1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
|
{-
%
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Generating derived instance declarations
--
-- This module is nominally ``subordinate'' to "GHC.Tc.Deriv", which is the
-- ``official'' interface to deriving-related things.
--
-- This is where we do all the grimy bindings' generation.
module GHC.Tc.Deriv.Generate (
BagDerivStuff, DerivStuff(..),
gen_Eq_binds,
gen_Ord_binds,
gen_Enum_binds,
gen_Bounded_binds,
gen_Ix_binds,
gen_Show_binds,
gen_Read_binds,
gen_Data_binds,
gen_Lift_binds,
gen_Newtype_binds,
mkCoerceClassMethEqn,
genAuxBinds,
ordOpTbl, boxConTbl, litConTbl,
mkRdrFunBind, mkRdrFunBindEC, mkRdrFunBindSE, error_Expr,
getPossibleDataCons, tyConInstArgTys
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Tc.Utils.Monad
import GHC.Hs
import GHC.Types.Name.Reader
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Core.DataCon
import GHC.Types.Name
import GHC.Types.SourceText
import GHC.Driver.Session
import GHC.Builtin.Utils
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Builtin.Names
import GHC.Builtin.Names.TH
import GHC.Types.Id.Make ( coerceId )
import GHC.Builtin.PrimOps
import GHC.Types.SrcLoc
import GHC.Core.TyCon
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcType
import GHC.Tc.Validity ( checkValidCoAxBranch )
import GHC.Core.Coercion.Axiom ( coAxiomSingleBranch )
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.Class
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Misc
import GHC.Types.Var
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Lexeme
import GHC.Data.FastString
import GHC.Data.Pair
import GHC.Data.Bag
import Data.List ( find, partition, intersperse )
type BagDerivStuff = Bag DerivStuff
-- | A declarative description of an auxiliary binding that should be
-- generated. See @Note [Auxiliary binders]@ for a more detailed description
-- of how these are used.
data AuxBindSpec
-- DerivTag2Con, and DerivMaxTag are used in derived Eq, Ord,
-- Enum, and Ix instances.
-- All these generate ZERO-BASED tag operations
-- I.e first constructor has tag 0
-- | @$tag2con@: Given a tag, computes the corresponding data constructor
= DerivTag2Con
TyCon -- The type constructor of the data type to which the
-- constructors belong
RdrName -- The to-be-generated $tag2con binding's RdrName
-- | @$maxtag@: The maximum possible tag value among a data type's
-- constructors
| DerivMaxTag
TyCon -- The type constructor of the data type to which the
-- constructors belong
RdrName -- The to-be-generated $maxtag binding's RdrName
-- DerivDataDataType and DerivDataConstr are only used in derived Data
-- instances
-- | @$t@: The @DataType@ representation for a @Data@ instance
| DerivDataDataType
TyCon -- The type constructor of the data type to be represented
RdrName -- The to-be-generated $t binding's RdrName
[RdrName] -- The RdrNames of the to-be-generated $c bindings for each
-- data constructor. These are only used on the RHS of the
-- to-be-generated $t binding.
-- | @$c@: The @Constr@ representation for a @Data@ instance
| DerivDataConstr
DataCon -- The data constructor to be represented
RdrName -- The to-be-generated $c binding's RdrName
RdrName -- The RdrName of the to-be-generated $t binding for the parent
-- data type. This is only used on the RHS of the
-- to-be-generated $c binding.
-- | Retrieve the 'RdrName' of the binding that the supplied 'AuxBindSpec'
-- describes.
auxBindSpecRdrName :: AuxBindSpec -> RdrName
auxBindSpecRdrName (DerivTag2Con _ tag2con_RDR) = tag2con_RDR
auxBindSpecRdrName (DerivMaxTag _ maxtag_RDR) = maxtag_RDR
auxBindSpecRdrName (DerivDataDataType _ dataT_RDR _) = dataT_RDR
auxBindSpecRdrName (DerivDataConstr _ dataC_RDR _) = dataC_RDR
data DerivStuff -- Please add this auxiliary stuff
= DerivAuxBind AuxBindSpec
-- ^ A new, top-level auxiliary binding. Used for deriving 'Eq', 'Ord',
-- 'Enum', 'Ix', and 'Data'. See Note [Auxiliary binders].
-- Generics and DeriveAnyClass
| DerivFamInst FamInst -- New type family instances
-- ^ A new type family instance. Used for:
--
-- * @DeriveGeneric@, which generates instances of @Rep(1)@
--
-- * @DeriveAnyClass@, which can fill in associated type family defaults
--
-- * @GeneralizedNewtypeDeriving@, which generates instances of associated
-- type families for newtypes
{-
************************************************************************
* *
Eq instances
* *
************************************************************************
Here are the heuristics for the code we generate for @Eq@. Let's
assume we have a data type with some (possibly zero) nullary data
constructors and some ordinary, non-nullary ones (the rest, also
possibly zero of them). Here's an example, with both \tr{N}ullary and
\tr{O}rdinary data cons.
data Foo ... = N1 | N2 ... | Nn | O1 a b | O2 Int | O3 Double b b | ...
* For the ordinary constructors (if any), we emit clauses to do The
Usual Thing, e.g.,:
(==) (O1 a1 b1) (O1 a2 b2) = a1 == a2 && b1 == b2
(==) (O2 a1) (O2 a2) = a1 == a2
(==) (O3 a1 b1 c1) (O3 a2 b2 c2) = a1 == a2 && b1 == b2 && c1 == c2
Note: if we're comparing unlifted things, e.g., if 'a1' and
'a2' are Float#s, then we have to generate
case (a1 `eqFloat#` a2) of r -> r
for that particular test.
* For nullary constructors, we emit a
catch-all clause of the form:
(==) a b = case (dataToTag# a) of { a# ->
case (dataToTag# b) of { b# ->
case (a# ==# b#) of {
r -> r }}}
An older approach preferred regular pattern matches in some cases
but with dataToTag# forcing it's argument, and work on improving
join points, this seems no longer necessary.
* If there aren't any nullary constructors, we emit a simpler
catch-all:
(==) a b = False
* For the @(/=)@ method, we normally just use the default method.
If the type is an enumeration type, we could/may/should? generate
special code that calls @dataToTag#@, much like for @(==)@ shown
above.
We thought about doing this: If we're also deriving 'Ord' for this
tycon, we generate:
instance ... Eq (Foo ...) where
(==) a b = case (compare a b) of { _LT -> False; _EQ -> True ; _GT -> False}
(/=) a b = case (compare a b) of { _LT -> True ; _EQ -> False; _GT -> True }
However, that requires that (Ord <whatever>) was put in the context
for the instance decl, which it probably wasn't, so the decls
produced don't get through the typechecker.
-}
gen_Eq_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Eq_binds loc tycon tycon_args = do
return (method_binds, emptyBag)
where
all_cons = getPossibleDataCons tycon tycon_args
(nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon all_cons
-- For nullary constructors, use the getTag stuff.
(tag_match_cons, pat_match_cons) = (nullary_cons, non_nullary_cons)
no_tag_match_cons = null tag_match_cons
-- (LHS patterns, result)
fall_through_eqn :: [([Located (Pat (GhcPass 'Parsed))] , LHsExpr GhcPs)]
fall_through_eqn
| no_tag_match_cons -- All constructors have arguments
= case pat_match_cons of
[] -> [] -- No constructors; no fall-though case
[_] -> [] -- One constructor; no fall-though case
_ -> -- Two or more constructors; add fall-through of
-- (==) _ _ = False
[([nlWildPat, nlWildPat], false_Expr)]
| otherwise -- One or more tag_match cons; add fall-through of
-- extract tags compare for equality,
-- The case `(C1 x) == (C1 y)` can no longer happen
-- at this point as it's matched earlier.
= [([a_Pat, b_Pat],
untag_Expr [(a_RDR,ah_RDR), (b_RDR,bh_RDR)]
(genPrimOpApp (nlHsVar ah_RDR) eqInt_RDR (nlHsVar bh_RDR)))]
method_binds = unitBag eq_bind
eq_bind
= mkFunBindEC 2 loc eq_RDR (const true_Expr)
(map pats_etc pat_match_cons
++ fall_through_eqn)
------------------------------------------------------------------
pats_etc data_con
= let
con1_pat = nlParPat $ nlConVarPat data_con_RDR as_needed
con2_pat = nlParPat $ nlConVarPat data_con_RDR bs_needed
data_con_RDR = getRdrName data_con
con_arity = length tys_needed
as_needed = take con_arity as_RDRs
bs_needed = take con_arity bs_RDRs
tys_needed = dataConOrigArgTys data_con
in
([con1_pat, con2_pat], nested_eq_expr (map scaledThing tys_needed) as_needed bs_needed)
where
nested_eq_expr [] [] [] = true_Expr
nested_eq_expr tys as bs
= foldr1 and_Expr (zipWith3Equal "nested_eq" nested_eq tys as bs)
-- Using 'foldr1' here ensures that the derived code is correctly
-- associated. See #10859.
where
nested_eq ty a b = nlHsPar (eq_Expr ty (nlHsVar a) (nlHsVar b))
{-
************************************************************************
* *
Ord instances
* *
************************************************************************
Note [Generating Ord instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose constructors are K1..Kn, and some are nullary.
The general form we generate is:
* Do case on first argument
case a of
K1 ... -> rhs_1
K2 ... -> rhs_2
...
Kn ... -> rhs_n
_ -> nullary_rhs
* To make rhs_i
If i = 1, 2, n-1, n, generate a single case.
rhs_2 case b of
K1 {} -> LT
K2 ... -> ...eq_rhs(K2)...
_ -> GT
Otherwise do a tag compare against the bigger range
(because this is the one most likely to succeed)
rhs_3 case tag b of tb ->
if 3 <# tg then GT
else case b of
K3 ... -> ...eq_rhs(K3)....
_ -> LT
* To make eq_rhs(K), which knows that
a = K a1 .. av
b = K b1 .. bv
we just want to compare (a1,b1) then (a2,b2) etc.
Take care on the last field to tail-call into comparing av,bv
* To make nullary_rhs generate this
case dataToTag# a of a# ->
case dataToTag# b of ->
a# `compare` b#
Several special cases:
* Two or fewer nullary constructors: don't generate nullary_rhs
* Be careful about unlifted comparisons. When comparing unboxed
values we can't call the overloaded functions.
See function unliftedOrdOp
Note [Game plan for deriving Ord]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's a bad idea to define only 'compare', and build the other binary
comparisons on top of it; see #2130, #4019. Reason: we don't
want to laboriously make a three-way comparison, only to extract a
binary result, something like this:
(>) (I# x) (I# y) = case <# x y of
True -> False
False -> case ==# x y of
True -> False
False -> True
This being said, we can get away with generating full code only for
'compare' and '<' thus saving us generation of other three operators.
Other operators can be cheaply expressed through '<':
a <= b = not $ b < a
a > b = b < a
a >= b = not $ a < b
So for sufficiently small types (few constructors, or all nullary)
we generate all methods; for large ones we just use 'compare'.
-}
data OrdOp = OrdCompare | OrdLT | OrdLE | OrdGE | OrdGT
------------
ordMethRdr :: OrdOp -> RdrName
ordMethRdr op
= case op of
OrdCompare -> compare_RDR
OrdLT -> lt_RDR
OrdLE -> le_RDR
OrdGE -> ge_RDR
OrdGT -> gt_RDR
------------
ltResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a<b, what is the result for a `op` b?
ltResult OrdCompare = ltTag_Expr
ltResult OrdLT = true_Expr
ltResult OrdLE = true_Expr
ltResult OrdGE = false_Expr
ltResult OrdGT = false_Expr
------------
eqResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a=b, what is the result for a `op` b?
eqResult OrdCompare = eqTag_Expr
eqResult OrdLT = false_Expr
eqResult OrdLE = true_Expr
eqResult OrdGE = true_Expr
eqResult OrdGT = false_Expr
------------
gtResult :: OrdOp -> LHsExpr GhcPs
-- Knowing a>b, what is the result for a `op` b?
gtResult OrdCompare = gtTag_Expr
gtResult OrdLT = false_Expr
gtResult OrdLE = false_Expr
gtResult OrdGE = true_Expr
gtResult OrdGT = true_Expr
------------
gen_Ord_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Ord_binds loc tycon tycon_args = do
return $ if null tycon_data_cons -- No data-cons => invoke bale-out case
then ( unitBag $ mkFunBindEC 2 loc compare_RDR (const eqTag_Expr) []
, emptyBag)
else ( unitBag (mkOrdOp OrdCompare)
`unionBags` other_ops
, aux_binds)
where
aux_binds = emptyBag
-- Note [Game plan for deriving Ord]
other_ops
| (last_tag - first_tag) <= 2 -- 1-3 constructors
|| null non_nullary_cons -- Or it's an enumeration
= listToBag [mkOrdOp OrdLT, lE, gT, gE]
| otherwise
= emptyBag
negate_expr = nlHsApp (nlHsVar not_RDR)
lE = mkSimpleGeneratedFunBind loc le_RDR [a_Pat, b_Pat] $
negate_expr (nlHsApp (nlHsApp (nlHsVar lt_RDR) b_Expr) a_Expr)
gT = mkSimpleGeneratedFunBind loc gt_RDR [a_Pat, b_Pat] $
nlHsApp (nlHsApp (nlHsVar lt_RDR) b_Expr) a_Expr
gE = mkSimpleGeneratedFunBind loc ge_RDR [a_Pat, b_Pat] $
negate_expr (nlHsApp (nlHsApp (nlHsVar lt_RDR) a_Expr) b_Expr)
get_tag con = dataConTag con - fIRST_TAG
-- We want *zero-based* tags, because that's what
-- con2Tag returns (generated by untag_Expr)!
tycon_data_cons = getPossibleDataCons tycon tycon_args
single_con_type = isSingleton tycon_data_cons
(first_con : _) = tycon_data_cons
(last_con : _) = reverse tycon_data_cons
first_tag = get_tag first_con
last_tag = get_tag last_con
(nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon tycon_data_cons
mkOrdOp :: OrdOp -> LHsBind GhcPs
-- Returns a binding op a b = ... compares a and b according to op ....
mkOrdOp op
= mkSimpleGeneratedFunBind loc (ordMethRdr op) [a_Pat, b_Pat]
(mkOrdOpRhs op)
mkOrdOpRhs :: OrdOp -> LHsExpr GhcPs
mkOrdOpRhs op -- RHS for comparing 'a' and 'b' according to op
| nullary_cons `lengthAtMost` 2 -- Two nullary or fewer, so use cases
= nlHsCase (nlHsVar a_RDR) $
map (mkOrdOpAlt op) tycon_data_cons
-- i.e. case a of { C1 x y -> case b of C1 x y -> ....compare x,y...
