmmUGtWord, cmmSubWord, cmmMulWord, cmmAddWord, cmmUShrWord,
cmmOffsetExprW, cmmOffsetExprB,
cmmRegOffW, cmmRegOffB,
cmmLabelOffW, cmmLabelOffB,
cmmOffsetW, cmmOffsetB,
cmmOffsetLitW, cmmOffsetLitB,
cmmLoadIndexW,
cmmConstrTag1,
cmmUntag, cmmIsTagged,
addToMem, addToMemE, addToMemLblE, addToMemLbl,
newStringCLit, newByteStringCLit,
-- * Update remembered set operations
whenUpdRemSetEnabled,
emitUpdRemSetPush,
emitUpdRemSetPushThunk,
convertInfoProvMap, cmmInfoTableToInfoProvEnt
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Platform
import GHC.StgToCmm.Monad
import GHC.StgToCmm.Closure
import GHC.Cmm
import GHC.Cmm.BlockId
import GHC.Cmm.Graph as CmmGraph
import GHC.Platform.Regs
import GHC.Cmm.CLabel
import GHC.Cmm.Utils
import GHC.Cmm.Switch
import GHC.StgToCmm.CgUtils
import GHC.Types.ForeignCall
import GHC.Types.Id.Info
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Runtime.Heap.Layout
import GHC.Unit
import GHC.Types.Literal
import GHC.Data.Graph.Directed
import GHC.Utils.Misc
import GHC.Types.Unique
import GHC.Types.Unique.Supply (MonadUnique(..))
import GHC.Driver.Session
import GHC.Data.FastString
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Types.RepType
import GHC.Types.CostCentre
import GHC.Types.IPE
import Data.ByteString (ByteString)
import qualified Data.ByteString.Char8 as BS8
import qualified Data.Map as M
import Data.Char
import Data.List (sortBy)
import Data.Ord
import GHC.Types.Unique.Map
import Data.Maybe
import GHC.Driver.Ppr
import qualified Data.List.NonEmpty as NE
import GHC.Core.DataCon
import GHC.Types.Unique.FM
import GHC.Data.Maybe
import Control.Monad
-------------------------------------------------------------------------
--
-- Literals
--
-------------------------------------------------------------------------
cgLit :: Literal -> FCode CmmLit
cgLit (LitString s) = newByteStringCLit s
-- not unpackFS; we want the UTF-8 byte stream.
cgLit other_lit = do platform <- getPlatform
return (mkSimpleLit platform other_lit)
mkSimpleLit :: Platform -> Literal -> CmmLit
mkSimpleLit platform = \case
(LitChar c) -> CmmInt (fromIntegral (ord c))
(wordWidth platform)
LitNullAddr -> zeroCLit platform
(LitNumber LitNumInt i) -> CmmInt i (wordWidth platform)
(LitNumber LitNumInt8 i) -> CmmInt i W8
(LitNumber LitNumInt16 i) -> CmmInt i W16
(LitNumber LitNumInt32 i) -> CmmInt i W32
(LitNumber LitNumInt64 i) -> CmmInt i W64
(LitNumber LitNumWord i) -> CmmInt i (wordWidth platform)
(LitNumber LitNumWord8 i) -> CmmInt i W8
(LitNumber LitNumWord16 i) -> CmmInt i W16
(LitNumber LitNumWord32 i) -> CmmInt i W32
(LitNumber LitNumWord64 i) -> CmmInt i W64
(LitFloat r) -> CmmFloat r W32
(LitDouble r) -> CmmFloat r W64
(LitLabel fs ms fod)
-> let -- TODO: Literal labels might not actually be in the current package...
