1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
module GHC.StgToJS
( stgToJS
)
where
import GHC.StgToJS.CodeGen
-- Note [StgToJS design]
-- ~~~~~~~~~~~~~~~~~~~~~
--
-- StgToJS ("JS backend") is adapted from GHCJS [GHCJS2013].
--
-- Haskell to JavaScript
-- ~~~~~~~~~~~~~~~~~~~~~
-- StgToJS converts STG into a JavaScript AST (in GHC.JS) that has been adapted
-- from JMacro [JMacro].
--
-- Tail calls: translated code is tail call optimized through a trampoline,
-- since JavaScript implementations don't always support tail calls.
--
-- JavaScript ASTs are then optimized. A dataflow analysis is performed and then
-- dead code and redundant assignments are removed.
--
-- Primitives
-- ~~~~~~~~~~
-- Haskell primitives have to be represented as JavaScript values. This is done
-- as follows:
--
-- - Int#/Int32# -> number in Int32 range
-- - Int16# -> number in Int16 range
-- - Int8# -> number in Int8 range
-- - Word#/Word32# -> number in Word32 range
-- - Word16# -> number in Word16 range
-- - Word8# -> number in Word8 range
--
-- - Float#/Double# -> both represented as Javascript Double (no Float!)
--
-- - Int64# -> represented with two fields:
-- high -> number in Int32 range
-- low -> number in Word32 range
-- - Word64# -> represented with two fields: high, low
-- high -> number in Word32 range
-- low -> number in Word32 range
--
-- - Addr# -> represented with two fields: array (used as a namespace) and index
-- - StablePtr# -> similar to Addr# with array fixed to h$stablePtrBuf
--
-- - JSVal# -> any Javascript object (used to pass JS objects via FFI)
--
-- - TVar#, MVar#, etc. are represented with JS objects
--
-- Foreign JavaScript imports
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
-- StgToJS supports inline JavaScript code. Example:
--
-- > foreign import javascript unsafe
-- > "((x,y) => x + y)"
-- > plus :: Int -> Int -> Int
--
-- Currently the JS backend only supports functions as JS imports.
--
-- In comparison, GHCJS supports JavaScript snippets with $1, $2... variables
-- as placeholders for the arguments. It requires a JavaScript parser that the
-- JS backend lacks. In GHCJS, the parser is inherited from JMacro and supports
-- local variable declarations, loops, etc. Local variables are converted to
-- hygienic names to avoid capture.
--
-- Primitives that are represented as multiple values (Int64#, Word64#, Addr#)
-- are passed to FFI functions with multiple arguments.
--
-- Interruptible convention: FFI imports with the "interruptible" calling
-- convention are passed an extra argument (usually named "$c") that is a
-- continuation function. The FFI function must call this function to return to
-- Haskell code.
--
-- Unboxed tuples: returning an unboxed tuple can be done with the predefined
-- macros RETURN_UBX_TUPn where n is the size of the tuples. Internally it uses
-- predefined "h$retN" global variables to pass additional values; the first
-- element of the tuple is returned normally.
--
-- Memory management
-- ~~~~~~~~~~~~~~~~~
-- Heap objects are represented as JavaScript values.
--
-- Most heap objects are represented generically as JavaScript "objects" (hash
-- maps). However, some Haskell heap objects can use use a more memory efficient
-- JavaScript representation: number, string... An example of a consequence of
-- this is that both Int# and Int are represented the same as a JavaScript
-- number. JavaScript introspection (e.g. typeof) is used to differentiate
-- heap object representations when necessary.
--
-- Generic representation: objects on the heap ("closures") are represented as
-- JavaScript objects with the following fields:
--
-- { f -- (function) entry function + info table
-- , d1 -- two fields of payload
-- , d2
-- , m -- GC mark
-- , cc -- optional cost-center
-- }
--
-- Payload: payload only consists of two fields (d1, d2). When more than two
-- fields of payload are required, the second field is itself an object.