-- C2 x -> case b of C2 x -> ....comopare x.... }
| null non_nullary_cons -- All nullary, so go straight to comparing tags
= mkTagCmp op
| otherwise -- Mixed nullary and non-nullary
= nlHsCase (nlHsVar a_RDR) $
(map (mkOrdOpAlt op) non_nullary_cons
++ [mkHsCaseAlt nlWildPat (mkTagCmp op)])
mkOrdOpAlt :: OrdOp -> DataCon
-> LMatch GhcPs (LHsExpr GhcPs)
-- Make the alternative (Ki a1 a2 .. av ->
mkOrdOpAlt op data_con
= mkHsCaseAlt (nlConVarPat data_con_RDR as_needed)
(mkInnerRhs op data_con)
where
as_needed = take (dataConSourceArity data_con) as_RDRs
data_con_RDR = getRdrName data_con
mkInnerRhs op data_con
| single_con_type
= nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con ]
| tag == first_tag
= nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (ltResult op) ]
| tag == last_tag
= nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (gtResult op) ]
| tag == first_tag + 1
= nlHsCase (nlHsVar b_RDR) [ mkHsCaseAlt (nlConWildPat first_con)
(gtResult op)
, mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (ltResult op) ]
| tag == last_tag - 1
= nlHsCase (nlHsVar b_RDR) [ mkHsCaseAlt (nlConWildPat last_con)
(ltResult op)
, mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (gtResult op) ]
| tag > last_tag `div` 2 -- lower range is larger
= untag_Expr [(b_RDR, bh_RDR)] $
nlHsIf (genPrimOpApp (nlHsVar bh_RDR) ltInt_RDR tag_lit)
(gtResult op) $ -- Definitely GT
nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (ltResult op) ]
| otherwise -- upper range is larger
= untag_Expr [(b_RDR, bh_RDR)] $
nlHsIf (genPrimOpApp (nlHsVar bh_RDR) gtInt_RDR tag_lit)
(ltResult op) $ -- Definitely LT
nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
, mkHsCaseAlt nlWildPat (gtResult op) ]
where
tag = get_tag data_con
tag_lit = noLoc (HsLit noExtField (HsIntPrim NoSourceText (toInteger tag)))
mkInnerEqAlt :: OrdOp -> DataCon -> LMatch GhcPs (LHsExpr GhcPs)
-- First argument 'a' known to be built with K
-- Returns a case alternative Ki b1 b2 ... bv -> compare (a1,a2,...) with (b1,b2,...)
mkInnerEqAlt op data_con
= mkHsCaseAlt (nlConVarPat data_con_RDR bs_needed) $
mkCompareFields op (map scaledThing $ dataConOrigArgTys data_con)
where
data_con_RDR = getRdrName data_con
bs_needed = take (dataConSourceArity data_con) bs_RDRs
mkTagCmp :: OrdOp -> LHsExpr GhcPs
-- Both constructors known to be nullary
-- generates (case data2Tag a of a# -> case data2Tag b of b# -> a# `op` b#
mkTagCmp op =
untag_Expr [(a_RDR, ah_RDR),(b_RDR, bh_RDR)] $
unliftedOrdOp intPrimTy op ah_RDR bh_RDR
mkCompareFields :: OrdOp -> [Type] -> LHsExpr GhcPs
-- Generates nested comparisons for (a1,a2...) against (b1,b2,...)
-- where the ai,bi have the given types
mkCompareFields op tys
= go tys as_RDRs bs_RDRs
where
go [] _ _ = eqResult op
go [ty] (a:_) (b:_)
| isUnliftedType ty = unliftedOrdOp ty op a b
| otherwise = genOpApp (nlHsVar a) (ordMethRdr op) (nlHsVar b)
go (ty:tys) (a:as) (b:bs) = mk_compare ty a b
(ltResult op)
(go tys as bs)
(gtResult op)
go _ _ _ = panic "mkCompareFields"
-- (mk_compare ty a b) generates
-- (case (compare a b) of { LT -> <lt>; EQ -> <eq>; GT -> <bt> })
-- but with suitable special cases for
mk_compare ty a b lt eq gt
| isUnliftedType ty
= unliftedCompare lt_op eq_op a_expr b_expr lt eq gt
| otherwise
= nlHsCase (nlHsPar (nlHsApp (nlHsApp (nlHsVar compare_RDR) a_expr) b_expr))
[mkHsCaseAlt (nlNullaryConPat ltTag_RDR) lt,
mkHsCaseAlt (nlNullaryConPat eqTag_RDR) eq,
mkHsCaseAlt (nlNullaryConPat gtTag_RDR) gt]
where
a_expr = nlHsVar a
b_expr = nlHsVar b
(lt_op, _, eq_op, _, _) = primOrdOps "Ord" ty
unliftedOrdOp :: Type -> OrdOp -> RdrName -> RdrName -> LHsExpr GhcPs
unliftedOrdOp ty op a b
= case op of
OrdCompare -> unliftedCompare lt_op eq_op a_expr b_expr
ltTag_Expr eqTag_Expr gtTag_Expr
OrdLT -> wrap lt_op
OrdLE -> wrap le_op
OrdGE -> wrap ge_op
OrdGT -> wrap gt_op
where
(lt_op, le_op, eq_op, ge_op, gt_op) = primOrdOps "Ord" ty
wrap prim_op = genPrimOpApp a_expr prim_op b_expr
a_expr = nlHsVar a
b_expr = nlHsVar b
unliftedCompare :: RdrName -> RdrName
-> LHsExpr GhcPs -> LHsExpr GhcPs -- What to compare
-> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
-- Three results
-> LHsExpr GhcPs
-- Return (if a < b then lt else if a == b then eq else gt)
unliftedCompare lt_op eq_op a_expr b_expr lt eq gt
= nlHsIf (ascribeBool $ genPrimOpApp a_expr lt_op b_expr) lt $
-- Test (<) first, not (==), because the latter
-- is true less often, so putting it first would
-- mean more tests (dynamically)
nlHsIf (ascribeBool $ genPrimOpApp a_expr eq_op b_expr) eq gt
where
ascribeBool e = noLoc $ ExprWithTySig noExtField e
$ mkHsWildCardBndrs $ noLoc $ mkHsImplicitSigType
$ nlHsTyVar boolTyCon_RDR
nlConWildPat :: DataCon -> LPat GhcPs
-- The pattern (K {})
nlConWildPat con = noLoc $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLoc $ getRdrName con
, pat_args = RecCon $ HsRecFields
{ rec_flds = []
, rec_dotdot = Nothing }
}
{-
************************************************************************
* *
Enum instances
* *
************************************************************************
@Enum@ can only be derived for enumeration types. For a type
\begin{verbatim}
data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}
we use both dataToTag# and @tag2con_Foo@ functions, as well as a
@maxtag_Foo@ variable, the later generated by @gen_tag_n_con_binds.
\begin{verbatim}
instance ... Enum (Foo ...) where
succ x = toEnum (1 + fromEnum x)
pred x = toEnum (fromEnum x - 1)
toEnum i = tag2con_Foo i
enumFrom a = map tag2con_Foo [dataToTag# a .. maxtag_Foo]
-- or, really...
enumFrom a
= case dataToTag# a of
a# -> map tag2con_Foo (enumFromTo (I# a#) maxtag_Foo)
enumFromThen a b
= map tag2con_Foo [dataToTag# a, dataToTag# b .. maxtag_Foo]
-- or, really...
enumFromThen a b
= case dataToTag# a of { a# ->
case dataToTag# b of { b# ->
map tag2con_Foo (enumFromThenTo (I# a#) (I# b#) maxtag_Foo)
}}
\end{verbatim}
For @enumFromTo@ and @enumFromThenTo@, we use the default methods.
-}
gen_Enum_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Enum_binds loc tycon _ = do
-- See Note [Auxiliary binders]
tag2con_RDR <- new_tag2con_rdr_name loc tycon
maxtag_RDR <- new_maxtag_rdr_name loc tycon
return ( method_binds tag2con_RDR maxtag_RDR
, aux_binds tag2con_RDR maxtag_RDR )
where
method_binds tag2con_RDR maxtag_RDR = listToBag
[ succ_enum tag2con_RDR maxtag_RDR
, pred_enum tag2con_RDR
, to_enum tag2con_RDR maxtag_RDR
, enum_from tag2con_RDR maxtag_RDR -- [0 ..]
, enum_from_then tag2con_RDR maxtag_RDR -- [0, 1 ..]
, from_enum
]
aux_binds tag2con_RDR maxtag_RDR = listToBag $ map DerivAuxBind
[ DerivTag2Con tycon tag2con_RDR
, DerivMaxTag tycon maxtag_RDR
]
occ_nm = getOccString tycon
succ_enum tag2con_RDR maxtag_RDR
= mkSimpleGeneratedFunBind loc succ_RDR [a_Pat] $
untag_Expr [(a_RDR, ah_RDR)] $
nlHsIf (nlHsApps eq_RDR [nlHsVar maxtag_RDR,
nlHsVarApps intDataCon_RDR [ah_RDR]])
(illegal_Expr "succ" occ_nm "tried to take `succ' of last tag in enumeration")
(nlHsApp (nlHsVar tag2con_RDR)
(nlHsApps plus_RDR [nlHsVarApps intDataCon_RDR [ah_RDR],
nlHsIntLit 1]))
pred_enum tag2con_RDR
= mkSimpleGeneratedFunBind loc pred_RDR [a_Pat] $
untag_Expr [(a_RDR, ah_RDR)] $
nlHsIf (nlHsApps eq_RDR [nlHsIntLit 0,
nlHsVarApps intDataCon_RDR [ah_RDR]])
(illegal_Expr "pred" occ_nm "tried to take `pred' of first tag in enumeration")
(nlHsApp (nlHsVar tag2con_RDR)
(nlHsApps plus_RDR
[ nlHsVarApps intDataCon_RDR [ah_RDR]
, nlHsLit (HsInt noExtField
(mkIntegralLit (-1 :: Int)))]))
to_enum tag2con_RDR maxtag_RDR
= mkSimpleGeneratedFunBind loc toEnum_RDR [a_Pat] $
nlHsIf (nlHsApps and_RDR
[nlHsApps ge_RDR [nlHsVar a_RDR, nlHsIntLit 0],
nlHsApps le_RDR [ nlHsVar a_RDR
, nlHsVar maxtag_RDR]])
(nlHsVarApps tag2con_RDR [a_RDR])
(illegal_toEnum_tag occ_nm maxtag_RDR)
enum_from tag2con_RDR maxtag_RDR
= mkSimpleGeneratedFunBind loc enumFrom_RDR [a_Pat] $
untag_Expr [(a_RDR, ah_RDR)] $
nlHsApps map_RDR
[nlHsVar tag2con_RDR,
nlHsPar (enum_from_to_Expr
(nlHsVarApps intDataCon_RDR [ah_RDR])
(nlHsVar maxtag_RDR))]
enum_from_then tag2con_RDR maxtag_RDR
= mkSimpleGeneratedFunBind loc enumFromThen_RDR [a_Pat, b_Pat] $
untag_Expr [(a_RDR, ah_RDR), (b_RDR, bh_RDR)] $
nlHsApp (nlHsVarApps map_RDR [tag2con_RDR]) $
nlHsPar (enum_from_then_to_Expr
(nlHsVarApps intDataCon_RDR [ah_RDR])
(nlHsVarApps intDataCon_RDR [bh_RDR])
(nlHsIf (nlHsApps gt_RDR [nlHsVarApps intDataCon_RDR [ah_RDR],
nlHsVarApps intDataCon_RDR [bh_RDR]])
(nlHsIntLit 0)
(nlHsVar maxtag_RDR)
))
from_enum
= mkSimpleGeneratedFunBind loc fromEnum_RDR [a_Pat] $
untag_Expr [(a_RDR, ah_RDR)] $
(nlHsVarApps intDataCon_RDR [ah_RDR])
{-
************************************************************************
* *
Bounded instances
* *
************************************************************************
-}
gen_Bounded_binds :: SrcSpan -> TyCon -> [Type] -> (LHsBinds GhcPs, BagDerivStuff)
gen_Bounded_binds loc tycon _
| isEnumerationTyCon tycon
= (listToBag [ min_bound_enum, max_bound_enum ], emptyBag)
| otherwise
= ASSERT(isSingleton data_cons)
(listToBag [ min_bound_1con, max_bound_1con ], emptyBag)
where
data_cons = tyConDataCons tycon
----- enum-flavored: ---------------------------
min_bound_enum = mkHsVarBind loc minBound_RDR (nlHsVar data_con_1_RDR)
max_bound_enum = mkHsVarBind loc maxBound_RDR (nlHsVar data_con_N_RDR)
data_con_1 = head data_cons
data_con_N = last data_cons
data_con_1_RDR = getRdrName data_con_1
data_con_N_RDR = getRdrName data_con_N
----- single-constructor-flavored: -------------
arity = dataConSourceArity data_con_1
min_bound_1con = mkHsVarBind loc minBound_RDR $
nlHsVarApps data_con_1_RDR (replicate arity minBound_RDR)
max_bound_1con = mkHsVarBind loc maxBound_RDR $
nlHsVarApps data_con_1_RDR (replicate arity maxBound_RDR)
{-
************************************************************************
* *
Ix instances
* *
************************************************************************
Deriving @Ix@ is only possible for enumeration types and
single-constructor types. We deal with them in turn.
For an enumeration type, e.g.,
\begin{verbatim}
data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}
things go not too differently from @Enum@:
\begin{verbatim}
instance ... Ix (Foo ...) where
range (a, b)
= map tag2con_Foo [dataToTag# a .. dataToTag# b]
-- or, really...
range (a, b)
= case (dataToTag# a) of { a# ->
case (dataToTag# b) of { b# ->
map tag2con_Foo (enumFromTo (I# a#) (I# b#))
}}
-- Generate code for unsafeIndex, because using index leads
-- to lots of redundant range tests
unsafeIndex c@(a, b) d
= case (dataToTag# d -# dataToTag# a) of
r# -> I# r#
inRange (a, b) c
= let
p_tag = dataToTag# c
in
p_tag >= dataToTag# a && p_tag <= dataToTag# b
-- or, really...
inRange (a, b) c
= case (dataToTag# a) of { a_tag ->
case (dataToTag# b) of { b_tag ->
case (dataToTag# c) of { c_tag ->
if (c_tag >=# a_tag) then
c_tag <=# b_tag
else
False
}}}
\end{verbatim}
(modulo suitable case-ification to handle the unlifted tags)
For a single-constructor type (NB: this includes all tuples), e.g.,
\begin{verbatim}
data Foo ... = MkFoo a b Int Double c c
\end{verbatim}
we follow the scheme given in Figure~19 of the Haskell~1.2 report
(p.~147).