labelSrc = ForeignLabelInThisPackage
in CmmLabel (mkForeignLabel fs ms labelSrc fod)
-- NB: LitRubbish should have been lowered in "CoreToStg"
other -> pprPanic "mkSimpleLit" (ppr other)
--------------------------------------------------------------------------
--
-- Incrementing a memory location
--
--------------------------------------------------------------------------
addToMemLbl :: CmmType -> CLabel -> Int -> CmmAGraph
addToMemLbl rep lbl n = addToMem rep (CmmLit (CmmLabel lbl)) n
addToMemLblE :: CmmType -> CLabel -> CmmExpr -> CmmAGraph
addToMemLblE rep lbl = addToMemE rep (CmmLit (CmmLabel lbl))
addToMem :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> Int -- What to add (a word)
-> CmmAGraph
addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) (typeWidth rep)))
addToMemE :: CmmType -- rep of the counter
-> CmmExpr -- Address
-> CmmExpr -- What to add (a word-typed expression)
-> CmmAGraph
addToMemE rep ptr n
= mkStore ptr (CmmMachOp (MO_Add (typeWidth rep)) [CmmLoad ptr rep, n])
-------------------------------------------------------------------------
--
-- Loading a field from an object,
-- where the object pointer is itself tagged
--
-------------------------------------------------------------------------
mkTaggedObjectLoad
:: Platform -> LocalReg -> LocalReg -> ByteOff -> DynTag -> CmmAGraph
-- (loadTaggedObjectField reg base off tag) generates assignment
-- reg = bitsK[ base + off - tag ]
-- where K is fixed by 'reg'
mkTaggedObjectLoad platform reg base offset tag
= mkAssign (CmmLocal reg)
(CmmLoad (cmmOffsetB platform
(CmmReg (CmmLocal base))
(offset - tag))
(localRegType reg))
-------------------------------------------------------------------------
--
-- Converting a closure tag to a closure for enumeration types
-- (this is the implementation of tagToEnum#).
--
-------------------------------------------------------------------------
tagToClosure :: Platform -> TyCon -> CmmExpr -> CmmExpr
tagToClosure platform tycon tag
= CmmLoad (cmmOffsetExprW platform closure_tbl tag) (bWord platform)
where closure_tbl = CmmLit (CmmLabel lbl)
lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs
-------------------------------------------------------------------------
--
-- Conditionals and rts calls
--
-------------------------------------------------------------------------
emitRtsCall :: UnitId -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCall pkg fun args safe = emitRtsCallGen [] (mkCmmCodeLabel pkg fun) args safe
emitRtsCallWithResult :: LocalReg -> ForeignHint -> UnitId -> FastString
-> [(CmmExpr,ForeignHint)] -> Bool -> FCode ()
emitRtsCallWithResult res hint pkg fun args safe
= emitRtsCallGen [(res,hint)] (mkCmmCodeLabel pkg fun) args safe
-- Make a call to an RTS C procedure
emitRtsCallGen
:: [(LocalReg,ForeignHint)]
-> CLabel
-> [(CmmExpr,ForeignHint)]
-> Bool -- True <=> CmmSafe call
-> FCode ()
emitRtsCallGen res lbl args safe
= do { platform <- targetPlatform <$> getDynFlags
; updfr_off <- getUpdFrameOff
; let (caller_save, caller_load) = callerSaveVolatileRegs platform
; emit caller_save
; call updfr_off
; emit caller_load }
where
call updfr_off =
if safe then
emit =<< mkCmmCall fun_expr res' args' updfr_off
else do
let conv = ForeignConvention CCallConv arg_hints res_hints CmmMayReturn
emit $ mkUnsafeCall (ForeignTarget fun_expr conv) res' args'
(args', arg_hints) = unzip args
(res', res_hints) = unzip res
fun_expr = mkLblExpr lbl
-----------------------------------------------------------------------------
--
-- Caller-Save Registers
--
-----------------------------------------------------------------------------
-- Here we generate the sequence of saves/restores required around a
-- foreign call instruction.
-- TODO: reconcile with includes/Regs.h
-- * Regs.h claims that BaseReg should be saved last and loaded first
-- * This might not have been tickled before since BaseReg is callee save
-- * Regs.h saves SparkHd, ParkT1, SparkBase and SparkLim
--
-- This code isn't actually used right now, because callerSaves
-- only ever returns true in the current universe for registers NOT in
-- system_regs (just do a grep for CALLER_SAVES in
-- includes/stg/MachRegs.h). It's all one giant no-op, and for
-- good reason: having to save system registers on every foreign call
-- would be very expensive, so we avoid assigning them to those
-- registers when we add support for an architecture.