-- payload [] ==> { d1 = null, d2 = null }
-- payload [a] ==> { d1 = a , d2 = null }
-- payload [a,b] ==> { d1 = a , d2 = b }
-- payload [a,b,c] ==> { d1 = a , d2 = { d1 = b, d2 = c} }
-- payload [a,b,c...] ==> { d1 = a , d2 = { d1 = b, d2 = c, ...} }
--
-- Entry function/ info tables: JavaScript functions are JavaScript objects. If
-- "f" is a function, we can:
-- - call it, e.g. "f(arg0,arg1...)"
-- - get/set its fields, e.g. "f.xyz = abc"
-- This is used to implement the equivalent of tables-next-to-code in
-- JavaScript: every heap object has an entry function "f" that also contains
-- some metadata (info table) about the Haskell object:
-- { t -- object type
-- , size -- number of fields in the payload (-1 if variable layout)
-- , i -- (array) fields layout (empty if variable layout)
-- , n -- (string) object name for easier dubugging
-- , a -- constructor tag / fun arity
-- , r -- ??
-- , s -- static references?
-- , m -- GC mark?
-- }
--
-- Payloads for each kind of heap object:
--
-- THUNK =
-- { f = returns the object reduced to WHNF
-- , m = ?
-- , d1 = ?
-- , d2 = ?
-- }
--
-- FUN =
-- { f = function itself
-- , m = ?
-- , d1 = free variable 1
-- , d2 = free variable 2
-- }
--
-- There are two different kinds of partial application:
-- - pap_r : pre-generated PAP that contains r registers
-- - pap_gen : generic PAP, contains any number of registers
--
-- PAP =
-- { f = ?
-- , m = ?
-- , d1 = function
-- , d2 =
-- { d1 & 0xff = number of args (PAP arity)
-- , d1 >> 8 = number of registers (r for h$pap_r)
-- , d2, d3... = args (r)
-- }
-- }
--
-- CON =
-- { f = entry function of the datacon worker
-- , m = 0
-- , d1 = first arg
-- , d2 = arity = 2: second arg
-- arity > 2: { d1, d2, ...} object with remaining args (starts with "d1 = x2"!)
-- }
--
-- BLACKHOLE =
-- { f = h$blackhole
-- , m = ?
-- , d1 = owning TSO
-- , d2 = waiters array
-- }
--
-- StackFrame closures are *not* represented as JS objects. Instead they are
-- "unpacked" in the stack, i.e. a stack frame occupies a few slots in the JS
-- array representing the stack ("h$stack").
--
-- When a shared thunk is entered, it is overriden with a black hole ("eager
-- blackholing") and an update frame is pushed on the stack.
--
-- Stack: the Haskell stack is implemented with a dynamically growing JavaScript
-- array ("h$stack").
-- TODO: does it shrink sometimes?
-- TODO: what are the elements of the stack? one JS object per stack frame?
--
--
-- Interaction with JavaScript's garbage collector
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Using JS objects to represent Haskell heap objects means that JS's GC does
-- most of the memory management work.
--
-- However, GHC extends Haskell with features that rely on GC layer violation
-- (weak references, finalizers, etc.). To support these features, a heap scan
-- is can be performed (using TSOs, StablePtr, etc. as roots) to mark reachable
-- objects. Scanning the heap is an expensive operation, but fortunately it
-- doesn't need to happen too often and it can be disabled.
--
-- TODO: importance of eager blackholing
--
-- Concurrency
-- ~~~~~~~~~~~
-- The scheduler is implemented in JS and runs in a single JavaScript thread
-- (similarly to the C RTS not using `-threaded`).
--
-- The scheduler relies on callbacks/continuations to interact with other JS
-- codes (user interface, etc.). In particular, safe foreign import can use "$c"
-- as a continuation function to return to Haskell code.
--
-- TODO: is this still true since 2013 or are we using more recent JS features now?
-- TODO: synchronous threads
--
--
-- REFERENCES
-- * [GHCJS2013] "Demo Proposal: GHCJS, Concurrent Haskell in the Browser", Luite Stegeman,
-- 2013 (https://www.haskell.org/haskell-symposium/2013/ghcjs.pdf)
-- * [JMacro] https://hackage.haskell.org/package/jmacro
|