-}
gen_Ix_binds :: SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff)
gen_Ix_binds loc tycon _ = do
-- See Note [Auxiliary binders]
tag2con_RDR <- new_tag2con_rdr_name loc tycon
return $ if isEnumerationTyCon tycon
then (enum_ixes tag2con_RDR, listToBag $ map DerivAuxBind
[ DerivTag2Con tycon tag2con_RDR
])
else (single_con_ixes, emptyBag)
where
--------------------------------------------------------------
enum_ixes tag2con_RDR = listToBag
[ enum_range tag2con_RDR
, enum_index
, enum_inRange
]
enum_range tag2con_RDR
= mkSimpleGeneratedFunBind loc range_RDR [nlTuplePat [a_Pat, b_Pat] Boxed] $
untag_Expr [(a_RDR, ah_RDR)] $
untag_Expr [(b_RDR, bh_RDR)] $
nlHsApp (nlHsVarApps map_RDR [tag2con_RDR]) $
nlHsPar (enum_from_to_Expr
(nlHsVarApps intDataCon_RDR [ah_RDR])
(nlHsVarApps intDataCon_RDR [bh_RDR]))
enum_index
= mkSimpleGeneratedFunBind loc unsafeIndex_RDR
[noLoc (AsPat noExtField (noLoc c_RDR)
(nlTuplePat [a_Pat, nlWildPat] Boxed)),
d_Pat] (
untag_Expr [(a_RDR, ah_RDR)] (
untag_Expr [(d_RDR, dh_RDR)] (
let
rhs = nlHsVarApps intDataCon_RDR [c_RDR]
in
nlHsCase
(genOpApp (nlHsVar dh_RDR) minusInt_RDR (nlHsVar ah_RDR))
[mkHsCaseAlt (nlVarPat c_RDR) rhs]
))
)
-- This produces something like `(ch >= ah) && (ch <= bh)`
enum_inRange
= mkSimpleGeneratedFunBind loc inRange_RDR [nlTuplePat [a_Pat, b_Pat] Boxed, c_Pat] $
untag_Expr [(a_RDR, ah_RDR)] (
untag_Expr [(b_RDR, bh_RDR)] (
untag_Expr [(c_RDR, ch_RDR)] (
-- This used to use `if`, which interacts badly with RebindableSyntax.
-- See #11396.
nlHsApps and_RDR
[ genPrimOpApp (nlHsVar ch_RDR) geInt_RDR (nlHsVar ah_RDR)
, genPrimOpApp (nlHsVar ch_RDR) leInt_RDR (nlHsVar bh_RDR)
]
)))
--------------------------------------------------------------
single_con_ixes
= listToBag [single_con_range, single_con_index, single_con_inRange]
data_con
= case tyConSingleDataCon_maybe tycon of -- just checking...
Nothing -> panic "get_Ix_binds"
Just dc -> dc
con_arity = dataConSourceArity data_con
data_con_RDR = getRdrName data_con
as_needed = take con_arity as_RDRs
bs_needed = take con_arity bs_RDRs
cs_needed = take con_arity cs_RDRs
con_pat xs = nlConVarPat data_con_RDR xs
con_expr = nlHsVarApps data_con_RDR cs_needed
--------------------------------------------------------------
single_con_range
= mkSimpleGeneratedFunBind loc range_RDR
[nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed] $
noLoc (mkHsComp ListComp stmts con_expr)
where
stmts = zipWith3Equal "single_con_range" mk_qual as_needed bs_needed cs_needed
mk_qual a b c = noLoc $ mkPsBindStmt (nlVarPat c)
(nlHsApp (nlHsVar range_RDR)
(mkLHsVarTuple [a,b]))
----------------
single_con_index
= mkSimpleGeneratedFunBind loc unsafeIndex_RDR
[nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed,
con_pat cs_needed]
-- We need to reverse the order we consider the components in
-- so that
-- range (l,u) !! index (l,u) i == i -- when i is in range
-- (from http://haskell.org/onlinereport/ix.html) holds.
(mk_index (reverse $ zip3 as_needed bs_needed cs_needed))
where
-- index (l1,u1) i1 + rangeSize (l1,u1) * (index (l2,u2) i2 + ...)
mk_index [] = nlHsIntLit 0
mk_index [(l,u,i)] = mk_one l u i
mk_index ((l,u,i) : rest)
= genOpApp (
mk_one l u i
) plus_RDR (
genOpApp (
(nlHsApp (nlHsVar unsafeRangeSize_RDR)
(mkLHsVarTuple [l,u]))
) times_RDR (mk_index rest)
)
mk_one l u i
= nlHsApps unsafeIndex_RDR [mkLHsVarTuple [l,u], nlHsVar i]
------------------
single_con_inRange
= mkSimpleGeneratedFunBind loc inRange_RDR
[nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed,
con_pat cs_needed] $
if con_arity == 0
-- If the product type has no fields, inRange is trivially true
-- (see #12853).
then true_Expr
else foldl1 and_Expr (zipWith3Equal "single_con_inRange" in_range
as_needed bs_needed cs_needed)
where
in_range a b c = nlHsApps inRange_RDR [mkLHsVarTuple [a,b], nlHsVar c]
{-
************************************************************************
* *
Read instances
* *
************************************************************************
Example
infix 4 %%
data T = Int %% Int
| T1 { f1 :: Int }
| T2 T
instance Read T where
readPrec =
parens
( prec 4 (
do x <- ReadP.step Read.readPrec
expectP (Symbol "%%")
y <- ReadP.step Read.readPrec
return (x %% y))
+++
prec (appPrec+1) (
-- Note the "+1" part; "T2 T1 {f1=3}" should parse ok
-- Record construction binds even more tightly than application
do expectP (Ident "T1")
expectP (Punc '{')
x <- Read.readField "f1" (ReadP.reset readPrec)
expectP (Punc '}')
return (T1 { f1 = x }))
+++
prec appPrec (
do expectP (Ident "T2")
x <- ReadP.step Read.readPrec
return (T2 x))
)
readListPrec = readListPrecDefault
readList = readListDefault
Note [Use expectP]
~~~~~~~~~~~~~~~~~~
Note that we use
expectP (Ident "T1")
rather than
Ident "T1" <- lexP
The latter desugares to inline code for matching the Ident and the
string, and this can be very voluminous. The former is much more
compact. Cf #7258, although that also concerned non-linearity in
the occurrence analyser, a separate issue.
Note [Read for empty data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What should we get for this? (#7931)
data Emp deriving( Read ) -- No data constructors
Here we want
read "[]" :: [Emp] to succeed, returning []
So we do NOT want
instance Read Emp where
readPrec = error "urk"
Rather we want
instance Read Emp where
readPred = pfail -- Same as choose []
Because 'pfail' allows the parser to backtrack, but 'error' doesn't.
These instances are also useful for Read (Either Int Emp), where
we want to be able to parse (Left 3) just fine.
-}
gen_Read_binds :: (Name -> Fixity) -> SrcSpan -> TyCon -> [Type]
-> (LHsBinds GhcPs, BagDerivStuff)
gen_Read_binds get_fixity loc tycon _
= (listToBag [read_prec, default_readlist, default_readlistprec], emptyBag)
where
-----------------------------------------------------------------------
default_readlist
= mkHsVarBind loc readList_RDR (nlHsVar readListDefault_RDR)
default_readlistprec
= mkHsVarBind loc readListPrec_RDR (nlHsVar readListPrecDefault_RDR)
-----------------------------------------------------------------------
data_cons = tyConDataCons tycon
(nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon data_cons
read_prec = mkHsVarBind loc readPrec_RDR rhs
where
rhs | null data_cons -- See Note [Read for empty data types]
= nlHsVar pfail_RDR
| otherwise
= nlHsApp (nlHsVar parens_RDR)
(foldr1 mk_alt (read_nullary_cons ++
read_non_nullary_cons))
read_non_nullary_cons = map read_non_nullary_con non_nullary_cons
read_nullary_cons
= case nullary_cons of
[] -> []
[con] -> [nlHsDo (DoExpr Nothing) (match_con con ++ [noLoc $ mkLastStmt (result_expr con [])])]
_ -> [nlHsApp (nlHsVar choose_RDR)
(nlList (map mk_pair nullary_cons))]
-- NB For operators the parens around (:=:) are matched by the
-- enclosing "parens" call, so here we must match the naked
-- data_con_str con
match_con con | isSym con_str = [symbol_pat con_str]
| otherwise = ident_h_pat con_str
where
con_str = data_con_str con
-- For nullary constructors we must match Ident s for normal constrs
-- and Symbol s for operators
mk_pair con = mkLHsTupleExpr [nlHsLit (mkHsString (data_con_str con)),
result_expr con []]
read_non_nullary_con data_con
| is_infix = mk_parser infix_prec infix_stmts body
| is_record = mk_parser record_prec record_stmts body
-- Using these two lines instead allows the derived
-- read for infix and record bindings to read the prefix form
-- | is_infix = mk_alt prefix_parser (mk_parser infix_prec infix_stmts body)
-- | is_record = mk_alt prefix_parser (mk_parser record_prec record_stmts body)
| otherwise = prefix_parser
where
body = result_expr data_con as_needed
con_str = data_con_str data_con
prefix_parser = mk_parser prefix_prec prefix_stmts body
read_prefix_con
| isSym con_str = [read_punc "(", symbol_pat con_str, read_punc ")"]
| otherwise = ident_h_pat con_str
read_infix_con
| isSym con_str = [symbol_pat con_str]
| otherwise = [read_punc "`"] ++ ident_h_pat con_str ++ [read_punc "`"]
prefix_stmts -- T a b c
= read_prefix_con ++ read_args
infix_stmts -- a %% b, or a `T` b
= [read_a1]
++ read_infix_con
++ [read_a2]
record_stmts -- T { f1 = a, f2 = b }
= read_prefix_con
++ [read_punc "{"]
++ concat (intersperse [read_punc ","] field_stmts)
++ [read_punc "}"]
field_stmts = zipWithEqual "lbl_stmts" read_field labels as_needed
con_arity = dataConSourceArity data_con
labels = map flLabel $ dataConFieldLabels data_con
dc_nm = getName data_con
is_infix = dataConIsInfix data_con
is_record = labels `lengthExceeds` 0
as_needed = take con_arity as_RDRs
read_args = zipWithEqual "gen_Read_binds" read_arg as_needed (map scaledThing $ dataConOrigArgTys data_con)
(read_a1:read_a2:_) = read_args
prefix_prec = appPrecedence
infix_prec = getPrecedence get_fixity dc_nm
record_prec = appPrecedence + 1 -- Record construction binds even more tightly
-- than application; e.g. T2 T1 {x=2} means T2 (T1 {x=2})
------------------------------------------------------------------------
-- Helpers
------------------------------------------------------------------------
mk_alt e1 e2 = genOpApp e1 alt_RDR e2 -- e1 +++ e2
mk_parser p ss b = nlHsApps prec_RDR [nlHsIntLit p -- prec p (do { ss ; b })
, nlHsDo (DoExpr Nothing) (ss ++ [noLoc $ mkLastStmt b])]
con_app con as = nlHsVarApps (getRdrName con) as -- con as
result_expr con as = nlHsApp (nlHsVar returnM_RDR) (con_app con as) -- return (con as)
-- For constructors and field labels ending in '#', we hackily
-- let the lexer generate two tokens, and look for both in sequence
-- Thus [Ident "I"; Symbol "#"]. See #5041
ident_h_pat s | Just (ss, '#') <- snocView s = [ ident_pat ss, symbol_pat "#" ]
| otherwise = [ ident_pat s ]
bindLex pat = noLoc (mkBodyStmt (nlHsApp (nlHsVar expectP_RDR) pat)) -- expectP p
-- See Note [Use expectP]
ident_pat s = bindLex $ nlHsApps ident_RDR [nlHsLit (mkHsString s)] -- expectP (Ident "foo")
symbol_pat s = bindLex $ nlHsApps symbol_RDR [nlHsLit (mkHsString s)] -- expectP (Symbol ">>")
read_punc c = bindLex $ nlHsApps punc_RDR [nlHsLit (mkHsString c)] -- expectP (Punc "<")
data_con_str con = occNameString (getOccName con)
read_arg a ty = ASSERT( not (isUnliftedType ty) )
noLoc (mkPsBindStmt (nlVarPat a) (nlHsVarApps step_RDR [readPrec_RDR]))
-- When reading field labels we might encounter
-- a = 3
-- _a = 3
-- or (#) = 4
-- Note the parens!
read_field lbl a =
[noLoc
(mkPsBindStmt
(nlVarPat a)
(nlHsApp
read_field
(nlHsVarApps reset_RDR [readPrec_RDR])
)
)
]
where
lbl_str = unpackFS lbl
mk_read_field read_field_rdr lbl
= nlHsApps read_field_rdr [nlHsLit (mkHsString lbl)]
read_field
| isSym lbl_str
= mk_read_field readSymField_RDR lbl_str
| Just (ss, '#') <- snocView lbl_str -- #14918
= mk_read_field readFieldHash_RDR ss
| otherwise
= mk_read_field readField_RDR lbl_str
{-
************************************************************************
* *
Show instances
* *
************************************************************************
Example
infixr 5 :^:
data Tree a = Leaf a | Tree a :^: Tree a
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) showStr
where
showStr = showString "Leaf " . showsPrec (app_prec+1) m
showsPrec d (u :^: v) = showParen (d > up_prec) showStr
where
showStr = showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
-- Note: right-associativity of :^: ignored
up_prec = 5 -- Precedence of :^:
app_prec = 10 -- Application has precedence one more than
-- the most tightly-binding operator
-}
gen_Show_binds :: (Name -> Fixity) -> SrcSpan -> TyCon -> [Type]
-> (LHsBinds GhcPs, BagDerivStuff)
gen_Show_binds get_fixity loc tycon tycon_args
= (unitBag shows_prec, emptyBag)
where
data_cons = getPossibleDataCons tycon tycon_args
shows_prec = mkFunBindEC 2 loc showsPrec_RDR id (map pats_etc data_cons)
comma_space = nlHsVar showCommaSpace_RDR
pats_etc data_con
| nullary_con = -- skip the showParen junk...