--
-- Note that the old code generator actually does more work here: it
-- also saves other global registers. We can't (nor want) to do that
-- here, as we don't have liveness information. And really, we
-- shouldn't be doing the workaround at this point in the pipeline, see
-- Note [Register parameter passing] and the ToDo on CmmCall in
-- "GHC.Cmm.Node". Right now the workaround is to avoid inlining across
-- unsafe foreign calls in GHC.Cmm.Sink, but this is strictly
-- temporary.
callerSaveVolatileRegs :: Platform -> (CmmAGraph, CmmAGraph)
callerSaveVolatileRegs platform = (caller_save, caller_load)
where
caller_save = catAGraphs (map (callerSaveGlobalReg platform) regs_to_save)
caller_load = catAGraphs (map (callerRestoreGlobalReg platform) regs_to_save)
system_regs = [ Sp,SpLim,Hp,HpLim,CCCS,CurrentTSO,CurrentNursery
{- ,SparkHd,SparkTl,SparkBase,SparkLim -}
, BaseReg ]
regs_to_save = filter (callerSaves platform) system_regs
callerSaveGlobalReg :: Platform -> GlobalReg -> CmmAGraph
callerSaveGlobalReg platform reg
= mkStore (get_GlobalReg_addr platform reg) (CmmReg (CmmGlobal reg))
callerRestoreGlobalReg :: Platform -> GlobalReg -> CmmAGraph
callerRestoreGlobalReg platform reg
= mkAssign (CmmGlobal reg)
(CmmLoad (get_GlobalReg_addr platform reg) (globalRegType platform reg))
-------------------------------------------------------------------------
--
-- Strings generate a top-level data block
--
-------------------------------------------------------------------------
-- | Emit a data-segment data block
emitDataLits :: CLabel -> [CmmLit] -> FCode ()
emitDataLits lbl lits = emitDecl (mkDataLits (Section Data lbl) lbl lits)
-- | Emit a read-only data block
emitRODataLits :: CLabel -> [CmmLit] -> FCode ()
emitRODataLits lbl lits = emitDecl (mkRODataLits lbl lits)
emitDataCon :: CLabel -> CmmInfoTable -> CostCentreStack -> [CmmLit] -> FCode ()
emitDataCon lbl itbl ccs payload =
emitDecl (CmmData (Section Data lbl) (CmmStatics lbl itbl ccs payload))
newStringCLit :: String -> FCode CmmLit
-- Make a global definition for the string,
-- and return its label
newStringCLit str = newByteStringCLit (BS8.pack str)
newByteStringCLit :: ByteString -> FCode CmmLit
newByteStringCLit bytes
= do { uniq <- newUnique
; let (lit, decl) = mkByteStringCLit (mkStringLitLabel uniq) bytes
; emitDecl decl
; return lit }
-------------------------------------------------------------------------
--
-- Assigning expressions to temporaries
--
-------------------------------------------------------------------------
assignTemp :: CmmExpr -> FCode LocalReg
-- Make sure the argument is in a local register.
-- We don't bother being particularly aggressive with avoiding
-- unnecessary local registers, since we can rely on a later
-- optimization pass to inline as necessary (and skipping out
-- on things like global registers can be a little dangerous
-- due to them being trashed on foreign calls--though it means
-- the optimization pass doesn't have to do as much work)
assignTemp (CmmReg (CmmLocal reg)) = return reg
assignTemp e = do { platform <- getPlatform
; uniq <- newUnique
; let reg = LocalReg uniq (cmmExprType platform e)
; emitAssign (CmmLocal reg) e
; return reg }
newTemp :: MonadUnique m => CmmType -> m LocalReg
newTemp rep = do { uniq <- getUniqueM
; return (LocalReg uniq rep) }
newUnboxedTupleRegs :: Type -> FCode ([LocalReg], [ForeignHint])
-- Choose suitable local regs to use for the components
-- of an unboxed tuple that we are about to return to
-- the Sequel. If the Sequel is a join point, using the
-- regs it wants will save later assignments.
newUnboxedTupleRegs res_ty
= ASSERT( isUnboxedTupleType res_ty )
do { platform <- getPlatform
; sequel <- getSequel
; regs <- choose_regs platform sequel
; ASSERT( regs `equalLength` reps )
return (regs, map primRepForeignHint reps) }
where
reps = typePrimRep res_ty
choose_regs _ (AssignTo regs _) = return regs
choose_regs platform _ = mapM (newTemp . primRepCmmType platform) reps
-------------------------------------------------------------------------
-- emitMultiAssign
-------------------------------------------------------------------------
emitMultiAssign :: [LocalReg] -> [CmmExpr] -> FCode ()
-- Emit code to perform the assignments in the
-- input simultaneously, using temporary variables when necessary.
type Key = Int
type Vrtx = (Key, Stmt) -- Give each vertex a unique number,
-- for fast comparison
type Stmt = (LocalReg, CmmExpr) -- r := e
-- We use the strongly-connected component algorithm, in which
-- * the vertices are the statements
-- * an edge goes from s1 to s2 iff
-- s1 assigns to something s2 uses
-- that is, if s1 should *follow* s2 in the final order
emitMultiAssign [] [] = return ()
emitMultiAssign [reg] [rhs] = emitAssign (CmmLocal reg) rhs
emitMultiAssign regs rhss = do
platform <- getPlatform
ASSERT2( equalLength regs rhss, ppr regs $$ pdoc platform rhss )
unscramble platform ([1..] `zip` (regs `zip` rhss))
unscramble :: Platform -> [Vrtx] -> FCode ()
unscramble platform vertices = mapM_ do_component components
where
edges :: [ Node Key Vrtx ]
edges = [ DigraphNode vertex key1 (edges_from stmt1)
| vertex@(key1, stmt1) <- vertices ]
edges_from :: Stmt -> [Key]
edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices,
stmt1 `mustFollow` stmt2 ]
components :: [SCC Vrtx]
components = stronglyConnCompFromEdgedVerticesUniq edges
-- do_components deal with one strongly-connected component
-- Not cyclic, or singleton? Just do it
do_component :: SCC Vrtx -> FCode ()
do_component (AcyclicSCC (_,stmt)) = mk_graph stmt
do_component (CyclicSCC []) = panic "do_component"
do_component (CyclicSCC [(_,stmt)]) = mk_graph stmt
-- Cyclic? Then go via temporaries. Pick one to
-- break the loop and try again with the rest.
do_component (CyclicSCC ((_,first_stmt) : rest)) = do
u <- newUnique
let (to_tmp, from_tmp) = split u first_stmt
mk_graph to_tmp
unscramble platform rest
mk_graph from_tmp
split :: Unique -> Stmt -> (Stmt, Stmt)
split uniq (reg, rhs)
= ((tmp, rhs), (reg, CmmReg (CmmLocal tmp)))
where
rep = cmmExprType platform rhs
tmp = LocalReg uniq rep
mk_graph :: Stmt -> FCode ()
mk_graph (reg, rhs) = emitAssign (CmmLocal reg) rhs
mustFollow :: Stmt -> Stmt -> Bool
(reg, _) `mustFollow` (_, rhs) = regUsedIn platform (CmmLocal reg) rhs
-------------------------------------------------------------------------
-- mkSwitch
-------------------------------------------------------------------------
emitSwitch :: CmmExpr -- Tag to switch on
-> [(ConTagZ, CmmAGraphScoped)] -- Tagged branches
-> Maybe CmmAGraphScoped -- Default branch (if any)
-> ConTagZ -> ConTagZ -- Min and Max possible values;
-- behaviour outside this range is
-- undefined
-> FCode ()
-- First, two rather common cases in which there is no work to do
emitSwitch _ [] (Just code) _ _ = emit (fst code)
emitSwitch _ [(_,code)] Nothing _ _ = emit (fst code)
-- Right, off we go
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag = do
join_lbl <- newBlockId
mb_deflt_lbl <- label_default join_lbl mb_deflt
branches_lbls <- label_branches join_lbl branches
tag_expr' <- assignTemp' tag_expr
-- Sort the branches before calling mk_discrete_switch
let branches_lbls' = [ (fromIntegral i, l) | (i,l) <- sortBy (comparing fst) branches_lbls ]
let range = (fromIntegral lo_tag, fromIntegral hi_tag)
emit $ mk_discrete_switch False tag_expr' branches_lbls' mb_deflt_lbl range
emitLabel join_lbl
mk_discrete_switch :: Bool -- ^ Use signed comparisons
-> CmmExpr
-> [(Integer, BlockId)]
-> Maybe BlockId
-> (Integer, Integer)
-> CmmAGraph
-- SINGLETON TAG RANGE: no case analysis to do
mk_discrete_switch _ _tag_expr [(tag, lbl)] _ (lo_tag, hi_tag)
| lo_tag == hi_tag