ASSERT(null bs_needed)
([nlWildPat, con_pat], mk_showString_app op_con_str)
| otherwise =
([a_Pat, con_pat],
showParen_Expr (genOpApp a_Expr ge_RDR (nlHsLit
(HsInt noExtField (mkIntegralLit con_prec_plus_one))))
(nlHsPar (nested_compose_Expr show_thingies)))
where
data_con_RDR = getRdrName data_con
con_arity = dataConSourceArity data_con
bs_needed = take con_arity bs_RDRs
arg_tys = dataConOrigArgTys data_con -- Correspond 1-1 with bs_needed
con_pat = nlConVarPat data_con_RDR bs_needed
nullary_con = con_arity == 0
labels = map flLabel $ dataConFieldLabels data_con
lab_fields = length labels
record_syntax = lab_fields > 0
dc_nm = getName data_con
dc_occ_nm = getOccName data_con
con_str = occNameString dc_occ_nm
op_con_str = wrapOpParens con_str
backquote_str = wrapOpBackquotes con_str
show_thingies
| is_infix = [show_arg1, mk_showString_app (" " ++ backquote_str ++ " "), show_arg2]
| record_syntax = mk_showString_app (op_con_str ++ " {") :
show_record_args ++ [mk_showString_app "}"]
| otherwise = mk_showString_app (op_con_str ++ " ") : show_prefix_args
show_label l = mk_showString_app (nm ++ " = ")
-- Note the spaces around the "=" sign. If we
-- don't have them then we get Foo { x=-1 } and
-- the "=-" parses as a single lexeme. Only the
-- space after the '=' is necessary, but it
-- seems tidier to have them both sides.
where
nm = wrapOpParens (unpackFS l)
show_args = zipWithEqual "gen_Show_binds" show_arg bs_needed (map scaledThing arg_tys)
(show_arg1:show_arg2:_) = show_args
show_prefix_args = intersperse (nlHsVar showSpace_RDR) show_args
-- Assumption for record syntax: no of fields == no of
-- labelled fields (and in same order)
show_record_args = concat $
intersperse [comma_space] $
[ [show_label lbl, arg]
| (lbl,arg) <- zipEqual "gen_Show_binds"
labels show_args ]
show_arg :: RdrName -> Type -> LHsExpr GhcPs
show_arg b arg_ty
| isUnliftedType arg_ty
-- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
= with_conv $
nlHsApps compose_RDR
[mk_shows_app boxed_arg, mk_showString_app postfixMod]
| otherwise
= mk_showsPrec_app arg_prec arg
where
arg = nlHsVar b
boxed_arg = box "Show" arg arg_ty
postfixMod = assoc_ty_id "Show" postfixModTbl arg_ty
with_conv expr
| (Just conv) <- assoc_ty_id_maybe primConvTbl arg_ty =
nested_compose_Expr
[ mk_showString_app ("(" ++ conv ++ " ")
, expr
, mk_showString_app ")"
]
| otherwise = expr
-- Fixity stuff
is_infix = dataConIsInfix data_con
con_prec_plus_one = 1 + getPrec is_infix get_fixity dc_nm
arg_prec | record_syntax = 0 -- Record fields don't need parens
| otherwise = con_prec_plus_one
wrapOpParens :: String -> String
wrapOpParens s | isSym s = '(' : s ++ ")"
| otherwise = s
wrapOpBackquotes :: String -> String
wrapOpBackquotes s | isSym s = s
| otherwise = '`' : s ++ "`"
isSym :: String -> Bool
isSym "" = False
isSym (c : _) = startsVarSym c || startsConSym c
-- | showString :: String -> ShowS
mk_showString_app :: String -> LHsExpr GhcPs
mk_showString_app str = nlHsApp (nlHsVar showString_RDR) (nlHsLit (mkHsString str))
-- | showsPrec :: Show a => Int -> a -> ShowS
mk_showsPrec_app :: Integer -> LHsExpr GhcPs -> LHsExpr GhcPs
mk_showsPrec_app p x
= nlHsApps showsPrec_RDR [nlHsLit (HsInt noExtField (mkIntegralLit p)), x]
-- | shows :: Show a => a -> ShowS
mk_shows_app :: LHsExpr GhcPs -> LHsExpr GhcPs
mk_shows_app x = nlHsApp (nlHsVar shows_RDR) x
getPrec :: Bool -> (Name -> Fixity) -> Name -> Integer
getPrec is_infix get_fixity nm
| not is_infix = appPrecedence
| otherwise = getPrecedence get_fixity nm
appPrecedence :: Integer
appPrecedence = fromIntegral maxPrecedence + 1
-- One more than the precedence of the most
-- tightly-binding operator
getPrecedence :: (Name -> Fixity) -> Name -> Integer
getPrecedence get_fixity nm
= case get_fixity nm of
Fixity _ x _assoc -> fromIntegral x
-- NB: the Report says that associativity is not taken
-- into account for either Read or Show; hence we
-- ignore associativity here
{-
************************************************************************
* *
Data instances
* *
************************************************************************
From the data type
data T a b = T1 a b | T2
we generate
$cT1 = mkDataCon $dT "T1" Prefix
$cT2 = mkDataCon $dT "T2" Prefix
$dT = mkDataType "Module.T" [] [$con_T1, $con_T2]
-- the [] is for field labels.
instance (Data a, Data b) => Data (T a b) where
gfoldl k z (T1 a b) = z T `k` a `k` b
gfoldl k z T2 = z T2
-- ToDo: add gmapT,Q,M, gfoldr
gunfold k z c = case conIndex c of
I# 1# -> k (k (z T1))
I# 2# -> z T2
toConstr (T1 _ _) = $cT1
toConstr T2 = $cT2
dataTypeOf _ = $dT
dataCast1 = gcast1 -- If T :: * -> *
dataCast2 = gcast2 -- if T :: * -> * -> *
-}
gen_Data_binds :: SrcSpan
-> TyCon -- For data families, this is the
-- *representation* TyCon
-> [Type]
-> TcM (LHsBinds GhcPs, -- The method bindings
BagDerivStuff) -- Auxiliary bindings
gen_Data_binds loc rep_tc _
= do { -- See Note [Auxiliary binders]
dataT_RDR <- new_dataT_rdr_name loc rep_tc
; dataC_RDRs <- traverse (new_dataC_rdr_name loc) data_cons
; pure ( listToBag [ gfoldl_bind, gunfold_bind
, toCon_bind dataC_RDRs, dataTypeOf_bind dataT_RDR ]
`unionBags` gcast_binds
-- Auxiliary definitions: the data type and constructors
, listToBag $ map DerivAuxBind
( DerivDataDataType rep_tc dataT_RDR dataC_RDRs
: zipWith (\data_con dataC_RDR ->
DerivDataConstr data_con dataC_RDR dataT_RDR)
data_cons dataC_RDRs )
) }
where
data_cons = tyConDataCons rep_tc
n_cons = length data_cons
one_constr = n_cons == 1
------------ gfoldl
gfoldl_bind = mkFunBindEC 3 loc gfoldl_RDR id (map gfoldl_eqn data_cons)
gfoldl_eqn con
= ([nlVarPat k_RDR, z_Pat, nlConVarPat con_name as_needed],
foldl' mk_k_app (z_Expr `nlHsApp` (eta_expand_data_con con)) as_needed)
where
con_name :: RdrName
con_name = getRdrName con
as_needed = take (dataConSourceArity con) as_RDRs
mk_k_app e v = nlHsPar (nlHsOpApp e k_RDR (nlHsVar v))
------------ gunfold
gunfold_bind = mkSimpleGeneratedFunBind loc
gunfold_RDR
[k_Pat, z_Pat, if one_constr then nlWildPat else c_Pat]
gunfold_rhs
gunfold_rhs
| one_constr = mk_unfold_rhs (head data_cons) -- No need for case
| otherwise = nlHsCase (nlHsVar conIndex_RDR `nlHsApp` c_Expr)
(map gunfold_alt data_cons)
gunfold_alt dc = mkHsCaseAlt (mk_unfold_pat dc) (mk_unfold_rhs dc)
mk_unfold_rhs dc = foldr nlHsApp
(z_Expr `nlHsApp` (eta_expand_data_con dc))
(replicate (dataConSourceArity dc) (nlHsVar k_RDR))
eta_expand_data_con dc =
mkHsLam eta_expand_pats
(foldl nlHsApp (nlHsVar (getRdrName dc)) eta_expand_hsvars)
where
eta_expand_pats = map nlVarPat eta_expand_vars
eta_expand_hsvars = map nlHsVar eta_expand_vars
eta_expand_vars = take (dataConSourceArity dc) as_RDRs
mk_unfold_pat dc -- Last one is a wild-pat, to avoid
-- redundant test, and annoying warning
| tag-fIRST_TAG == n_cons-1 = nlWildPat -- Last constructor
| otherwise = nlConPat intDataCon_RDR
[nlLitPat (HsIntPrim NoSourceText (toInteger tag))]
where
tag = dataConTag dc
------------ toConstr
toCon_bind dataC_RDRs
= mkFunBindEC 1 loc toConstr_RDR id
(zipWith to_con_eqn data_cons dataC_RDRs)
to_con_eqn dc con_name = ([nlWildConPat dc], nlHsVar con_name)
------------ dataTypeOf
dataTypeOf_bind dataT_RDR
= mkSimpleGeneratedFunBind
loc
dataTypeOf_RDR
[nlWildPat]
(nlHsVar dataT_RDR)
------------ gcast1/2
-- Make the binding dataCast1 x = gcast1 x -- if T :: * -> *
-- or dataCast2 x = gcast2 s -- if T :: * -> * -> *
-- (or nothing if T has neither of these two types)
-- But care is needed for data families:
-- If we have data family D a
-- data instance D (a,b,c) = A | B deriving( Data )
-- and we want instance ... => Data (D [(a,b,c)]) where ...
-- then we need dataCast1 x = gcast1 x
-- because D :: * -> *
-- even though rep_tc has kind * -> * -> * -> *
-- Hence looking for the kind of fam_tc not rep_tc
-- See #4896
tycon_kind = case tyConFamInst_maybe rep_tc of
Just (fam_tc, _) -> tyConKind fam_tc
Nothing -> tyConKind rep_tc
gcast_binds | tycon_kind `tcEqKind` kind1 = mk_gcast dataCast1_RDR gcast1_RDR
| tycon_kind `tcEqKind` kind2 = mk_gcast dataCast2_RDR gcast2_RDR
| otherwise = emptyBag
mk_gcast dataCast_RDR gcast_RDR
= unitBag (mkSimpleGeneratedFunBind loc dataCast_RDR [nlVarPat f_RDR]
(nlHsVar gcast_RDR `nlHsApp` nlHsVar f_RDR))
kind1, kind2 :: Kind
kind1 = typeToTypeKind
kind2 = liftedTypeKind `mkVisFunTyMany` kind1
gfoldl_RDR, gunfold_RDR, toConstr_RDR, dataTypeOf_RDR, mkConstrTag_RDR,
mkDataType_RDR, conIndex_RDR, prefix_RDR, infix_RDR,
dataCast1_RDR, dataCast2_RDR, gcast1_RDR, gcast2_RDR,
constr_RDR, dataType_RDR,
eqChar_RDR , ltChar_RDR , geChar_RDR , gtChar_RDR , leChar_RDR ,
eqInt_RDR , ltInt_RDR , geInt_RDR , gtInt_RDR , leInt_RDR ,
eqInt8_RDR , ltInt8_RDR , geInt8_RDR , gtInt8_RDR , leInt8_RDR ,
eqInt16_RDR , ltInt16_RDR , geInt16_RDR , gtInt16_RDR , leInt16_RDR ,
eqInt32_RDR , ltInt32_RDR , geInt32_RDR , gtInt32_RDR , leInt32_RDR ,
eqWord_RDR , ltWord_RDR , geWord_RDR , gtWord_RDR , leWord_RDR ,
eqWord8_RDR , ltWord8_RDR , geWord8_RDR , gtWord8_RDR , leWord8_RDR ,
eqWord16_RDR, ltWord16_RDR, geWord16_RDR, gtWord16_RDR, leWord16_RDR,
eqWord32_RDR, ltWord32_RDR, geWord32_RDR, gtWord32_RDR, leWord32_RDR,
eqAddr_RDR , ltAddr_RDR , geAddr_RDR , gtAddr_RDR , leAddr_RDR ,
eqFloat_RDR , ltFloat_RDR , geFloat_RDR , gtFloat_RDR , leFloat_RDR ,
eqDouble_RDR, ltDouble_RDR, geDouble_RDR, gtDouble_RDR, leDouble_RDR,
extendWord8_RDR, extendInt8_RDR,
extendWord16_RDR, extendInt16_RDR,
extendWord32_RDR, extendInt32_RDR
:: RdrName
gfoldl_RDR = varQual_RDR gENERICS (fsLit "gfoldl")
gunfold_RDR = varQual_RDR gENERICS (fsLit "gunfold")
toConstr_RDR = varQual_RDR gENERICS (fsLit "toConstr")
dataTypeOf_RDR = varQual_RDR gENERICS (fsLit "dataTypeOf")
dataCast1_RDR = varQual_RDR gENERICS (fsLit "dataCast1")
dataCast2_RDR = varQual_RDR gENERICS (fsLit "dataCast2")
gcast1_RDR = varQual_RDR tYPEABLE (fsLit "gcast1")
gcast2_RDR = varQual_RDR tYPEABLE (fsLit "gcast2")
mkConstrTag_RDR = varQual_RDR gENERICS (fsLit "mkConstrTag")
constr_RDR = tcQual_RDR gENERICS (fsLit "Constr")
mkDataType_RDR = varQual_RDR gENERICS (fsLit "mkDataType")
dataType_RDR = tcQual_RDR gENERICS (fsLit "DataType")
conIndex_RDR = varQual_RDR gENERICS (fsLit "constrIndex")
prefix_RDR = dataQual_RDR gENERICS (fsLit "Prefix")
infix_RDR = dataQual_RDR gENERICS (fsLit "Infix")
eqChar_RDR = varQual_RDR gHC_PRIM (fsLit "eqChar#")
ltChar_RDR = varQual_RDR gHC_PRIM (fsLit "ltChar#")
leChar_RDR = varQual_RDR gHC_PRIM (fsLit "leChar#")
gtChar_RDR = varQual_RDR gHC_PRIM (fsLit "gtChar#")
geChar_RDR = varQual_RDR gHC_PRIM (fsLit "geChar#")
eqInt_RDR = varQual_RDR gHC_PRIM (fsLit "==#")
ltInt_RDR = varQual_RDR gHC_PRIM (fsLit "<#" )
leInt_RDR = varQual_RDR gHC_PRIM (fsLit "<=#")
gtInt_RDR = varQual_RDR gHC_PRIM (fsLit ">#" )
geInt_RDR = varQual_RDR gHC_PRIM (fsLit ">=#")
eqInt8_RDR = varQual_RDR gHC_PRIM (fsLit "eqInt8#")
ltInt8_RDR = varQual_RDR gHC_PRIM (fsLit "ltInt8#" )
leInt8_RDR = varQual_RDR gHC_PRIM (fsLit "leInt8#")
gtInt8_RDR = varQual_RDR gHC_PRIM (fsLit "gtInt8#" )
geInt8_RDR = varQual_RDR gHC_PRIM (fsLit "geInt8#")
eqInt16_RDR = varQual_RDR gHC_PRIM (fsLit "eqInt16#")
ltInt16_RDR = varQual_RDR gHC_PRIM (fsLit "ltInt16#" )
leInt16_RDR = varQual_RDR gHC_PRIM (fsLit "leInt16#")
gtInt16_RDR = varQual_RDR gHC_PRIM (fsLit "gtInt16#" )
geInt16_RDR = varQual_RDR gHC_PRIM (fsLit "geInt16#")
eqInt32_RDR = varQual_RDR gHC_PRIM (fsLit "eqInt32#")
ltInt32_RDR = varQual_RDR gHC_PRIM (fsLit "ltInt32#" )
leInt32_RDR = varQual_RDR gHC_PRIM (fsLit "leInt32#")
gtInt32_RDR = varQual_RDR gHC_PRIM (fsLit "gtInt32#" )
geInt32_RDR = varQual_RDR gHC_PRIM (fsLit "geInt32#")
eqWord_RDR = varQual_RDR gHC_PRIM (fsLit "eqWord#")
ltWord_RDR = varQual_RDR gHC_PRIM (fsLit "ltWord#")
leWord_RDR = varQual_RDR gHC_PRIM (fsLit "leWord#")
gtWord_RDR = varQual_RDR gHC_PRIM (fsLit "gtWord#")
geWord_RDR = varQual_RDR gHC_PRIM (fsLit "geWord#")
eqWord8_RDR = varQual_RDR gHC_PRIM (fsLit "eqWord8#")
ltWord8_RDR = varQual_RDR gHC_PRIM (fsLit "ltWord8#" )