= ASSERT( tag == lo_tag )
mkBranch lbl
-- SINGLETON BRANCH, NO DEFAULT: no case analysis to do
mk_discrete_switch _ _tag_expr [(_tag,lbl)] Nothing _
= mkBranch lbl
-- The simplifier might have eliminated a case
-- so we may have e.g. case xs of
-- [] -> e
-- In that situation we can be sure the (:) case
-- can't happen, so no need to test
-- SOMETHING MORE COMPLICATED: defer to GHC.Cmm.Switch.Implement
-- See Note [Cmm Switches, the general plan] in GHC.Cmm.Switch
mk_discrete_switch signed tag_expr branches mb_deflt range
= mkSwitch tag_expr $ mkSwitchTargets signed range mb_deflt (M.fromList branches)
divideBranches :: Ord a => [(a,b)] -> ([(a,b)], a, [(a,b)])
divideBranches branches = (lo_branches, mid, hi_branches)
where
-- 2 branches => n_branches `div` 2 = 1
-- => branches !! 1 give the *second* tag
-- There are always at least 2 branches here
(mid,_) = branches !! (length branches `div` 2)
(lo_branches, hi_branches) = span is_lo branches
is_lo (t,_) = t < mid
--------------
emitCmmLitSwitch :: CmmExpr -- Tag to switch on
-> [(Literal, CmmAGraphScoped)] -- Tagged branches
-> CmmAGraphScoped -- Default branch (always)
-> FCode () -- Emit the code
emitCmmLitSwitch _scrut [] deflt = emit $ fst deflt
emitCmmLitSwitch scrut branches deflt = do
scrut' <- assignTemp' scrut
join_lbl <- newBlockId
deflt_lbl <- label_code join_lbl deflt
branches_lbls <- label_branches join_lbl branches
platform <- getPlatform
let cmm_ty = cmmExprType platform scrut
rep = typeWidth cmm_ty
-- We find the necessary type information in the literals in the branches
let signed = case head branches of
(LitNumber nt _, _) -> litNumIsSigned nt
_ -> False
let range | signed = (platformMinInt platform, platformMaxInt platform)
| otherwise = (0, platformMaxWord platform)
if isFloatType cmm_ty
then emit =<< mk_float_switch rep scrut' deflt_lbl noBound branches_lbls
else emit $ mk_discrete_switch
signed
scrut'
[(litValue lit,l) | (lit,l) <- branches_lbls]
(Just deflt_lbl)
range
emitLabel join_lbl
-- | lower bound (inclusive), upper bound (exclusive)
type LitBound = (Maybe Literal, Maybe Literal)
noBound :: LitBound
noBound = (Nothing, Nothing)
mk_float_switch :: Width -> CmmExpr -> BlockId
-> LitBound
-> [(Literal,BlockId)]
-> FCode CmmAGraph
mk_float_switch rep scrut deflt _bounds [(lit,blk)]
= do platform <- getPlatform
return $ mkCbranch (cond platform) deflt blk Nothing
where
cond platform = CmmMachOp ne [scrut, CmmLit cmm_lit]
where
cmm_lit = mkSimpleLit platform lit
ne = MO_F_Ne rep
mk_float_switch rep scrut deflt_blk_id (lo_bound, hi_bound) branches
= do platform <- getPlatform
lo_blk <- mk_float_switch rep scrut deflt_blk_id bounds_lo lo_branches
hi_blk <- mk_float_switch rep scrut deflt_blk_id bounds_hi hi_branches
mkCmmIfThenElse (cond platform) lo_blk hi_blk
where
(lo_branches, mid_lit, hi_branches) = divideBranches branches
bounds_lo = (lo_bound, Just mid_lit)
bounds_hi = (Just mid_lit, hi_bound)
cond platform = CmmMachOp lt [scrut, CmmLit cmm_lit]
where
cmm_lit = mkSimpleLit platform mid_lit
lt = MO_F_Lt rep
--------------
label_default :: BlockId -> Maybe CmmAGraphScoped -> FCode (Maybe BlockId)
label_default _ Nothing
= return Nothing
label_default join_lbl (Just code)
= do lbl <- label_code join_lbl code
return (Just lbl)
--------------
label_branches :: BlockId -> [(a,CmmAGraphScoped)] -> FCode [(a,BlockId)]
label_branches _join_lbl []
= return []