leWord8_RDR = varQual_RDR gHC_PRIM (fsLit "leWord8#")
gtWord8_RDR = varQual_RDR gHC_PRIM (fsLit "gtWord8#" )
geWord8_RDR = varQual_RDR gHC_PRIM (fsLit "geWord8#")
eqWord16_RDR = varQual_RDR gHC_PRIM (fsLit "eqWord16#")
ltWord16_RDR = varQual_RDR gHC_PRIM (fsLit "ltWord16#" )
leWord16_RDR = varQual_RDR gHC_PRIM (fsLit "leWord16#")
gtWord16_RDR = varQual_RDR gHC_PRIM (fsLit "gtWord16#" )
geWord16_RDR = varQual_RDR gHC_PRIM (fsLit "geWord16#")
eqWord32_RDR = varQual_RDR gHC_PRIM (fsLit "eqWord32#")
ltWord32_RDR = varQual_RDR gHC_PRIM (fsLit "ltWord32#" )
leWord32_RDR = varQual_RDR gHC_PRIM (fsLit "leWord32#")
gtWord32_RDR = varQual_RDR gHC_PRIM (fsLit "gtWord32#" )
geWord32_RDR = varQual_RDR gHC_PRIM (fsLit "geWord32#")
eqAddr_RDR = varQual_RDR gHC_PRIM (fsLit "eqAddr#")
ltAddr_RDR = varQual_RDR gHC_PRIM (fsLit "ltAddr#")
leAddr_RDR = varQual_RDR gHC_PRIM (fsLit "leAddr#")
gtAddr_RDR = varQual_RDR gHC_PRIM (fsLit "gtAddr#")
geAddr_RDR = varQual_RDR gHC_PRIM (fsLit "geAddr#")
eqFloat_RDR = varQual_RDR gHC_PRIM (fsLit "eqFloat#")
ltFloat_RDR = varQual_RDR gHC_PRIM (fsLit "ltFloat#")
leFloat_RDR = varQual_RDR gHC_PRIM (fsLit "leFloat#")
gtFloat_RDR = varQual_RDR gHC_PRIM (fsLit "gtFloat#")
geFloat_RDR = varQual_RDR gHC_PRIM (fsLit "geFloat#")
eqDouble_RDR = varQual_RDR gHC_PRIM (fsLit "==##")
ltDouble_RDR = varQual_RDR gHC_PRIM (fsLit "<##" )
leDouble_RDR = varQual_RDR gHC_PRIM (fsLit "<=##")
gtDouble_RDR = varQual_RDR gHC_PRIM (fsLit ">##" )
geDouble_RDR = varQual_RDR gHC_PRIM (fsLit ">=##")
extendWord8_RDR = varQual_RDR gHC_PRIM (fsLit "extendWord8#")
extendInt8_RDR = varQual_RDR gHC_PRIM (fsLit "extendInt8#")
extendWord16_RDR = varQual_RDR gHC_PRIM (fsLit "extendWord16#")
extendInt16_RDR = varQual_RDR gHC_PRIM (fsLit "extendInt16#")
extendWord32_RDR = varQual_RDR gHC_PRIM (fsLit "extendWord32#")
extendInt32_RDR = varQual_RDR gHC_PRIM (fsLit "extendInt32#")
{-
************************************************************************
* *
Lift instances
* *
************************************************************************
Example:
data Foo a = Foo a | a :^: a deriving Lift
==>
instance (Lift a) => Lift (Foo a) where
lift (Foo a) = [| Foo a |]
lift ((:^:) u v) = [| (:^:) u v |]
liftTyped (Foo a) = [|| Foo a ||]
liftTyped ((:^:) u v) = [|| (:^:) u v ||]
-}
gen_Lift_binds :: SrcSpan -> TyCon -> [Type] -> (LHsBinds GhcPs, BagDerivStuff)
gen_Lift_binds loc tycon tycon_args = (listToBag [lift_bind, liftTyped_bind], emptyBag)
where
lift_bind = mkFunBindEC 1 loc lift_RDR (nlHsApp pure_Expr)
(map (pats_etc mk_exp) data_cons)
liftTyped_bind = mkFunBindEC 1 loc liftTyped_RDR (nlHsApp unsafeCodeCoerce_Expr . nlHsApp pure_Expr)
(map (pats_etc mk_texp) data_cons)
mk_exp = ExpBr noExtField
mk_texp = TExpBr noExtField
data_cons = getPossibleDataCons tycon tycon_args
pats_etc mk_bracket data_con
= ([con_pat], lift_Expr)
where
con_pat = nlConVarPat data_con_RDR as_needed
data_con_RDR = getRdrName data_con
con_arity = dataConSourceArity data_con
as_needed = take con_arity as_RDRs
lift_Expr = noLoc (HsBracket noExtField (mk_bracket br_body))
br_body = nlHsApps (Exact (dataConName data_con))
(map nlHsVar as_needed)
{-
************************************************************************
* *
Newtype-deriving instances
* *
************************************************************************
Note [Newtype-deriving instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We take every method in the original instance and `coerce` it to fit
into the derived instance. We need type applications on the argument
to `coerce` to make it obvious what instantiation of the method we're
coercing from. So from, say,
class C a b where
op :: forall c. a -> [b] -> c -> Int
newtype T x = MkT <rep-ty>
instance C a <rep-ty> => C a (T x) where
op :: forall c. a -> [T x] -> c -> Int
op = coerce @(a -> [<rep-ty>] -> c -> Int)
@(a -> [T x] -> c -> Int)
op
In addition to the type applications, we also have an explicit
type signature on the entire RHS. This brings the method-bound variable
`c` into scope over the two type applications.
See Note [GND and QuantifiedConstraints] for more information on why this
is important.
Giving 'coerce' two explicitly-visible type arguments grants us finer control
over how it should be instantiated. Recall
coerce :: Coercible a b => a -> b
By giving it explicit type arguments we deal with the case where
'op' has a higher rank type, and so we must instantiate 'coerce' with
a polytype. E.g.
class C a where op :: a -> forall b. b -> b
newtype T x = MkT <rep-ty>
instance C <rep-ty> => C (T x) where
op :: T x -> forall b. b -> b
op = coerce @(<rep-ty> -> forall b. b -> b)
@(T x -> forall b. b -> b)
op
The use of type applications is crucial here. We have to instantiate
both type args of (coerce :: Coercible a b => a -> b) to polytypes,
and we can only do that with VTA or Quick Look. Here VTA seems more
appropriate for machine generated code: it's simple and robust.
However, to allow VTA with polytypes we must switch on
-XImpredicativeTypes locally in GHC.Tc.Deriv.genInst.
See #8503 for more discussion.
Note [Newtype-deriving trickiness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12768):
class C a where { op :: D a => a -> a }
instance C a => C [a] where { op = opList }
opList :: (C a, D [a]) => [a] -> [a]
opList = ...
Now suppose we try GND on this:
newtype N a = MkN [a] deriving( C )
The GND is expecting to get an implementation of op for N by
coercing opList, thus:
instance C a => C (N a) where { op = opN }
opN :: (C a, D (N a)) => N a -> N a
opN = coerce @([a] -> [a])
@([N a] -> [N a]
opList :: D (N a) => [N a] -> [N a]
But there is no reason to suppose that (D [a]) and (D (N a))
are inter-coercible; these instances might completely different.
So GHC rightly rejects this code.
Note [GND and QuantifiedConstraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example from #15290:
class C m where
join :: m (m a) -> m a
newtype T m a = MkT (m a)
deriving instance
(C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
C (T m)
The code that GHC used to generate for this was:
instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
C (T m) where
join = coerce @(forall a. m (m a) -> m a)
@(forall a. T m (T m a) -> T m a)
join
This instantiates `coerce` at a polymorphic type, a form of impredicative
polymorphism, so we're already on thin ice. And in fact the ice breaks,
as we'll explain:
The call to `coerce` gives rise to:
Coercible (forall a. m (m a) -> m a)
(forall a. T m (T m a) -> T m a)
And that simplified to the following implication constraint:
forall a <no-ev>. m (T m a) ~R# m (m a)
But because this constraint is under a `forall`, inside a type, we have to
prove it *without computing any term evidence* (hence the <no-ev>). Alas, we
*must* generate a term-level evidence binding in order to instantiate the
quantified constraint! In response, GHC currently chooses not to use such
a quantified constraint.
See Note [Instances in no-evidence implications] in GHC.Tc.Solver.Interact.
But this isn't the death knell for combining QuantifiedConstraints with GND.
On the contrary, if we generate GND bindings in a slightly different way, then
we can avoid this situation altogether. Instead of applying `coerce` to two
polymorphic types, we instead let an instance signature do the polymorphic
instantiation, and omit the `forall`s in the type applications.
More concretely, we generate the following code instead:
instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
C (T m) where
join :: forall a. T m (T m a) -> T m a
join = coerce @( m (m a) -> m a)
@(T m (T m a) -> T m a)
join
Now the visible type arguments are both monotypes, so we don't need any of this
funny quantified constraint instantiation business. While this particular
example no longer uses impredicative instantiation, we still need to enable
ImpredicativeTypes to typecheck GND-generated code for class methods with
higher-rank types. See Note [Newtype-deriving instances].
You might think that that second @(T m (T m a) -> T m a) argument is redundant
in the presence of the instance signature, but in fact leaving it off will
break this example (from the T15290d test case):
class C a where
c :: Int -> forall b. b -> a
instance C Int
instance C Age where
c :: Int -> forall b. b -> Age
c = coerce @(Int -> forall b. b -> Int)
c
That is because we still need to instantiate the second argument of
coerce with a polytype, and we can only do that with VTA or QuickLook.
Be aware that the use of an instance signature doesn't /solve/ this
problem; it just makes it less likely to occur. For example, if a class has
a truly higher-rank type like so:
class CProblem m where
op :: (forall b. ... (m b) ...) -> Int
Then the same situation will arise again. But at least it won't arise for the
common case of methods with ordinary, prenex-quantified types.
-----
-- Wrinkle: Use HsOuterExplicit
-----
One minor complication with the plan above is that we need to ensure that the
type variables from a method's instance signature properly scope over the body
of the method. For example, recall:
instance (C m, forall p q. Coercible p q => Coercible (m p) (m q)) =>
C (T m) where
join :: forall a. T m (T m a) -> T m a
join = coerce @( m (m a) -> m a)
@(T m (T m a) -> T m a)
join
In the example above, it is imperative that the `a` in the instance signature
for `join` scope over the body of `join` by way of ScopedTypeVariables.
This might sound obvious, but note that in gen_Newtype_binds, which is
responsible for generating the code above, the type in `join`'s instance
signature is given as a Core type, whereas gen_Newtype_binds will eventually
produce HsBinds (i.e., source Haskell) that is renamed and typechecked. We
must ensure that `a` is in scope over the body of `join` during renaming
or else the generated code will be rejected.
In short, we need to convert the instance signature from a Core type to an
HsType (i.e., a source Haskell type). Two possible options are:
1. Convert the Core type entirely to an HsType (i.e., a source Haskell type).
2. Embed the entire Core type using HsCoreTy.
Neither option is quite satisfactory:
1. Converting a Core type to an HsType in full generality is surprisingly
complicated. Previous versions of GHCs did this, but it was the source of
numerous bugs (see #14579 and #16518, for instance).
2. While HsCoreTy is much less complicated that option (1), it's not quite
what we want. In order for `a` to be in scope over the body of `join` during
renaming, the `forall` must be contained in an HsOuterExplicit.
(See Note [Lexically scoped type variables] in GHC.Hs.Type.) HsCoreTy
bypasses HsOuterExplicit, so this won't work either.
As a compromise, we adopt a combination of the two options above:
* Split apart the top-level ForAllTys in the instance signature's Core type,
* Convert the top-level ForAllTys to an HsOuterExplicit, and
* Embed the remainder of the Core type in an HsCoreTy.
This retains most of the simplicity of option (2) while still ensuring that
the type variables are correctly scoped.
Note that splitting apart top-level ForAllTys will expand any type synonyms
in the Core type itself. This ends up being important to fix a corner case
observed in #18914. Consider this example:
type T f = forall a. f a
class C f where
m :: T f
newtype N f a = MkN (f a)
deriving C
What code should `deriving C` generate? It will have roughly the following
shape:
instance C f => C (N f) where
m :: T (N f)
m = coerce @(...) (...) (m @f)
At a minimum, we must instantiate `coerce` with `@(T f)` and `@(T (N f))`, but
with the `forall`s removed in order to make them monotypes. However, the
`forall` is hidden underneath the `T` type synonym, so we must first expand `T`
before we can strip of the `forall`. Expanding `T`, we get
`coerce @(forall a. f a) @(forall a. N f a)`, and after omitting the `forall`s,
we get `coerce @(f a) @(N f a)`.