label_branches join_lbl ((tag,code):branches)
= do lbl <- label_code join_lbl code
branches' <- label_branches join_lbl branches
return ((tag,lbl):branches')
--------------
label_code :: BlockId -> CmmAGraphScoped -> FCode BlockId
-- label_code J code
-- generates
-- [L: code; goto J]
-- and returns L
label_code join_lbl (code,tsc) = do
lbl <- newBlockId
emitOutOfLine lbl (code CmmGraph.<*> mkBranch join_lbl, tsc)
return lbl
--------------
assignTemp' :: CmmExpr -> FCode CmmExpr
assignTemp' e
| isTrivialCmmExpr e = return e
| otherwise = do
platform <- getPlatform
lreg <- newTemp (cmmExprType platform e)
let reg = CmmLocal lreg
emitAssign reg e
return (CmmReg reg)
---------------------------------------------------------------------------
-- Pushing to the update remembered set
---------------------------------------------------------------------------
whenUpdRemSetEnabled :: FCode a -> FCode ()
whenUpdRemSetEnabled code = do
platform <- getPlatform
do_it <- getCode code
let
enabled = CmmLoad (CmmLit $ CmmLabel mkNonmovingWriteBarrierEnabledLabel) (bWord platform)
zero = zeroExpr platform
is_enabled = cmmNeWord platform enabled zero
the_if <- mkCmmIfThenElse' is_enabled do_it mkNop (Just False)
emit the_if
-- | Emit code to add an entry to a now-overwritten pointer to the update
-- remembered set.
emitUpdRemSetPush :: CmmExpr -- ^ value of pointer which was overwritten
-> FCode ()
emitUpdRemSetPush ptr =
emitRtsCall
rtsUnitId
(fsLit "updateRemembSetPushClosure_")
[(CmmReg (CmmGlobal BaseReg), AddrHint),
(ptr, AddrHint)]
False
emitUpdRemSetPushThunk :: CmmExpr -- ^ the thunk
-> FCode ()
emitUpdRemSetPushThunk ptr =
emitRtsCall
rtsUnitId
(fsLit "updateRemembSetPushThunk_")
[(CmmReg (CmmGlobal BaseReg), AddrHint),
(ptr, AddrHint)]
False
-- | A bare bones InfoProvEnt for things which don't have a good source location
cmmInfoTableToInfoProvEnt :: Module -> CmmInfoTable -> InfoProvEnt
cmmInfoTableToInfoProvEnt this_mod cmit =
let cl = cit_lbl cmit
cn = rtsClosureType (cit_rep cmit)
in InfoProvEnt cl cn "" this_mod Nothing
-- | Convert source information collected about identifiers in 'GHC.STG.Debug'
-- to entries suitable for placing into the info table provenenance table.
convertInfoProvMap :: DynFlags -> [CmmInfoTable] -> Module -> InfoTableProvMap -> [InfoProvEnt]
convertInfoProvMap dflags defns this_mod (InfoTableProvMap (UniqMap dcenv) denv) =
map (\cmit ->
let cl = cit_lbl cmit
cn = rtsClosureType (cit_rep cmit)
tyString :: Outputable a => a -> String
tyString t = showPpr dflags t
lookupClosureMap :: Maybe InfoProvEnt
lookupClosureMap = case hasHaskellName cl >>= lookupUniqMap denv of
Just (ty, mbspan) -> Just (InfoProvEnt cl cn (tyString ty) this_mod mbspan)
Nothing -> Nothing
lookupDataConMap = do
UsageSite _ n <- hasIdLabelInfo cl >>= getConInfoTableLocation
-- This is a bit grimy, relies on the DataCon and Name having the same Unique, which they do
(dc, ns) <- (hasHaskellName cl >>= lookupUFM_Directly dcenv . getUnique)
-- Lookup is linear but lists will be small (< 100)
return $ InfoProvEnt cl cn (tyString (dataConTyCon dc)) this_mod (join $ lookup n (NE.toList ns))
-- This catches things like prim closure types and anything else which doesn't have a
-- source location
simpleFallback = cmmInfoTableToInfoProvEnt this_mod cmit
in fromMaybe simpleFallback (lookupDataConMap `firstJust` lookupClosureMap)) defns
|