We can't stop there, however, or else we would end up with this code:
instance C f => C (N f) where
m :: T (N f)
m = coerce @(f a) @(N f a) (m @f)
Notice that the type variable `a` is completely unbound. In order to make sure
that `a` is in scope, we must /also/ expand the `T` in `m :: T (N f)` to get
`m :: forall a. N f a`. Fortunately, we will do just that in the plan outlined
above, since when we split off the top-level ForAllTys in the instance
signature, we must first expand the T type synonym.
Note [GND and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~
We make an effort to make the code generated through GND be robust w.r.t.
ambiguous type variables. As one example, consider the following example
(from #15637):
class C a where f :: String
instance C () where f = "foo"
newtype T = T () deriving C
A naïve attempt and generating a C T instance would be:
instance C T where
f :: String
f = coerce @String @String f
This isn't going to typecheck, however, since GHC doesn't know what to
instantiate the type variable `a` with in the call to `f` in the method body.
(Note that `f :: forall a. String`!) To compensate for the possibility of
ambiguity here, we explicitly instantiate `a` like so:
instance C T where
f :: String
f = coerce @String @String (f @())
All better now.
-}
gen_Newtype_binds :: SrcSpan
-> Class -- the class being derived
-> [TyVar] -- the tvs in the instance head (this includes
-- the tvs from both the class types and the
-- newtype itself)
-> [Type] -- instance head parameters (incl. newtype)
-> Type -- the representation type
-> TcM (LHsBinds GhcPs, [LSig GhcPs], BagDerivStuff)
-- See Note [Newtype-deriving instances]
gen_Newtype_binds loc cls inst_tvs inst_tys rhs_ty
= do let ats = classATs cls
(binds, sigs) = mapAndUnzip mk_bind_and_sig (classMethods cls)
atf_insts <- ASSERT( all (not . isDataFamilyTyCon) ats )
mapM mk_atf_inst ats
return ( listToBag binds
, sigs
, listToBag $ map DerivFamInst atf_insts )
where
-- For each class method, generate its derived binding and instance
-- signature. Using the first example from
-- Note [Newtype-deriving instances]:
--
-- class C a b where
-- op :: forall c. a -> [b] -> c -> Int
--
-- newtype T x = MkT <rep-ty>
--
-- Then we would generate <derived-op-impl> below:
--
-- instance C a <rep-ty> => C a (T x) where
-- <derived-op-impl>
mk_bind_and_sig :: Id -> (LHsBind GhcPs, LSig GhcPs)
mk_bind_and_sig meth_id
= ( -- The derived binding, e.g.,
--
-- op = coerce @(a -> [<rep-ty>] -> c -> Int)
-- @(a -> [T x] -> c -> Int)
-- op
mkRdrFunBind loc_meth_RDR [mkSimpleMatch
(mkPrefixFunRhs loc_meth_RDR)
[] rhs_expr]
, -- The derived instance signature, e.g.,
--
-- op :: forall c. a -> [T x] -> c -> Int
--
-- Make sure that `forall c` is in an HsOuterExplicit so that it
-- scopes over the body of `op`. See "Wrinkle: Use HsOuterExplicit" in
-- Note [GND and QuantifiedConstraints].
L loc $ ClassOpSig noExtField False [loc_meth_RDR]
$ L loc $ mkHsExplicitSigType
(map mk_hs_tvb to_tvbs)
(nlHsCoreTy to_rho)
)
where
Pair from_ty to_ty = mkCoerceClassMethEqn cls inst_tvs inst_tys rhs_ty meth_id
(_, _, from_tau) = tcSplitSigmaTy from_ty
(to_tvbs, to_rho) = tcSplitForAllInvisTVBinders to_ty
(_, to_tau) = tcSplitPhiTy to_rho
-- The use of tcSplitForAllInvisTVBinders above expands type synonyms,
-- which is important to ensure correct type variable scoping.
-- See "Wrinkle: Use HsOuterExplicit" in
-- Note [GND and QuantifiedConstraints].
mk_hs_tvb :: VarBndr TyVar flag -> LHsTyVarBndr flag GhcPs
mk_hs_tvb (Bndr tv flag) = noLoc $ KindedTyVar noExtField
flag
(noLoc (getRdrName tv))
(nlHsCoreTy (tyVarKind tv))
meth_RDR = getRdrName meth_id
loc_meth_RDR = L loc meth_RDR
rhs_expr = nlHsVar (getRdrName coerceId)
`nlHsAppType` from_tau
`nlHsAppType` to_tau
`nlHsApp` meth_app
-- The class method, applied to all of the class instance types
-- (including the representation type) to avoid potential ambiguity.
-- See Note [GND and ambiguity]
meth_app = foldl' nlHsAppType (nlHsVar meth_RDR) $
filterOutInferredTypes (classTyCon cls) underlying_inst_tys
-- Filter out any inferred arguments, since they can't be
-- applied with visible type application.
mk_atf_inst :: TyCon -> TcM FamInst
mk_atf_inst fam_tc = do
rep_tc_name <- newFamInstTyConName (L loc (tyConName fam_tc))
rep_lhs_tys
let axiom = mkSingleCoAxiom Nominal rep_tc_name rep_tvs' [] rep_cvs'
fam_tc rep_lhs_tys rep_rhs_ty
-- Check (c) from Note [GND and associated type families] in GHC.Tc.Deriv
checkValidCoAxBranch fam_tc (coAxiomSingleBranch axiom)
newFamInst SynFamilyInst axiom
where
cls_tvs = classTyVars cls
in_scope = mkInScopeSet $ mkVarSet inst_tvs
lhs_env = zipTyEnv cls_tvs inst_tys
lhs_subst = mkTvSubst in_scope lhs_env
rhs_env = zipTyEnv cls_tvs underlying_inst_tys
rhs_subst = mkTvSubst in_scope rhs_env
fam_tvs = tyConTyVars fam_tc
rep_lhs_tys = substTyVars lhs_subst fam_tvs
rep_rhs_tys = substTyVars rhs_subst fam_tvs
rep_rhs_ty = mkTyConApp fam_tc rep_rhs_tys
rep_tcvs = tyCoVarsOfTypesList rep_lhs_tys
(rep_tvs, rep_cvs) = partition isTyVar rep_tcvs
rep_tvs' = scopedSort rep_tvs
rep_cvs' = scopedSort rep_cvs
-- Same as inst_tys, but with the last argument type replaced by the
-- representation type.
underlying_inst_tys :: [Type]
underlying_inst_tys = changeLast inst_tys rhs_ty
nlHsAppType :: LHsExpr GhcPs -> Type -> LHsExpr GhcPs
nlHsAppType e s = noLoc (HsAppType noExtField e hs_ty)
where
hs_ty = mkHsWildCardBndrs $ parenthesizeHsType appPrec $ nlHsCoreTy s
nlHsCoreTy :: HsCoreTy -> LHsType GhcPs
nlHsCoreTy = noLoc . XHsType
mkCoerceClassMethEqn :: Class -- the class being derived
-> [TyVar] -- the tvs in the instance head (this includes
-- the tvs from both the class types and the
-- newtype itself)
-> [Type] -- instance head parameters (incl. newtype)
-> Type -- the representation type
-> Id -- the method to look at
-> Pair Type
-- See Note [Newtype-deriving instances]
-- See also Note [Newtype-deriving trickiness]
-- The pair is the (from_type, to_type), where to_type is
-- the type of the method we are trying to get
mkCoerceClassMethEqn cls inst_tvs inst_tys rhs_ty id
= Pair (substTy rhs_subst user_meth_ty)
(substTy lhs_subst user_meth_ty)
where
cls_tvs = classTyVars cls
in_scope = mkInScopeSet $ mkVarSet inst_tvs
lhs_subst = mkTvSubst in_scope (zipTyEnv cls_tvs inst_tys)
rhs_subst = mkTvSubst in_scope (zipTyEnv cls_tvs (changeLast inst_tys rhs_ty))
(_class_tvs, _class_constraint, user_meth_ty)
= tcSplitMethodTy (varType id)
{-
************************************************************************
* *
\subsection{Generating extra binds (@tag2con@, etc.)}
* *
************************************************************************
\begin{verbatim}
data Foo ... = ...
tag2con_Foo :: Int -> Foo ... -- easier if Int, not Int#
maxtag_Foo :: Int -- ditto (NB: not unlifted)
\end{verbatim}
The `tags' here start at zero, hence the @fIRST_TAG@ (currently one)
fiddling around.
-}
-- | Generate the full code for an auxiliary binding.
-- See @Note [Auxiliary binders] (Wrinkle: Reducing code duplication)@.
genAuxBindSpecOriginal :: DynFlags -> SrcSpan -> AuxBindSpec
-> (LHsBind GhcPs, LSig GhcPs)
genAuxBindSpecOriginal dflags loc spec
= (gen_bind spec,
L loc (TypeSig noExtField [L loc (auxBindSpecRdrName spec)]
(genAuxBindSpecSig loc spec)))
where
gen_bind :: AuxBindSpec -> LHsBind GhcPs
gen_bind (DerivTag2Con _ tag2con_RDR)
= mkFunBindSE 0 loc tag2con_RDR
[([nlConVarPat intDataCon_RDR [a_RDR]],
nlHsApp (nlHsVar tagToEnum_RDR) a_Expr)]
gen_bind (DerivMaxTag tycon maxtag_RDR)
= mkHsVarBind loc maxtag_RDR rhs
where
rhs = nlHsApp (nlHsVar intDataCon_RDR)
(nlHsLit (HsIntPrim NoSourceText max_tag))
max_tag = case (tyConDataCons tycon) of
data_cons -> toInteger ((length data_cons) - fIRST_TAG)
gen_bind (DerivDataDataType tycon dataT_RDR dataC_RDRs)
= mkHsVarBind loc dataT_RDR rhs
where
ctx = initDefaultSDocContext dflags
rhs = nlHsVar mkDataType_RDR
`nlHsApp` nlHsLit (mkHsString (showSDocOneLine ctx (ppr tycon)))
`nlHsApp` nlList (map nlHsVar dataC_RDRs)
gen_bind (DerivDataConstr dc dataC_RDR dataT_RDR)
= mkHsVarBind loc dataC_RDR rhs
where
rhs = nlHsApps mkConstrTag_RDR constr_args
constr_args
= [ nlHsVar dataT_RDR -- DataType
, nlHsLit (mkHsString (occNameString dc_occ)) -- Constructor name
, nlHsIntLit (toInteger (dataConTag dc)) -- Constructor tag
, nlList labels -- Field labels
, nlHsVar fixity ] -- Fixity
labels = map (nlHsLit . mkHsString . unpackFS . flLabel)
(dataConFieldLabels dc)
dc_occ = getOccName dc
is_infix = isDataSymOcc dc_occ
fixity | is_infix = infix_RDR
| otherwise = prefix_RDR
-- | Generate the code for an auxiliary binding that is a duplicate of another
-- auxiliary binding.
-- See @Note [Auxiliary binders] (Wrinkle: Reducing code duplication)@.
genAuxBindSpecDup :: SrcSpan -> RdrName -> AuxBindSpec
-> (LHsBind GhcPs, LSig GhcPs)
genAuxBindSpecDup loc original_rdr_name dup_spec
= (mkHsVarBind loc dup_rdr_name (nlHsVar original_rdr_name),
L loc (TypeSig noExtField [L loc dup_rdr_name]
(genAuxBindSpecSig loc dup_spec)))
where
dup_rdr_name = auxBindSpecRdrName dup_spec
-- | Generate the type signature of an auxiliary binding.
-- See @Note [Auxiliary binders]@.
genAuxBindSpecSig :: SrcSpan -> AuxBindSpec -> LHsSigWcType GhcPs
genAuxBindSpecSig loc spec = case spec of
DerivTag2Con tycon _
-> mk_sig $ L loc $
XHsType $ mkSpecForAllTys (tyConTyVars tycon) $
intTy `mkVisFunTyMany` mkParentType tycon
DerivMaxTag _ _
-> mk_sig (L loc (XHsType intTy))
DerivDataDataType _ _ _
-> mk_sig (nlHsTyVar dataType_RDR)
DerivDataConstr _ _ _
-> mk_sig (nlHsTyVar constr_RDR)
where
mk_sig = mkHsWildCardBndrs . L loc . mkHsImplicitSigType
type SeparateBagsDerivStuff =
-- DerivAuxBinds
( Bag (LHsBind GhcPs, LSig GhcPs)
-- Extra family instances (used by DeriveGeneric, DeriveAnyClass, and
-- GeneralizedNewtypeDeriving)
, Bag FamInst )
-- | Take a 'BagDerivStuff' and partition it into 'SeparateBagsDerivStuff'.
-- Also generate the code for auxiliary bindings based on the declarative
-- descriptions in the supplied 'AuxBindSpec's. See @Note [Auxiliary binders]@.
genAuxBinds :: DynFlags -> SrcSpan -> BagDerivStuff -> SeparateBagsDerivStuff
genAuxBinds dflags loc b = (gen_aux_bind_specs b1, b2) where
(b1,b2) = partitionBagWith splitDerivAuxBind b
splitDerivAuxBind (DerivAuxBind x) = Left x
splitDerivAuxBind (DerivFamInst t) = Right t
gen_aux_bind_specs = snd . foldr gen_aux_bind_spec (emptyOccEnv, emptyBag)
-- Perform a CSE-like pass over the generated auxiliary bindings to avoid
-- code duplication, as described in
-- Note [Auxiliary binders] (Wrinkle: Reducing code duplication).
-- The OccEnv remembers the first occurrence of each sort of auxiliary
-- binding and maps it to the unique RdrName for that binding.
gen_aux_bind_spec :: AuxBindSpec
-> (OccEnv RdrName, Bag (LHsBind GhcPs, LSig GhcPs))
-> (OccEnv RdrName, Bag (LHsBind GhcPs, LSig GhcPs))
gen_aux_bind_spec spec (original_rdr_name_env, spec_bag) =
case lookupOccEnv original_rdr_name_env spec_occ of
Nothing
-> ( extendOccEnv original_rdr_name_env spec_occ spec_rdr_name
, genAuxBindSpecOriginal dflags loc spec `consBag` spec_bag )
Just original_rdr_name
-> ( original_rdr_name_env
, genAuxBindSpecDup loc original_rdr_name spec `consBag` spec_bag )
where
spec_rdr_name = auxBindSpecRdrName spec
spec_occ = rdrNameOcc spec_rdr_name
mkParentType :: TyCon -> Type
-- Turn the representation tycon of a family into
-- a use of its family constructor
mkParentType tc
= case tyConFamInst_maybe tc of
Nothing -> mkTyConApp tc (mkTyVarTys (tyConTyVars tc))
Just (fam_tc,tys) -> mkTyConApp fam_tc tys
{-
************************************************************************
* *
\subsection{Utility bits for generating bindings}
* *
************************************************************************
-}
-- | Make a function binding. If no equations are given, produce a function
-- with the given arity that produces a stock error.
mkFunBindSE :: Arity -> SrcSpan -> RdrName
-> [([LPat GhcPs], LHsExpr GhcPs)]
-> LHsBind GhcPs
mkFunBindSE arity loc fun pats_and_exprs
= mkRdrFunBindSE arity (L loc fun) matches
where
matches = [mkMatch (mkPrefixFunRhs (L loc fun))
(map (parenthesizePat appPrec) p) e
(noLoc emptyLocalBinds)
| (p,e) <-pats_and_exprs]
mkRdrFunBind :: Located RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
-> LHsBind GhcPs
mkRdrFunBind fun@(L loc _fun_rdr) matches
= L loc (mkFunBind Generated fun matches)
-- | Make a function binding. If no equations are given, produce a function
-- with the given arity that uses an empty case expression for the last
-- argument that is passes to the given function to produce the right-hand
-- side.
mkFunBindEC :: Arity -> SrcSpan -> RdrName
-> (LHsExpr GhcPs -> LHsExpr GhcPs)
-> [([LPat GhcPs], LHsExpr GhcPs)]
-> LHsBind GhcPs
mkFunBindEC arity loc fun catch_all pats_and_exprs
= mkRdrFunBindEC arity catch_all (L loc fun) matches
where
matches = [ mkMatch (mkPrefixFunRhs (L loc fun))
(map (parenthesizePat appPrec) p) e
(noLoc emptyLocalBinds)
| (p,e) <- pats_and_exprs ]
-- | Produces a function binding. When no equations are given, it generates
-- a binding of the given arity and an empty case expression
-- for the last argument that it passes to the given function to produce
-- the right-hand side.
mkRdrFunBindEC :: Arity
-> (LHsExpr GhcPs -> LHsExpr GhcPs)
-> Located RdrName
-> [LMatch GhcPs (LHsExpr GhcPs)]
-> LHsBind GhcPs
mkRdrFunBindEC arity catch_all
fun@(L loc _fun_rdr) matches = L loc (mkFunBind Generated fun matches')
where
-- Catch-all eqn looks like
-- fmap _ z = case z of {}
-- or
-- traverse _ z = pure (case z of)
-- or
-- foldMap _ z = mempty
-- It's needed if there no data cons at all,
-- which can happen with -XEmptyDataDecls
-- See #4302
matches' = if null matches
then [mkMatch (mkPrefixFunRhs fun)
(replicate (arity - 1) nlWildPat ++ [z_Pat])
(catch_all $ nlHsCase z_Expr [])
(noLoc emptyLocalBinds)]
else matches
-- | Produces a function binding. When there are no equations, it generates
-- a binding with the given arity that produces an error based on the name of
-- the type of the last argument.
mkRdrFunBindSE :: Arity -> Located RdrName ->
[LMatch GhcPs (LHsExpr GhcPs)] -> LHsBind GhcPs
mkRdrFunBindSE arity
fun@(L loc fun_rdr) matches = L loc (mkFunBind Generated fun matches')
where
-- Catch-all eqn looks like
-- compare _ _ = error "Void compare"
-- It's needed if there no data cons at all,
-- which can happen with -XEmptyDataDecls
-- See #4302
matches' = if null matches
then [mkMatch (mkPrefixFunRhs fun)
(replicate arity nlWildPat)
(error_Expr str) (noLoc emptyLocalBinds)]
else matches
str = "Void " ++ occNameString (rdrNameOcc fun_rdr)
box :: String -- The class involved
-> LHsExpr GhcPs -- The argument
-> Type -- The argument type
-> LHsExpr GhcPs -- Boxed version of the arg
-- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
box cls_str arg arg_ty = assoc_ty_id cls_str boxConTbl arg_ty arg
---------------------
primOrdOps :: String -- The class involved
-> Type -- The type
-> (RdrName, RdrName, RdrName, RdrName, RdrName) -- (lt,le,eq,ge,gt)
-- See Note [Deriving and unboxed types] in GHC.Tc.Deriv.Infer
primOrdOps str ty = assoc_ty_id str ordOpTbl ty
ordOpTbl :: [(Type, (RdrName, RdrName, RdrName, RdrName, RdrName))]
ordOpTbl
= [(charPrimTy , (ltChar_RDR , leChar_RDR
, eqChar_RDR , geChar_RDR , gtChar_RDR ))
,(intPrimTy , (ltInt_RDR , leInt_RDR
, eqInt_RDR , geInt_RDR , gtInt_RDR ))
,(int8PrimTy , (ltInt8_RDR , leInt8_RDR
, eqInt8_RDR , geInt8_RDR , gtInt8_RDR ))
,(int16PrimTy , (ltInt16_RDR , leInt16_RDR
, eqInt16_RDR , geInt16_RDR , gtInt16_RDR ))
,(int32PrimTy , (ltInt32_RDR , leInt32_RDR
, eqInt32_RDR , geInt32_RDR , gtInt32_RDR ))
,(wordPrimTy , (ltWord_RDR , leWord_RDR
, eqWord_RDR , geWord_RDR , gtWord_RDR ))
,(word8PrimTy , (ltWord8_RDR , leWord8_RDR
, eqWord8_RDR , geWord8_RDR , gtWord8_RDR ))
,(word16PrimTy, (ltWord16_RDR, leWord16_RDR
, eqWord16_RDR, geWord16_RDR, gtWord16_RDR ))
,(word32PrimTy, (ltWord32_RDR, leWord32_RDR
, eqWord32_RDR, geWord32_RDR, gtWord32_RDR ))
,(addrPrimTy , (ltAddr_RDR , leAddr_RDR
, eqAddr_RDR , geAddr_RDR , gtAddr_RDR ))
,(floatPrimTy , (ltFloat_RDR , leFloat_RDR
, eqFloat_RDR , geFloat_RDR , gtFloat_RDR ))
,(doublePrimTy, (ltDouble_RDR, leDouble_RDR
, eqDouble_RDR, geDouble_RDR, gtDouble_RDR)) ]
-- A mapping from a primitive type to a function that constructs its boxed
-- version.
-- NOTE: Int8#/Word8# will become Int/Word.
boxConTbl :: [(Type, LHsExpr GhcPs -> LHsExpr GhcPs)]
boxConTbl =
[ (charPrimTy , nlHsApp (nlHsVar $ getRdrName charDataCon))
, (intPrimTy , nlHsApp (nlHsVar $ getRdrName intDataCon))
, (wordPrimTy , nlHsApp (nlHsVar $ getRdrName wordDataCon ))
, (floatPrimTy , nlHsApp (nlHsVar $ getRdrName floatDataCon ))
, (doublePrimTy, nlHsApp (nlHsVar $ getRdrName doubleDataCon))
, (int8PrimTy,
nlHsApp (nlHsVar $ getRdrName intDataCon)
. nlHsApp (nlHsVar extendInt8_RDR))
, (word8PrimTy,
nlHsApp (nlHsVar $ getRdrName wordDataCon)
. nlHsApp (nlHsVar extendWord8_RDR))
, (int16PrimTy,
nlHsApp (nlHsVar $ getRdrName intDataCon)
. nlHsApp (nlHsVar extendInt16_RDR))
, (word16PrimTy,
nlHsApp (nlHsVar $ getRdrName wordDataCon)
. nlHsApp (nlHsVar extendWord16_RDR))
, (int32PrimTy,
nlHsApp (nlHsVar $ getRdrName intDataCon)
. nlHsApp (nlHsVar extendInt32_RDR))
, (word32PrimTy,
nlHsApp (nlHsVar $ getRdrName wordDataCon)
. nlHsApp (nlHsVar extendWord32_RDR))
]
-- | A table of postfix modifiers for unboxed values.
postfixModTbl :: [(Type, String)]
postfixModTbl
= [(charPrimTy , "#" )
,(intPrimTy , "#" )
,(wordPrimTy , "##")
,(floatPrimTy , "#" )
,(doublePrimTy, "##")
,(int8PrimTy, "#")
,(word8PrimTy, "##")
,(int16PrimTy, "#")
,(word16PrimTy, "##")
,(int32PrimTy, "#")
,(word32PrimTy, "##")
]
primConvTbl :: [(Type, String)]
primConvTbl =
[ (int8PrimTy, "narrowInt8#")
, (word8PrimTy, "narrowWord8#")
, (int16PrimTy, "narrowInt16#")
, (word16PrimTy, "narrowWord16#")
, (int32PrimTy, "narrowInt32#")
, (word32PrimTy, "narrowWord32#")
]
litConTbl :: [(Type, LHsExpr GhcPs -> LHsExpr GhcPs)]
litConTbl
= [(charPrimTy , nlHsApp (nlHsVar charPrimL_RDR))
,(intPrimTy , nlHsApp (nlHsVar intPrimL_RDR)
. nlHsApp (nlHsVar toInteger_RDR))
,(wordPrimTy , nlHsApp (nlHsVar wordPrimL_RDR)
. nlHsApp (nlHsVar toInteger_RDR))
,(addrPrimTy , nlHsApp (nlHsVar stringPrimL_RDR)
. nlHsApp (nlHsApp
(nlHsVar map_RDR)
(compose_RDR `nlHsApps`
[ nlHsVar fromIntegral_RDR
, nlHsVar fromEnum_RDR
])))
,(floatPrimTy , nlHsApp (nlHsVar floatPrimL_RDR)
. nlHsApp (nlHsVar toRational_RDR))
,(doublePrimTy, nlHsApp (nlHsVar doublePrimL_RDR)
. nlHsApp (nlHsVar toRational_RDR))
]
-- | Lookup `Type` in an association list.
assoc_ty_id :: HasCallStack => String -- The class involved
-> [(Type,a)] -- The table
-> Type -- The type
-> a -- The result of the lookup
assoc_ty_id cls_str tbl ty
| Just a <- assoc_ty_id_maybe tbl ty = a
| otherwise =
pprPanic "Error in deriving:"
(text "Can't derive" <+> text cls_str <+>
text "for primitive type" <+> ppr ty)
-- | Lookup `Type` in an association list.
assoc_ty_id_maybe :: [(Type, a)] -> Type -> Maybe a
assoc_ty_id_maybe tbl ty = snd <$> find (\(t, _) -> t `eqType` ty) tbl
-----------------------------------------------------------------------
and_Expr :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
and_Expr a b = genOpApp a and_RDR b
-----------------------------------------------------------------------
eq_Expr :: Type -> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
eq_Expr ty a b
| not (isUnliftedType ty) = genOpApp a eq_RDR b
| otherwise = genPrimOpApp a prim_eq b
where
(_, _, prim_eq, _, _) = primOrdOps "Eq" ty
untag_Expr :: [(RdrName, RdrName)]
-> LHsExpr GhcPs -> LHsExpr GhcPs
untag_Expr [] expr = expr
untag_Expr ((untag_this, put_tag_here) : more) expr
= nlHsCase (nlHsPar (nlHsVarApps dataToTag_RDR [untag_this])) {-of-}
[mkHsCaseAlt (nlVarPat put_tag_here) (untag_Expr more expr)]
enum_from_to_Expr
:: LHsExpr GhcPs -> LHsExpr GhcPs
-> LHsExpr GhcPs
enum_from_then_to_Expr
:: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
-> LHsExpr GhcPs
enum_from_to_Expr f t2 = nlHsApp (nlHsApp (nlHsVar enumFromTo_RDR) f) t2
enum_from_then_to_Expr f t t2 = nlHsApp (nlHsApp (nlHsApp (nlHsVar enumFromThenTo_RDR) f) t) t2
showParen_Expr
:: LHsExpr GhcPs -> LHsExpr GhcPs
-> LHsExpr GhcPs
showParen_Expr e1 e2 = nlHsApp (nlHsApp (nlHsVar showParen_RDR) e1) e2
nested_compose_Expr :: [LHsExpr GhcPs] -> LHsExpr GhcPs
nested_compose_Expr [] = panic "nested_compose_expr" -- Arg is always non-empty
nested_compose_Expr [e] = parenify e
nested_compose_Expr (e:es)
= nlHsApp (nlHsApp (nlHsVar compose_RDR) (parenify e)) (nested_compose_Expr es)
-- impossible_Expr is used in case RHSs that should never happen.
-- We generate these to keep the desugarer from complaining that they *might* happen!
error_Expr :: String -> LHsExpr GhcPs
error_Expr string = nlHsApp (nlHsVar error_RDR) (nlHsLit (mkHsString string))
-- illegal_Expr is used when signalling error conditions in the RHS of a derived
-- method. It is currently only used by Enum.{succ,pred}
illegal_Expr :: String -> String -> String -> LHsExpr GhcPs
illegal_Expr meth tp msg =
nlHsApp (nlHsVar error_RDR) (nlHsLit (mkHsString (meth ++ '{':tp ++ "}: " ++ msg)))
-- illegal_toEnum_tag is an extended version of illegal_Expr, which also allows you
-- to include the value of a_RDR in the error string.
illegal_toEnum_tag :: String -> RdrName -> LHsExpr GhcPs
illegal_toEnum_tag tp maxtag =
nlHsApp (nlHsVar error_RDR)
(nlHsApp (nlHsApp (nlHsVar append_RDR)
(nlHsLit (mkHsString ("toEnum{" ++ tp ++ "}: tag ("))))
(nlHsApp (nlHsApp (nlHsApp
(nlHsVar showsPrec_RDR)
(nlHsIntLit 0))
(nlHsVar a_RDR))
(nlHsApp (nlHsApp
(nlHsVar append_RDR)
(nlHsLit (mkHsString ") is outside of enumeration's range (0,")))
(nlHsApp (nlHsApp (nlHsApp
(nlHsVar showsPrec_RDR)
(nlHsIntLit 0))
(nlHsVar maxtag))
(nlHsLit (mkHsString ")"))))))
parenify :: LHsExpr GhcPs -> LHsExpr GhcPs
parenify e@(L _ (HsVar _ _)) = e
parenify e = mkHsPar e
-- genOpApp wraps brackets round the operator application, so that the
-- renamer won't subsequently try to re-associate it.
genOpApp :: LHsExpr GhcPs -> RdrName -> LHsExpr GhcPs -> LHsExpr GhcPs
genOpApp e1 op e2 = nlHsPar (nlHsOpApp e1 op e2)
genPrimOpApp :: LHsExpr GhcPs -> RdrName -> LHsExpr GhcPs -> LHsExpr GhcPs
genPrimOpApp e1 op e2 = nlHsPar (nlHsApp (nlHsVar tagToEnum_RDR) (nlHsOpApp e1 op e2))
a_RDR, b_RDR, c_RDR, d_RDR, f_RDR, k_RDR, z_RDR, ah_RDR, bh_RDR, ch_RDR, dh_RDR
:: RdrName
a_RDR = mkVarUnqual (fsLit "a")
b_RDR = mkVarUnqual (fsLit "b")
c_RDR = mkVarUnqual (fsLit "c")
d_RDR = mkVarUnqual (fsLit "d")
f_RDR = mkVarUnqual (fsLit "f")
k_RDR = mkVarUnqual (fsLit "k")
z_RDR = mkVarUnqual (fsLit "z")
ah_RDR = mkVarUnqual (fsLit "a#")
bh_RDR = mkVarUnqual (fsLit "b#")
ch_RDR = mkVarUnqual (fsLit "c#")
dh_RDR = mkVarUnqual (fsLit "d#")
as_RDRs, bs_RDRs, cs_RDRs :: [RdrName]
as_RDRs = [ mkVarUnqual (mkFastString ("a"++show i)) | i <- [(1::Int) .. ] ]
bs_RDRs = [ mkVarUnqual (mkFastString ("b"++show i)) | i <- [(1::Int) .. ] ]
cs_RDRs = [ mkVarUnqual (mkFastString ("c"++show i)) | i <- [(1::Int) .. ] ]
a_Expr, b_Expr, c_Expr, z_Expr, ltTag_Expr, eqTag_Expr, gtTag_Expr, false_Expr,
true_Expr, pure_Expr, unsafeCodeCoerce_Expr :: LHsExpr GhcPs
a_Expr = nlHsVar a_RDR
b_Expr = nlHsVar b_RDR
c_Expr = nlHsVar c_RDR
z_Expr = nlHsVar z_RDR
ltTag_Expr = nlHsVar ltTag_RDR
eqTag_Expr = nlHsVar eqTag_RDR
gtTag_Expr = nlHsVar gtTag_RDR
false_Expr = nlHsVar false_RDR
true_Expr = nlHsVar true_RDR
pure_Expr = nlHsVar pure_RDR
unsafeCodeCoerce_Expr = nlHsVar unsafeCodeCoerce_RDR
a_Pat, b_Pat, c_Pat, d_Pat, k_Pat, z_Pat :: LPat GhcPs
a_Pat = nlVarPat a_RDR
b_Pat = nlVarPat b_RDR
c_Pat = nlVarPat c_RDR
d_Pat = nlVarPat d_RDR
k_Pat = nlVarPat k_RDR
z_Pat = nlVarPat z_RDR
minusInt_RDR, tagToEnum_RDR :: RdrName
minusInt_RDR = getRdrName (primOpId IntSubOp )
tagToEnum_RDR = getRdrName (primOpId TagToEnumOp)
new_tag2con_rdr_name, new_maxtag_rdr_name
:: SrcSpan -> TyCon -> TcM RdrName
-- Generates Exact RdrNames, for the binding positions
new_tag2con_rdr_name dflags tycon = new_tc_deriv_rdr_name dflags tycon mkTag2ConOcc
new_maxtag_rdr_name dflags tycon = new_tc_deriv_rdr_name dflags tycon mkMaxTagOcc
new_dataT_rdr_name :: SrcSpan -> TyCon -> TcM RdrName
new_dataT_rdr_name dflags tycon = new_tc_deriv_rdr_name dflags tycon mkDataTOcc
new_dataC_rdr_name :: SrcSpan -> DataCon -> TcM RdrName
new_dataC_rdr_name dflags dc = new_dc_deriv_rdr_name dflags dc mkDataCOcc
new_tc_deriv_rdr_name :: SrcSpan -> TyCon -> (OccName -> OccName) -> TcM RdrName
new_tc_deriv_rdr_name loc tycon occ_fun
= newAuxBinderRdrName loc (tyConName tycon) occ_fun
new_dc_deriv_rdr_name :: SrcSpan -> DataCon -> (OccName -> OccName) -> TcM RdrName
new_dc_deriv_rdr_name loc dc occ_fun
= newAuxBinderRdrName loc (dataConName dc) occ_fun
-- | Generate the name for an auxiliary binding, giving it a fresh 'Unique'.
-- Returns an 'Exact' 'RdrName' with an underlying 'System' 'Name'.
-- See @Note [Auxiliary binders]@.
newAuxBinderRdrName :: SrcSpan -> Name -> (OccName -> OccName) -> TcM RdrName
newAuxBinderRdrName loc parent occ_fun = do
uniq <- newUnique
pure $ Exact $ mkSystemNameAt uniq (occ_fun (nameOccName parent)) loc
-- | @getPossibleDataCons tycon tycon_args@ returns the constructors of @tycon@
-- whose return types match when checked against @tycon_args@.
--
-- See Note [Filter out impossible GADT data constructors]
getPossibleDataCons :: TyCon -> [Type] -> [DataCon]
getPossibleDataCons tycon tycon_args = filter isPossible $ tyConDataCons tycon
where
isPossible = not . dataConCannotMatch (tyConInstArgTys tycon tycon_args)
-- | Given a type constructor @tycon@ of arity /n/ and a list of argument types
-- @tycon_args@ of length /m/,
--
-- @
-- tyConInstArgTys tycon tycon_args
-- @
--
-- returns
--
-- @
-- [tycon_arg_{1}, tycon_arg_{2}, ..., tycon_arg_{m}, extra_arg_{m+1}, ..., extra_arg_{n}]
-- @
--
-- where @extra_args@ are distinct type variables.
--
-- Examples:
--
-- * Given @tycon: Foo a b@ and @tycon_args: [Int, Bool]@, return @[Int, Bool]@.
--
-- * Given @tycon: Foo a b@ and @tycon_args: [Int]@, return @[Int, b]@.
tyConInstArgTys :: TyCon -> [Type] -> [Type]
tyConInstArgTys tycon tycon_args = chkAppend tycon_args $ map mkTyVarTy tycon_args_suffix
where
tycon_args_suffix = drop (length tycon_args) $ tyConTyVars tycon
{-
Note [Auxiliary binders]
~~~~~~~~~~~~~~~~~~~~~~~~
We often want to make top-level auxiliary bindings in derived instances.
For example, derived Ix instances sometimes generate code like this:
data T = ...
deriving instance Ix T
==>
instance Ix T where
range (a, b) = map tag2con_T [dataToTag# a .. dataToTag# b]
$tag2con_T :: Int -> T
$tag2con_T = ...code....
Note that multiple instances of the same type might need to use the same sort
of auxiliary binding. For example, $tag2con is used not only in derived Ix
instances, but also in derived Enum instances:
deriving instance Enum T
==>
instance Enum T where
toEnum i = tag2con_T i
$tag2con_T :: Int -> T
$tag2con_T = ...code....
How do we ensure that the two usages of $tag2con_T do not conflict with each
other? We do so by generating a separate $tag2con_T definition for each
instance, giving each definition an Exact RdrName with a separate Unique to
avoid name clashes:
instance Ix T where
range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]
instance Enum T where
toEnum a = $tag2con_T{Uniq2} a
-- $tag2con_T{Uniq1} and $tag2con_T{Uniq2} are Exact RdrNames with
-- underyling System Names
$tag2con_T{Uniq1} :: Int -> T
$tag2con_T{Uniq1} = ...code....
$tag2con_T{Uniq2} :: Int -> T
$tag2con_T{Uniq2} = ...code....
Note that:
* This is /precisely/ the same mechanism that we use for
Template Haskell–generated code.
See Note [Binders in Template Haskell] in GHC.ThToHs.
There we explain why we use a 'System' flavour of the Name we generate.
* See "Wrinkle: Reducing code duplication" for how we can avoid generating
lots of duplicated code in common situations.
* See "Wrinkle: Why we sometimes do generated duplicate code" for why this
de-duplication mechanism isn't perfect, so we fall back to CSE
(which is very effective within a single module).
* Note that the "_T" part of "$tag2con_T" is just for debug-printing
purposes. We could call them all "$tag2con", or even just "aux".
The Unique is enough to keep them separate.
This is important: we might be generating an Eq instance for two
completely-distinct imported type constructors T.
At first glance, it might appear that this plan is infeasible, as it would
require generating multiple top-level declarations with the same OccName. But
what if auxiliary bindings /weren't/ top-level? Conceptually, we could imagine
that auxiliary bindings are /local/ to the instance declarations in which they
are used. Using some hypothetical Haskell syntax, it might look like this:
let {
$tag2con_T{Uniq1} :: Int -> T
$tag2con_T{Uniq1} = ...code....
$tag2con_T{Uniq2} :: Int -> T
$tag2con_T{Uniq2} = ...code....
} in {
instance Ix T where
range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]
instance Enum T where
toEnum a = $tag2con_T{Uniq2} a
}
Making auxiliary bindings local is key to making this work, since GHC will
not reject local bindings with duplicate names provided that:
* Each binding has a distinct unique, and
* Each binding has an Exact RdrName with a System Name.
Even though the hypothetical Haskell syntax above does not exist, we can
accomplish the same end result through some sleight of hand in renameDeriv:
we rename auxiliary bindings with rnLocalValBindsLHS. (If we had used
rnTopBindsLHS instead, then GHC would spuriously reject auxiliary bindings
with the same OccName as duplicates.) Luckily, no special treatment is needed
to typecheck them; we can typecheck them as normal top-level bindings
(using tcTopBinds) without danger.
-----
-- Wrinkle: Reducing code duplication
-----
While the approach of generating copies of each sort of auxiliary binder per
derived instance is simpler, it can lead to code bloat if done naïvely.
Consider this example:
data T = ...
deriving instance Eq T
deriving instance Ord T
==>
instance Ix T where
range (a, b) = map tag2con_T{Uniq2} [dataToTag# a .. dataToTag# b]
instance Enum T where
toEnum a = $tag2con_T{Uniq2} a
$tag2con_T{Uniq1} :: Int -> T
$tag2con_T{Uniq1} = ...code....
$tag2con_T{Uniq2} :: Int -> T
$tag2con_T{Uniq2} = ...code....
$tag2con_T{Uniq1} and $tag2con_T{Uniq2} are blatant duplicates of each other,
which is not ideal. Surely GHC can do better than that at the very least! And
indeed it does. Within the genAuxBinds function, GHC performs a small CSE-like
pass to define duplicate auxiliary binders in terms of the original one. On
the example above, that would look like this:
$tag2con_T{Uniq1} :: Int -> T
$tag2con_T{Uniq1} = ...code....
$tag2con_T{Uniq2} :: Int -> T
$tag2con_T{Uniq2} = $tag2con_T{Uniq1}
(Note that this pass does not cover all possible forms of code duplication.
See "Wrinkle: Why we sometimes do generate duplicate code" for situations
where genAuxBinds does not deduplicate code.)
To start, genAuxBinds is given a list of AuxBindSpecs, which describe the sort
of auxiliary bindings that must be generates along with their RdrNames. As
genAuxBinds processes this list, it marks the first occurrence of each sort of
auxiliary binding as the "original". For example, if genAuxBinds sees a
DerivCon2Tag for the first time (with the RdrName $tag2con_T{Uniq1}), then it
will generate the full code for a $tag2con binding:
$tag2con_T{Uniq1} :: Int -> T
$tag2con_T{Uniq1} = ...code....
Later, if genAuxBinds sees any additional DerivCon2Tag values, it will treat
them as duplicates. For example, if genAuxBinds later sees a DerivCon2Tag with
the RdrName $tag2con_T{Uniq2}, it will generate this code, which is much more
compact:
$tag2con_T{Uniq2} :: Int -> T
$tag2con_T{Uniq2} = $tag2con_T{Uniq1}
An alternative approach would be /not/ performing any kind of deduplication in
genAuxBinds at all and simply relying on GHC's simplifier to perform this kind
of CSE. But this is a more expensive analysis in general, while genAuxBinds can
accomplish the same result with a simple check.
-----
-- Wrinkle: Why we sometimes do generate duplicate code
-----
It is worth noting that deduplicating auxiliary binders is difficult in the
general case. Here are two particular examples where GHC cannot easily remove
duplicate copies of an auxiliary binding:
1. When derived instances are contained in different modules, as in the
following example:
module A where
data T = ...
module B where
import A
deriving instance Ix T
module C where
import B
deriving instance Enum T
The derived Eq and Enum instances for T make use of $tag2con_T, and since
they are defined in separate modules, each module must produce its own copy
of $tag2con_T.
2. When derived instances are separated by TH splices (#18321), as in the
following example:
module M where
data T = ...
deriving instance Ix T
$(pure [])
deriving instance Enum T
Due to the way that GHC typechecks TyClGroups, genAuxBinds will run twice
in this program: once for all the declarations before the TH splice, and
once again for all the declarations after the TH splice. As a result,
$tag2con_T will be generated twice, since genAuxBinds will be unable to
recognize the presence of duplicates.
These situations are much rarer, so we do not spend any effort to deduplicate
auxiliary bindings there. Instead, we focus on the common case of multiple
derived instances within the same module, not separated by any TH splices.
(This is the case described in "Wrinkle: Reducing code duplication".) In
situation (1), we can at least fall back on GHC's simplifier to pick up
genAuxBinds' slack.
Note [Filter out impossible GADT data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some stock-derivable classes will filter out impossible GADT data constructors,
to rule out problematic constructors when deriving instances. e.g.
```
data Foo a where
X :: Foo Int
Y :: (Bool -> Bool) -> Foo Bool
```
when deriving an instance on `Foo Int`, `Y` should be treated as if it didn't
exist in the first place. For instance, if we write
```
deriving instance Eq (Foo Int)
```
it should generate:
```
instance Eq (Foo Int) where
X == X = True
```
Classes that filter constructors:
* Eq
* Ord
* Show
* Lift
* Functor
* Foldable
* Traversable
Classes that do not filter constructors:
* Enum: doesn't make sense for GADTs in the first place
* Bounded: only makes sense for GADTs with a single constructor
* Ix: only makes sense for GADTs with a single constructor
* Read: `Read a` returns `a` instead of consumes `a`, so filtering data
constructors would make this function _more_ partial instead of less
* Data: derived implementations of gunfold rely on a constructor-indexing
scheme that wouldn't work if certain constructors were filtered out
* Generic/Generic1: doesn't make sense for GADTs
Classes that do not currently filter constructors may do so in the future, if
there is a valid use-case and we have requirements for how they should work.
See #16341 and the T16341.hs test case.
-}
|